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UNDAMPED VIBRATIONS OF ELASTIC THIN-WALLED BEAMS OF OPEN
DEFORMABLE CROSS SECTION

Stanko Brcic

Introduction. Basic Assumptions

Undamped vibrations of straight single span thin-walled beams of open de-
formable cross sections are analyzed; this is actually the vibration analysis of long
prismatic folded plates. The paper is based on the treatise proposed by Kollbrunner
and Hajdin (1) which represents the statical analysis of the mentioned thin-walled
beams.

Let us consider a single span straight thin-walled beam
of an arbitrary open cross section which is constant along
the span (Fig. 1). All vector and tensor quantities are defined
with respect to the coordinate systems #, s, Z and/or x, y, z.
Both systems are orthogonal righthanded and fixed to the
undeformed configuration of the beam. The axes x and y Fig. 1
are selected to be the principal centroidal axes of the cross
section, and z is the axis of the bsam. The coordinate s is measured along the
center line of the walls from the previously defined starting point 0, while n is the
normal to the center line.

The displacement vactor of the points of the middle surface has components v,
v and w with reference to the system n, s, z, respectivelly, and components £ and 7
in x and y directions. The same notation, only with the asterisk as the subscript, 1s
being used for displaccment components of the points outside the middle surface
(i. e. at the distances e along the normal n).

Besides of the assumptions of linearized theory of elasticity as well as of the
neglection of thermal influences, the following assumptions have been used:

1. the normal strains of the points of the center line in the direction of the
center line, as well as the shear strains in the middle surface are neglected;

2. the displacements perpendicular to the middle surface due to displacements
and rotations of the nodal lines are represented by the third order polynomial in
coordinate s along the center line.

Differential Equations of Motion. Boundary and Initial Conditions

According to the used assumption, the displacement vector of an arbitrary
point of the bzam may be expressed in terms of the N generalized coordinates de-
pzndznt on the position of the cross sections and of the time. To any given thin-walled
cross szction it corresponds the kinematical mechanism formed by the rigid straight
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rods whose axes are coinciding with the center line and which are pin-jointed at the
nodal lines. If the number of the degrees of freedom of the plane motion of the ki-
nematical mechanism is denoted by » and the number of the nodal points by m,
then the number N of the generalized coordinates is equal to N=n-fm. There are
n coordinates ¥, (z, t), which are called the displacement parameters, and m co-
ordinates @, (z, ¢) which represent the angles of rotations of the nodal points.

The translation of the cross section taken as a rigid plane in the directions of
the axes x and y, and its rotation around an arbitrary point in the cross section plane
are taken as the first three motion parameters V. Thatway, the theory of the thin-
walled beams of undeformable cross sections may be included as the special case
of the theory of the thin-walled beams of deformable cross section. Therefore, by
the generalized coordinates V, (z, 1) and @, (z, t) the displacements and the rotations
of the nodal lines are defined. The displacement components u, v and w are expressed
in terms of the generalized coordinates in the form:
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The functions beside the generalized coordinates u'”, 1%, v®, w® are the third
order polynomials in coordinate s, and they are obtained from the assumptions
being used. The function uy (z, s, t) represents the set of deflections of all rectangular
plates the thin-walled beam is composed of due to external loading perpendicular

to the plates if assuming that each plate is fixed along the nodal line.
The strain components are expressed in terms of displacements:
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and, then, the stress components:
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where E'=E/(1—v?), E is the Young’s modulus, v the Poisson’s ratio. The normal
stresses o, are, like in the theory of thin plates, neglected, and the shearing stresses
T,, and 7, due to the assumptions being used, cannot be expressed in terms of
displacements.

The cross sectional internal forces (stress resultants) are defined like in the
theory of thin plates; all other quantities are expressed by displacements, or, by
generalized coordinates V; and @,.

The differential equations of motion are derived by applying the principle of
the virtual work due to a variation of displacements: the increment of the work
of the surface forces, body forces and inertia forces due to a variation of
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displacements is equal to the increment of the work of the internal forces due to the
corresponding variation of the state of deformation. Therefore, the following work
equation is valid over the unit length of the beam:
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The vector of virtual displacement § R is assumed in the same form as the vector of
actual displacement, Egs. (1), the only difference is that the virtual generalized co-
ordinates exist and that the terms u,, dependent on actual loading, do not exist.

After many transformations, Eq. (4) leads to the equation describing the lon-
gitudinal vibrations
W, W,
: L PFL"_O = —P:
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where W, (z, t) represents the translation of the cross sections in the longitudinal
direction of the beam, F the cross section area, ¢ the material density, p, the longi-
tudinal loading, as well as to the system of linear partial differential equations of the
fourth order in unknown generalized coordinates. This system can be written in
matrix form*

(3) E'F
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The quantities K; (/=1, ..., 4) are symmetric square matrices of the order m-n
with constant elements dependent on the cross section geometry as well as on the

selected displacement parameters V;. The absolute term K, (z, t) is the vector whose
elements are dependent on loading. With the comma and index z or ¢, it 1s denoted
the derivative with respect to the corresponding coordinate.

Eq. (5) is the well-known equation of the longitudinal vibrations of beams and
it will not be considered in the following text.

The boundary conditions due to displacements can be written in matrix form:

-

(8) 2=0, z=I $=9* §,=¢n

where the column vectors on the right sides represent the known generalized co-
ordinates and their derivatives.

* In the following, all letters with vector symbols ,,—‘ denote matrix quantities.



10 Stanko Bréic¢

The boundary conditions due to forces can be derived by the principle of
virtual displacements, and after being expressed in terms of displacements, they
have the form:

, —_— —> > 1 — — —_— —> —_ —
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Thz homogencous boundary conditions at some characteristic support con-
ditions have the form:
for the built-in end

(10a) $=0 §.=0

for the simply supported end

(10 b) $=0 ¢=0
for the free end
(10¢) El_; —LHJ =i} i\;-l; IE,: 0

The initial conditions are defined by known positions and by known velocities
of all points of the beam at the time t—0:

>
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Therefore, thz clastic undampad vibrations of the straight thin-walled beams
of open dzformable cross section constant over the span are defined by the system
of linear partial differential equations of the fourth order with constant symmetrical
co:fficients, Eq. (6), as well as by corresponding boundary and initial conditions.
The number of equations depends on the form of the cross section of the beam and,
in generally, it is very high, f. i., at the "'I"" cross section this number is equal to 13.

Solution of Differential Equation of Motion

1. Free Harmonic Vibrations

The frzc vibrations are dzfined by the homogeneous equations (6) and by the
corresponding boundary conditions (10). The solution of the equation (6) is assumed
in the form

(12) Y(z, 1) =Y (2) e’
where i,—=—1. Thatway, the following system of ordinary differential equations is
obtained:

(13) K- Ry + K= L0 (K + Ky -
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Thus, the problem of the free harmonic vibrations is the eigenvalue problem
of the system of linear ordinary differential equations of the fourth order with constant
coefficients. In general case, the solution of such an eigenvalue problem is not possible
to be obtained for an arbitrary type of boundary conditions.

Only, when both ends of the bsam are simply supported, the boundary con-
ditions (10b) are satisfied by the particular solution

(14) U(@)=Cosinnz (s=1,2,..)

where 2, —S 7/l (s=1, 2, ....), and [ being the length of the span, while C. is the
column vector of n-~m unknown constant elements. Substituting (14) into Eq. (13)

—_—
the homogeneous system of algebraic equations in unknown elements of vector C,1s
obtained:

- —

(15) [xi?{lniKﬁi—%mZ(xiZ4-}?3)]5;:0 frmnily 25 o)

The conditions to the existence of thz nontrivial solution yields the frequency
equation

—
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Eq. (16) is the algebraic equation of the degree n+m in the unknown w?,
(g=1, 2,..., n+m), and, also, after substituting them into (15) there are n—+m
constant column vectors dztermined to the multiplicative constant factor. It means
that for each (sinusoidal) mode of vibration of the axis of the beam as a whole,
which may bz referred to as the »external”’ mode, there are n+m vibration modes
within cross saction, the “internal’” modes of vibrations.

By using the notations

—_— —_ — — — —_— 48
(17) R=K D‘*-K,D*+K, R,=-K D*+K Dt=—(pn=1, 2,...)
Egs. (13) may be written in the operator form:

(18) Ry=L"w’R,y

—

If assum=d that the external modes ¢, and ¢, are performed in only on internal
mod:z, thzn, it can bz shown that the natural modes are orthonormalized:

]
oo (sur
lO

where T denotes the transpose of vector column. The orthogonality condition (19)
is not valid if one end of the beam is free, therefore, the cantilever beams will not
be considered in the following text.
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2. Forced Harmonic Vibrations

We shall consider the beam under the influence of the harmonic loading; the
absolute term is given by

(20) E{; (z, 1=K, (z) & 2

The unknown generalized coordinates are assumed in the form

(21) —4:(‘- ):.\D (z) e

The partial differential equations are deduced thatway to ordinary differential
equations

— T gy R 1 ==
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Considering the orthogonality relations (19) it is possible to expand the un-
known function  (z) into series in terms of natural modes of the free harmonic

vibrations ¢, (2):
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as well as to determine the unknown coefficients a,,. Therefore, the solution of the
Eq. (22), i. e., of the Eqgs. (6), is obtained in the form

iQt oo

(24) Y@z, 1)= -2 ( _Qz)

For simply supported beam the solution (34) has the form)

J\f
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It can be seen that the resonance occurs when Q—>w,. Thus, the resonance
may occur when the angular frequency of external loading Q is close to any of n-+m
natural frequencies of all external modes.

3 Nonperiodic Forced and Free Vibrations

Let us consider Eqgs. (5), the initial condition (11), and the boundary conditions
which make the orthogonality relations (19) valid.

After applying the Laplace transform to Eqgs. (6) and introducing the relations

(26) V@ p)=[ U perd Kz p)=[ K (z 1)erdr
0

0
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one bacomes the system of ordinary differential equations:
1

t51) Rlzp‘ ¥ '§TP2R2—‘§:EK0;}(K1*K3) (pF*+GY)

—

The unknown function ¢ (z, p), i. e., the Laplace transform of the function

U(z, 1), is expanded into s=ries in terms of the natural modes of the free harmonic
vibrations { (z):

(28) D)= S an () )

Duz to ths orthogonality conditions (19), the cozfficients a,,(p) of the series

(28), as well as ths function—q—; (z, p) can bz found. After carrying out the inverse
Laplace transform, the final solution is obtained in the form

! ‘
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For K, (z, 1)=0, the solution (29) is rzlated to nonperiodic free vibrations due
to the different initial conditions. However, the more often case is when the initial

conditions are homogeneous, I'?E (z)=5“ (z)=0, and when E" (25 £)=0.

Thin-walled Beams of Nondeformable Cross Sections

The thzory of the thin-walled beams of open nondefcrmable cross sections is
included as the special case of the presented treatise of open deformable sections.
When the cross sections are nondeformable in their planes, only the first threc dis-
placement parameters V,, V,, and V;, which describe the rigid plane motion of the
cross sactions, are different from zero. All other generalized coordinates, as well as
the function u, are equal to zero. The Egs. (6) are deduced then to three differential
equations of motion.

After giving the corresponding geometrical interpretation to the coefficients
existing in thzse equations, and after introducing the concept of the shear centre D
and concentrating the element of the cross section area along the center line, the
following three differential equations can be written:

rrey L2
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Here, the comma denotes the derivatives with respect to z, and the point, with res-
pect to ¢. All other quantities are common in the theory of the thin-walled beams
of open nondeformable cross section. The eqs. (30) were proposed by Vlasov (3).

[t can be seen, when the cross section has one axis of symmetry, and the shear
center is located at this axis (i. e., x or y is equal to zero), the system (30) is
decomposed to an independent equation of transverse vibrations in the direction
of the axis of symmetry, and to a system of two equations of the coupled transverse-
torsional vibrations. In the case when the shear center and the centroid of the cross
section are coinciding, most often at the cross section having two axes of symmetry,
1. e., when x,,=y,=0, the system (30) is decomposed to three independent equations.
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UNGEDAMPFTE SCHWINGUNGEN VON ELLASTISCHEN DUNNWAN-

DIGEN STABE MIT OFFENEN UNDERFORMIERBAREN QUERSCHNIT-
TEN

Stanko Brcié

Zusammenfassung

Die Schwingungen der diinnwandigen Stabe mit in ihren Ebenen deformier-
baren Querschnitten sind analysiert. Die Analyse ist begrenzt auf die elastischen
geraden einspannigen Stibe mit polygonalen Profilmittellinien. Die Schwingungen
der diinnwandigen Stibe mit underformierbaren Querschnitten sind als Sonderfall
der allgemeinen Analyse eingeschlossen.
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