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ON SOLUTIONS OF SOME BOUNDARY VALUE PROBLEMS
OF GENERALIZED PLANE ELASTOSTATICS

B. Krusié
I. Introductory remarks

In the last thirty years, a number of gencralizations concerning the clas-
sical theory of thin plates has been elaborated, e.g. [7]. While solving boundary
value problems for model [7], M. Mursi¢ applies Musheli$vili’s mapping meth-
ods and those of Cauchy’s integrals. Yet he mentions neither the theorem of
uniqueness of solution nor the existence of the solution of the problem. The
boundary value problem treated in [8] is expressed by equation

(1—1) —xgp(_z)+:£p’ (z)+ ¢ (2)+ ne' (z)=f(2), zeC
n =const.

where C is the boundary curve of the region in which the boundary value
problem is being solved. In the present article, Eqn. (1—1) will be further ge-
neralized and the theorems, missing in [8], will be proved. The method used
is taken from J. D. Sherman [4], [5], 1940. In solving elastostatic problems,
this method has shown a great deal of vitality and universality [6], and besides,
it allows practical treatment. It is applicable in various forms also to more
complicated problems and, with smaller adaptations, to problems of thin plate
bending.

II. Definition of Boundary Value Problems

Let the finite region D be finitely muliply connected. The boundary curve
is designated by

(2—1) C=C,\ )G\ G = «« | Cx
where C, is the exterior boundary curve of the region. Further, the follo-
wing task is to be accomplished:
Define holomorphic function ¢ (z) and ¢,(z) in D with the expressions
k=N
2(@)= 3 AIn(z-2)+90(2) =9, (2) + 9, (2)
(2—2)

k=N

';J (Z) = — K kz-l Zkln(z =)t q"o (z) - H’J] (z) + %(Z.)
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with constants A4,, 1<<k<_N so that the following might be fulfilled:
1.

k=M

C=3) W= xe @8 @ ET 2 @~/

k=

zeC, n, = const, k=1,2,..., M

where f(z) is a given function on C and
2. ¢™(z) and ¢ (z) are continuous functions on C.

With regard to the properties of the boundary curve C, we require that
continuous derivatives of M+ 2 — order exist for z(s); it must anywhere ans-
wer the condition Hy on C, while f(z) should be a M-times continuously
derivable function on C. Here, constants n, are given and »>1.

In the case of an infinite region outside C, the following requirements
are added:
N

1.
k:—ﬂ
k=1
2. ¢,(z) and {,(z) are holomorphic functions at z= co:
tpo(z)=a0+&-f—£3+ SR
z
(2—35)
b, b,
$o@)=by+—+—2+ .-
z z

At »= —1, Eqn. (2—3) is substituted by the following equation for fi-
nite regions

k=M
2—6) G(-1)=9(@)+z29 @)+ V(@) + k22 n, 9@ (z) =1 (2) + B« zeCy,

Instead of constants A,, established before constants [, must be deter-
mined.

C, being encircled in the positive direction, the subsequent expression
follows from (2—6)

@=7) — 27 (1+%) A= (881 — O) = f (5 + 0)

if the parameter s runs along C, within the limits from s; to s;,,.

If the expressions for E?(—l) and f(z) are designated by 61(— 1) and
f,(z), where ¢(z) and ¢ (z) are represented by functions ¢, (z) and ¢, (z) from
(2—2), we can write

k=M
Gy (~1)=Gy(=D+ 3 ms’ (2)=f(2) =, () + B

(2—8) S
G, (—1)=9,(2) +29,z) +,(2)



On solutions of some boundary value problems of generalized plane elastostatics 59

where (~?0(—1) represents the expression for G(—1) for functions ;(2) and
, (). Knowing function f,(z) we know also

(2—10) [, @=f(2)- 12, zeC
The following requirement is made for this function
Q2—11) Re| [, (z)dz] =0
c

which is a momentous balance condition in the case of elastostatic problem
and at the same time also a condition necessary to solve the present boundary
value problem.

Eqn. (2—11) need not be fulfilled for the infinite region, which however
does not go for (2—4) and (2—5).

III. Theorem of Uniqueness of Selution

Let f(z)=0 in (2—3). Let us examine the expression

1) I= [[Goe (2)dz— G ()¢ () dz]
C
If we write
(3—2) G)= —xo@)+29 @)+ (@)
we obtain
———i P e g k_7M o pr—— e T
I- f [6 (0% D)z -G ¥ @zl + 3 m [ [0 9P @) dz —¢' @) ¢ () 2]
C [ &
Since

fcp’ (2)e® (z)dz= 0
c
we have

(3—3) I-[[6) ¢ ()dz -G (09 (2) de]
C
Following from the application of Stokes’s expression [1] is
(3—4) 1= —4i[[[e— 1) Re2[¢ @)+ e+ 1) I [¢' ()]] dxdy
D

from (3—3) is /=0, from (3—4)

o' (z2)=0, zeDbJC
(3—5)
¢ (z) =, =const., zeD\C



60 B. Krusic
With regard to (2—3)

(3—6) $(z)=xc,, zeDC

where ¢, is an arbitrary complex constant.

With regard to (2—2) we have finally also
(3—7) Ai=A,=...=4,=0

Following from [1], (2—S5), and (2—6) is an analogous result in the
infinite region.

In the case of x= —1 and for finite regions we take

(3—8) I=[[Gy(~ 1)y @) dz =Gy (~ )9y (2) d]
C

By analogous deduction we obtain [1]:

(3—9) I=[[G,(~1)o, (2)dz —G,(— 1 ¢, (z) dz] =
[
= —2i [ [loy’ )+ 9, ()] dxdy
D

wherefrom, in the presence of arbitrary constants B, follows at f(z)=0:

Re[p, (2)]=0, z&DUC
and from the above

(3—10) @, (2)=icz+ ¢, z=eDUC

where ¢ i1s an arbitrary real constant and ¢, an arbitrary complex one. From
(2—9) we obtain at f(z)=0

(3—11) b= —c,+B, 2zEC
and therefrom, we have first
(3—12) Bo=Bi=B,=-- =By

If B,=0, however, we obtain
$p (2)= —a zeDyUC
Be=Bi=Py==¢ : =fy=1

In a similar way, this is valid also for infinite regions, the only diffe-
rence being due to requrement (2—35)

(3—13)

(3-14) c=0
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IV. Sherman’s Method of Proving the Existence of Boundary
Value Problem Solution

Let us first examine the case x>1 and set up

24 (2) = 1 fw(t)dt

2mi t—z
c
1 [—xe@)-ra' () , 1 [klne@)d .
%(z)—Zm'f t—z at 12121:1' (t—z)++? e
c c
(1) A= fco(t)ds
Ck

For the time being, w(¢) should be a function defined on G and having
a sufficient number of continuous derivations in any point on C. Following
from (2—3) and (4—1) is
(4—2) Gy ()= Go (x)

which means that in our case Sherman’s equation [1] which is of the Fred-
holm type of second order equals that in the classical instance of boundary
value problem of displacements.

xco(to)+—x—fm(t)3' (t, t)dt+ifm(z)e2f9(fn-0-8’ (2, 1) dt=
g T
c

¢

(4—3) = —f(t)— xkgv [1In (ro—&g)~EIn[f,~ zk)] f(o (t)ds +
k—1 &
+k:N fo (t)ds
e (6)]
kgl ty— Zx

Ck
If this equation is solvable, while z(t), t&C is a p+1 — times conti-
nously derivable function where z(»+1 (¢) fulfills the condition H p., then & (7,, t)=
=arg (t—1,) is p — times continously derivable in every possible way [2]. Fol-

lowing from (4—3) and the existence of the solution of the aforementioned
equation is that (¢) has p continuous derivations anywhere on C. Let us have

(4—4) p—1=M

which is to be applied in the continuation of our study.
From the equation

()1 1 o(t)dt 1 j'm‘k>(t)dt

2wi (t—z)"+1_2'n:i
c

I —=Z

follows

—_— — k=M_
1 [ —xw(t)—to (t)— kgl n, o® (1)
dt

(4=3) J(z)=271:i
¢

t—2
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lln order to prove the existence of the solution of Eqn. (4—3) the corres-
ponding homogeneous one, f(#))=0 namely, has to be considered. Let it have
solution w, (7).

From (4—1), (3—5) and (3—6) we have

0~ ! f Lo =6 4

2mi t—z
c
k=M
1 ~xm70(r)—lw£)(r)—-k; h}\,w(uk’(t)—x;l
(4*6) 0:2*7‘“ —_—— 71‘ jz — - dt ZED
¢

In connection with the function in square brackets, Plemelj’s formulas [3]
may be used. Hence it follows that two functions ¢*(z) and ¢*(z), holomor-
phic outside region D, exist so that

e* (£)=1i[wy (1) —¢c|]
e e k=M B
f-~7 $* ()= *i[mo(w too(t)+ 2 mof (1) +xe, ] teC
k=1

and
G*(x)=2ixc,

¢* ()= §* () =0
Following from (2—6), (3—5), (3—6) and (3—7) 1s

(4—8)

o (2= o
(4—9)
Q*(z):xc,:, z&C,,
where ¢z, k=0, 1..., N are constants.
With regard to (4—8) co=0 and ¢, =0 with regard to (4—7) w,(t)=0,
1 C,-
Following from (4—7) 1s also

w, (f)=const, t&C,, 1<<k<N.
and finally from (3—7) and (4—1)
(4—10) - w, (1) =0, teC

Thus, the existence of solution of Eqn. (4—3) is proved.
In the problem for »= —1, expression (4—1) needs adapting. We take

1 (.l)(f)d[ k=N bk

e | = op —

CPO(Z) Zﬂlf {—z ;glz—zk
C



On solutions of some boundary value problems of generalized plane elastostatics 63

k=N b
g[S 0 S b

2 Ted =2 =y 2—2;
c
UL (Ko d SN kb
k=2 2miJ (=2 . T2 ) (z—z)ft1"
2
(4—11) B,=0, B.= [o@)ds, 1<k<N
Ck

k=21_mf[md:_m(t)d?]
Cr

Due to the requirement in (2—11), Sherman’s equation (4—3), too, has
to be corrected. For the sake of a more appropriate form of expression, the
corrected equation is written simply in the form of (2—S8).

k=M

(4—12) G, (-1 + 2 noP (2) + izK=f, (2) + B =
k=2
where
—Zo g k=N

(4—13) K_-,A,Lf[“’(’zd% 2 ]—i S belzi? =77

b1 t 12 k=1

(&4

(t=0&D)
From (4—12) we obtain
(4—14) K-i[zdz=Re| [f,(2) dz]|
and ¢ ‘
(4—15) K=0 & Re[ [f(z)dz]=
C

Let us examine the conditions at f,=0. In that case, (4—15) is fulfilled.
Let the solution of Sherman’s equation be w,(¢). Following from (4—11),
(3—10) and (3—13) is

(4—16) foz'= : fm"(t)dt.{_kiN_bi‘_ﬁC]
2m‘c t—z k12— 2
k=N bk k:}\/I_f .
; w, (1) — two (t)+ _2' I—_z—k—k; mo® )+,
29 t—z
(4—17) ‘
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Deriving Eqn. (4—16) with respect to z, for z=0, we have

k=N
icm— jmo(t)d ~'S bezy”

2uit ¥f K=
€
Considering (4—13) and (4—15) we obtain
(4—18) c=0
Thus, (4—16) can be written in a more lucid form
k=N b,
(4—19) l (’_)(t) "Z'Lz_k—_th
T 2mi t—z

C

Following from (4—17) and (4—19) is that ¢*(z) and ¢*(z) for which

can be written
‘P*(t)_’[ , (1) + Z - _cl]
k=1 I —2Z;

b k=M __ @
(4—20) "*(t)—t[m (1) — reolt)+ Z K~ S mewo (1) —

1

- Z(fl,)' b %E], teC

J=1 k=2 (t ;)“1

are holomorphic functions outside D and

¢* (00)=y*(0)=0

(4—21) (‘;*(_1):~2icl+z[k§fbﬁ—EN s —’EN( by )]

|I—ZA k=1 I—Zk k=1 \T—2Z¢

By integration of the above equation over C,, 1<k<{N on the variable
z follows

(4—22) b, =0, 1<k<N
whereupon the last equation of (4—21) reads like this:
(4—23) G*(—1)= —2ic,
Followmg from Eqns. (3—10) — (3—14) is
*(z)—:ckz+ Ben

(4-—-24) L[)* (Z) = CZk

. ,
Cap+ Cap= “21C1

from (4—21)
(4—25) co=0
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and from (4—22) also

(4—26) g1 =0, 1<k<N
and
(4—27) w,(t)=const., tcC;, O0<k<N

From (4—24) and (4—21) we obtain also

(4—28) clo=c2="0
and from the last equation of (4—24)
(4—29) g, =0
Thus we have
(4—30) w, (t)=0, teC,
and from (3—13), (4—11) and (4—27) also
(4—31) w,(#)=0, tcC, 1<k<N
and together
(4—32) w,(1)=0, teC

The above proves the existence of solution of the treated problem at
%= —1 and under the aforementioned conditions.

By insignificant alterations, it is possible to prove the existence of the
problem solution for infinite regions as well. Taking the region D to be simply
connected and M =2, then our study proves the existence of solution of the
first and the second boundary value problem in moderately thick plate ben-
ding. In the case of multiply connected regions, it is necessary to use the
somewhat complete expressions (2—2), (4—11), yet no essential qualitative
additions are needed.
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LOSUNGEN EINIGER RANDWERTPROBLEME IN DER
GENERALIZIERTEN ELASTOSTATIK

B. Krusi¢
Zusammenfassung

Ein Randwertproblem, das in der Anwendung als ein Randwertproblem
bei der Biegung einer missig dicken Platte ausgelegt werden kann, wird durch
die Theoric der Funktionen einer komplexen Verinderlichen erértert. Dabel
ist die Losungsexistenz nach der Methode von Serman bewiesen, wobei das
Losungsverfahren auf die Fredholm’sche Integralgleichung zweiter Art iber-
setzt wird.
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