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INFLUENCE OF GRAVITY FORCE ON THE INDENTATION
OF A COULOMB PLASTIC BY A WEDGE

Milos Koji¢ and J. B. Cheatham, Jr.

Introduction

The influence of gravity force on plasticity of Coulomb materials has been
considered by several authors. De Jong [1] [2] developed a graphical method and
applied it to the solution of the plane indentation problem of a ponderable soil, and
Jenike [3] analyzed the flow of bulk materials induced by gravity. Cox [4] formulated
a numerical method for the solution of problems involving axially-symmetric and
plane plastic deformation of a Coulomb material under the influence of gravity and
applied the method to analyze indentation by both an axially-symmetric punch and a
plane flat punch. Spenser [5] developed a perturbation method, as an analytical
method, and used it to illustrate the influence of gravity on the identation of a soil
by a plane flat punch. Pariseau [6] analyzed gravity induced flow of a granular ma-
terial in an ore pass as plastic deformation of a Coulomb material; he compared
his experimental results with numerical values obtained by an integration along the
stress characteristics.

From the results of the above mentioned authors, it can be concluded that
gravity force can have an important influence on plasticity solutions for Coulomb
materials. Numerical method, developed by Cox, Eason and Hopkins [7] will be
applied here to the solution of the plane indentation of a Coulomb material by a
wedge, taking into account gravity force. This problem does not appear to have
been solved previously.

Solutions of the problem

Suppose that a wedge as shown in Fig. la with half of the wedge angle equal
to «* is penetrating a semi-infinite surface of a ponderable** soil. Pressure on the
surface is a prescribed function, p,(x) and there are no tangential stresses acting
on the surface. The plane of deformation is x, y. The depth of penetration is
denoted by A(ft) and the characteristic length, which will be used for the dimen-
sionless solution, is L. From Fig. 1 it follows that

(1) h=Lcos a,,

* a, will be called the wedge angle
** Gravity of material taken into account
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It i1s assumed that there is no friction on the wedge surfaces.
The penetrated material is taken to be a Coulomb material so that at yielding
the Coulomb yield criterion in the form

5 = 1
Oy — O —2 |z
s

g, + 0, .
— 5 Ysin® —¢-cos®=0

is satisfied. o, and o, are the normal stresses (com-
pression positive), T,, is the shear stress, @ is the
angle of internal friction and ¢ is the cohesion. Bars
over the notation for stresses indicate that stresses
are dimensional. The two straight lines inthe t—o
plane of Fig. 1b that form an envelope to the Mohr
, circles represent equation (2) graphically.

Figure 1 (a) Slip line field for Equilibrium equations are

indentation by wedge (body
force neglected) (b) Mohr cir- = — — = -
cle for stress states on the (3) J S B d Txy -0 a_T_{y + __0 Oy +y= 0

wedge surface _0 X oy X 0 ;

where x and y are dimensional coordinate, and + is weight of material per unit
volume.

Dimensionless stresses 5., o, and = , dimensionless ordinates x and y, and
dimznsionless body force y are introduced by the following relations:

T
c

(4) 6, = f G, =- 7. =2 x=— y:%=r—z Y=
The yield condition given by equation (2) is satisfied if stresses satisfy the
relations

6, =o[l+sin®sin(28+ ®)] —cot ®
(3) 6,=6[1 —sin®sin (28 + ®)] —cot @
- = —osin®cos (2 + D)

Xy

where the mean stress & is given by

(6) 6 =2t % 4 cot @

2

Substituting equations (5) into the equilibrium equations gives two partial differential
equations involving variables o and {3 that can be transformed into the characteristic
form. (See for example reference [8]). The equations of the stress characteristics
and the relations along the characteristic are

(7) ilb?:tanﬂ I gzzcot(ﬁ-kd)) IT
X

dx
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f)—6+2ctan<D(—)E: -*--Lsin(pHdD) along 1
0s, 0s, cos

(8)
gg—ilctan(bﬂa—-:—-x#cosﬁ along 11
os, ds, cos®

where B is the angle of the first characteristic, and
5, and s, are dimensionless curvilinear coordinates
along the first and second characteristic shown in
Fig. 2. Introduce, as was done in reference [7], the
variable w by the relation

) w=cot®Inec

so that equations (8) can be written in the fol- Figure 2. The geometry used for

lowing form: numerical solutions
do+2dB=—— T sin B+ D)e «tan?ds  along I
sin @
(10)
dcu—2d(3:-—.Y cosB e wan® gy, along II
sin

The first approximation of point R at the intersection of two stress charac-
teristics is denoted by R,. Then, according to the geometry shown in Fig. 2 and
from equations (7) and (10), it follows that

1
(11 R= xptanBp+ x, cot B+ P)+2zp—2
) tan B, + cot (BQ+ (I))[ P Bp 0 (BQ )+zp Q]
1
z= Xp— Xp) tan B, cot (B, + D)+ zp cot +@
tan 8, -+ cot (B, + @) [(xp —xg) tan B cot (Bp+ D) + zp cot (B + @)
+zgtan Bp]
(12) W= wp_;wgﬂ‘—ﬁpfﬁg-i——;—{[—x—!— Xp+ (z —zp) cot D] a—Qptan®
+[x—xg+(z—2zp)cot D] ™ “0 s
4 - Ontw
13 p-PriPe, @Y Yy iy oz)cot®le 7
2 4 4
©A+w

—[x —xgp+(z—2zg) cot dle 2 " %

where x, z, and @ and B are the first approximations, corresponding to point R,
and indices P and Q correspond to values of variables at points P and Q. When the
first approximations are obtained, the second approximations can be found as
follows:
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(a) in equations (11) replace B, by (B,+p)/2 and Bo by (Bp+P)/2; and

(b) substitute the second approximations of x and z into equations (12) and
replace

and
e"“’Qtan‘D by e"— 2'_'_

to find the second approximation of w: and

(c) use the second approximations of x, z and  in equation (13) to obtain the
second approximation of .

The above procedure can be repeated until convergence is obtained. It is con-
sidered here that convergence is attained when the difference between the coordinates
of points R for two successive approximations is less than 0.1 percent of dx, where
dx is the increment along the x axis between two characteristics (length MM, in
Fig. la).

The influence of gravity is neglected at point 0, which is analogous to the con-
ditions accepted for the identation by a flat punch in references [1], [2]. [4], [5]. [7],
and [8]. The initial stress characteristic MSKT encloses the region in which the
influence of gravity is neglected. Although the computer program was written for
p, (x) being a linear function of x, the solutions presented here are for p,(x)=0.
The initial dimensionless length is taken to be 0.05.

The lip BOO' is neglected for the sake of simplicity. When the first line I is
computed, that line becomes an initial line for the subsequent calculation and so on.
The solution of the problem is considered to have been obtained when a computed
characteristic crosses the line OA4 below point A. The line AK,S,B, corresponds
to the solution without body force influence.

Stress states along the surface OA are represented in Fig. 1b, from which the
following can be obtained:

(14) oy =e <@ (1 +sin®)—cot ®

where o, is the stress at point 7 normal to the wedge surface.

The dimensionless depth of penetration, H, here called the reduced depth of
penetration, is defined in the following way:

hy
(15) \ H~ =~
From equations (4) and (15) it follows that

H

COS oy,

(16)

From the definition of the reduced depth of penetration it follows that it is zero in

two cases: (a) when the influence of gravity is neglected, i. e., y/c~0 and (b) when
the depth of penetration is small, i. e., A~ 0.
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The integral of o, along OA gives the normal force on the wedge:

1
clL

0

where x, is the coordinate on the wedge surface, Fy is the dimensional and f) is the
dimensionless normal force on the wedge surface. Note that f,, is essentially the
average normal stress on OA. Define the dimensionless force, f,, on the wedge by

F
8 — K
(18) Jw h

where F, is the dimensicnal wedge force. Frem equations (1); (17) and (18) it fol-
lows that f,, can be expressed as

(19) Jw=2[ytanoy,

If o, — w2, then
h

COS oy

—1

the wedge approaches a flat punch and the force on the punch is

(20) Jw=21x

From solutions in dimensionless form the dependence of the wedge force, f,, on the
reduced depth, H, is presented in Fig. 3 for the angle ®=20° and in Fig.4 for ®=30°.
The solutions are obtained for several values of the wedge angle « : 10°, 20°, 45°
and 60°. Note that ordinates in Figs. 3 and 4 are logarithmic.
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Figure 3. Wedge force as a function Figure 4. Wedge force as a function
of the reduced depth of penetration of the reduced depth of penetration
and wedge angle (©=20") and wedge angle (O =30

Figs. 5 and 6 give the normal force (average stress) in terms of the reduced
depth, H, and the angle «,, for materials with ®=20° and ®=30°. It can be seen
from these Figures that the average normal pressure changes approximately linear-
ly with H. It should bz pointed out the ordinates for H=0 (which corresponds to
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yv/c~0) in Figs. 3 through 6 represent solutions for the case when the influence of
gravity is neglected.
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Figure 5. Normal force on the side Figure 6. Normal force on the side
of wedge as a function of the reduced of wedge as a function of the reduced
depth of penetration and wedge angle depth of penetration and wedge angle
(®=20°) (@ =30

Some examples of the computed fields of the stress characteristics are presented
in Fig. 7. The dependence of the ratio OB/OA on the reduced depth and the wedge
angle is given in Fig. 8. Point B is an intersection of the last computed line 7 with
the x axis and the length OB characterizes the magnitude of the field of plastic de-
formation. It can be seen from the last two Figures that the magnitude of the field
of plastic deformation decreases with and increase of H.

Finally, an example in dimensional form will
be solved to illustrate the use of the general, di-

mensionless solutions. Assume the following values: %1
@ —30° &
=175 (plft}) N\
¢ =5 (psi) =720 (p/ft?) il
e300

o 2 4 6 [ 1o H

Figure 7. The magnitude of the field plastic defor- Figure 8. Ratio of the extent of the
mation for indentation by wedge as a function of the slip-line field, OB, to the charac-
reduced depth of penetration, H teristic length, OA, as a function

of the reduced depth of penetra-
tion and wedge angle

From the above, the ratio y/c is
(21) v/c=0.243 (ft~1)

For every depth of penetration % (ft), the reduced depth, H, can be computed
using the relation (21) and for the corresponding «, the dimensionless force, f,
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can be found from Fig. 4. With the known f,, the dimensional wedge force, F,, can
be computed from equation (18), I. e,

i e [bsin]
F"f- =fw ( ]l 9000 with grovity influence

————graovity neglected

If the influence of gravity is neglected, the force ! ,
on the punch is ¢ -0

Fy = (fw), ch

where (f£,), is f, for H=0. From the last expres-
sion, it follows that F, is a linear function of %
since (f,), and ¢ are constants.

The results of the above computation are g
presented in Fig. 9, where dashed lines correspond
to the solution without the influence of gravity. It
can be seen from the Figure 9 that the influence A
of gravity increases with the depth of penetration. e
This is expected (see results in [4], [5] aqd [8]) since Figure 9. Wedge force [Ibfin] as &
the body force influence increases with ‘the magni- g, ction of the depth of penetra-
tude of the field of plastic deformation. ., tion [ft] and wedge angle

q:GO’

5000

Conclusions

From the results presented, it can be concluded that gravity can have an
important influence on the solution of the wedge indentation problem. Analogous
to the results obtained for the indentation by a flat punch, it can be seen here that
the gravity force increases pressure on the wedge surface and the wedge force. The
influence increases with an increase of the depth of penetration and also with an
increase of the wedge angle.

Gravity causes the magnitude of the field of plastic deformation to decrease
with the relative decrease being greater for larger depths of penetration.

It should be pointed out, finally, that the influence of gravity is greater for
material with small cohesion, ¢. This conclusion is obvious since H increases with
a decrease of the cohesion at the same weight per unit volume and the same depth
of penetration, A.

NOMENCLATURE

c Cohesive strength
Fn Dimensional normal force on wedge
Dimensionless normal force on wedge
Dimensional force on wedge
Dimensionless force on wedge
Dimensionless depth of penetration
Depth of penetration
Characteristic length used for dimensionless solutions
(x) Przssure acting on surface
. P.Q Points in physical plane
A First approximation to point R
2, Dimensionless curvilinear coordinates along first and second characteristics
¥ Dimensionless coordinates
y

Dimensional coordinates

ey Half angle of wedge
B Angle of first characteristic
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Bp, Bo Values of B at points P and Q

Y Dimensionless body force

Y Weight of material per unit volume

@O Angle of internal friction

Tay Dimensionless shear stress

T Shear stress

Sxs Oy, Dimensionless normal stresses

Gy» Oy, Normal stresses (compression positive)

o Mean stress

w=cotwlno

wp, g Values of w at points P and Q
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L’INFLUENCE DE LA FORCE DE GRAVITE SUR L’INDENTATION DE
COULOMB PLASTIQUE AU MOYEN DE LA CLAVETTE

M. Koji¢, J. B. Cheatham, Jr.

Résumée

L’influence de la force de gravité sur I'indentation de Coulomb plastique
au moyen de la clavette est analysée a l'aide de la méthode numérique. Les
solutions sont obtenues a la forme non —— dimensionale pour plusieurs angles
de clavette et pour deux angles de friction interne. Un exemple est donné a la
forme dimensionale.
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