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ANALYSIS OF STRUCTURALLY ORTHOTROPIC PLANE SYSTEMS

R.Bares

Much theoretical (1,5,6,11,14) and experimental (10,12,13) research has
been publiched which has given proof that the analysis of structurally orthotropic
plane structures can be successfully based on the analogy to the solution of a true,
materially orthotropic plate by means of the Huber equation (9); it has also been
shown that the results furnished by such an approach are reliable, unless the basic
assumptions are too oversimplified. Simplicity, clarity possibility of good insight
into the structure at any phase of the calculation are the main advantages of the
method of analysis as derived by the present author (2,3) on the basis just
descbribed. With the author’s method it is possible to take into account also the
not insignificant factor of lateral contraction, which up to the present has been
mostly neglected in technical calculations. The Huber equation is solved by the
method of dimensionless coefficients, similarly as in (1,8,11}. The values of these
coefficients can be calculated beforehand, and the numerical work can be best
handled by means of automatic computors. Once the coefficients have been
tabulated, the analysis of any given structure with defined dimensions can easily
worked out by the designer.

The structural (or shape) orthotropy of a plate is given either by different
reinforcement or different degree of prestress in two mutually perpendicular
direction, or by rigidly connecting the plate to beams in the longitudinal or the
transverse or in both these directions, respectively. Structural orthotropy results
also from intentional prevention or reduction of force transfer in the transverse
direction (assembled structures of precast elements). The true plate with material
orthotropy presents thus one limiting case, while in the other limiting case the
structure consists only of two systems of beams (longitudinal main beams and
cross beams). According to the overall arrangement as well as to the relative
importance of the individual elements (plate or slab, prismatic members, etc.) the
influence of torsion and lateral contraction upon the internal state of, stress varies

appreciatedly.
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Principles of the method

The static response of a shape orthotropic plane structure shown in fig. 1 is —
when the ,,diaphragm’’ effect is neglected — given by the Huber equation, which
‘or the equivalent plate can be written in the form (6).

W a*w 3w
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~/here
2H=(p ¥q * Pav + 7L t 7a)

and P, Pa. YL. Yo are the unit rigidities in flexure and torsion for the
yngitudinal and the transverse direction, respectively. The factors v and vg
press the stress—strain relations and their dependence on the structural

« thotropy (6).

All the sectional and material properties of the structure are determined by
* e following three dimensionless parameters:

‘7e parameter of lateral stiffness

,9:2\/—“— (7) (range 0 <9 < ) (2)
Pa

the parameter of torsional stiffness

- 7L+70 | E
Q= 201 =) PP (11) (range 0 <a < 1) (3)

and
the parameter of lateral contraction

n=v, /%‘—' (2,3) (range 0 <7 <0,5) (4)

Using the factors « and n we can write

2H=2eVp, pq (5)

where,
e=[n+a(1 —f)]

denotes the parameter of the middle term in the Huber equation (0 <e < 1). The
location of the point where the effects are required and the location of a
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point—load are given by the dimensionless coordinates
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The solution of the governing Huber equation follows on the same pattern
has been derived in (1): here, however, the factor n is consistenty taken into
account in the governing equation (in the factors pq p_, 2H), as well as in
boundary conditions (along the free edges) and in the expressions for internal
stress components M_, Mg, M_q, Mg, Q_, Qq, Q, the latter components
being expressed in terms of the derivatives to the deflection w (9). On performing
the necessary operations and simplifying, we obtain for the system according to
figl, which is subjected to a line load parallel to X, the following expressions for
the deflection and for the stress components:
the deflection

pml* . mmx

W(x,vﬁam Kiyym sin —— (6)
the bending moment in longitudinal direction

M, =3 Pm I m‘rrx (7)

ET _2'7517_{ Ky(m) + Mh(y)m Jsin
the bending moment in transverse direction
Pm! mmX
MQ=E’2‘,9T%T[’? Kiyym * H(yym]sin —— (8)
the difference of twisting moments
mmx

(MLq — Mqy) =r§a(1 H 211m [Teyim) cOs —— (9)

the shear force in Iongitudinal direction
mmX

Q =% 2b L Ky + (vﬁ" 1) Hiy)m tCOS—— (10)

the shear force in transverse direction
= 1 Y . mmX

Qo =ZpPm Kiym* 7 (n+m'r(v,m}sm—l—, (11)
and, finally

- Pm! mmx

QL=nZ_"§_bmnT" {K(v)m+(2e_n) F-‘(v)m}cos l (12)

the reactions in longitudinal direction.
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In these formulas the symbols K, M, T, and k are dimensionless coefficients
given by the expressions
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Similar expressions are obtained for the case of load evenly distributed over the
width, or for the case when the structure is loaded by external transverse bending
moments acting along the two free edges (2,3).

It may be seen that once the dimensionless coefficients have been calculated,
the rest of the calculation is quite simple, since it involves only a few algebraic
operations. The dimensionless coefficients can be in any given case determined
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easily by means of a computor, where the program can be once for all set up and
tuned beforehand. The coefficients can be also tabulated for specified
characteristic values of the governing three parameters, and in this case the analysis
of any given structure can be performed using the tabulated values together with
the interpolation formulas given below. When the latter procedure is applied, see
(1), the calculation is facilitated by the elsewhere derived fact, that for any of the
coefficients its respective value corresponding to the m — th term of the pertaining
fourier series is identic to its value pertaining to the first term of the series, but
written for the reduced magnitude m & of the parameter of lateral stiffness. The
dependence of all the coefficients on 7 and a can — as a futher simplification —
with sufficient accuracy be expressed (for all the characteristic points p and points
of load ¥ by means of the parabolic interpolation formula

xk = xmin * (Xmax_xmin) F(k)

where X, denotes the required value of the coefficient, for a given value of 7
or/and « at a specified point ¢ for the load at Y, X, is the value of the
coefficient for the minimum value of « and/or n at the location ¢ for the load
applied at ¥, X ax is the value of the coefficient for the maximum value of a
and/or 1 at the location ¢ for the load applied at /, F(k) is a function dependent
ona, n, ¥, ¢ and Y. It is thus possible to tabulate the coefficients only for limit
values of a, n for a sufficiently dense net of ¢, ¥ and for various values of 9 (2,3).
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If the difference of 2,5% in the true and the interpolated value is satisfactory,
the factor F(k) of interpolation for n (which is best done first) is F(k) = 4, while
the factor of interpolation for a (when ¢ > 0,45) is F(k) = v/a. For 9 < 0,45 the
interpolation factors are given in the following table 1:

Table 1.

Dimensionless Factor F(k)

coefficient
K a(*0,0G + 0,900)
u for ¢ - k’lé 0: qf—0012+0729) for ¢y = 0: o(1.07-1,219)
T for Y = 0:08(0.075 = 1,429) for y, £ : o (—0.055+0,889)
K o (—0.045+0,700)

More accurate expressions for the interpolation fuctions F(k) as well as the
factors F(k) for the case of evenly distributed load and for the case of external
moment loading along the edges may be found in (3).

Input data

In the analysis of a given actual structure, the flexural and torisonal rigidities
are introduced as input, and these given values may considerably influence the
results of the calculations, even more than the method itself. One of the factors
which also influence the interaction and composite work of the individual
elements is the factor of lateral contraction.

When the analysis is based on the concept of the equivalent plate, which
replaces — in the analysis — the true system, the flexural rigidity of the plate is
proportional to the flexural rigidities of the true system. These latter rigidities are
of course influenced by the prevented deformations in the perpendicular direction
due to the action of some of the members. This effect resembles the case when the
pertaining material constant E; = — v is raised; since the modulus of elasticity
E (Young's modulus) itself does not change, the only change of the elastic
constants E;. can result from a change in the Poisson coefficients of lateral
contraction; instead of the true Poisson factors »,, v, pertaining to the given
structural material, the analysis is performed with their modified values YLi Va-
Taking into account the influence of lateral contraction for example in the case of
structure with stiffening ribs (see fig. 2), (3,4), we obtain the flexural rigidities as
follows:
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in the longitudinal direction
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in the transverse direction
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With these values of p,_ and pg we calculate next the parameter of lateral stiffness
U,
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Making use of the theorem of Betti (6), we introduce Vg = VL B and
write thus VvV Vg = v a =n¥ ., . Then the parameter ot lateral

contraction 7 follows directlyprrom the flexural rigidity of the equivalent

P PL — PL

plate Py = —1—__Ln—2 ,len = i . the factor pLiS

the flexural rigidity in longitudinal direction if we assume that the Poisson factor
for the material of the individual members are of zero value.
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The main problem is to determine the torsional rigidity of the substitute
structure is such a way as to interpret the actual conditions in the best possible
manner; here we have to take into account not only the torsional rigidities of the
elements but also the true flexural rigidity as a whole and also the lateral
contraction. A simple investigation (2,3) (for example if we submit the limit
shapes of the structure to the anticlastic test) shows immediately that simple
summation of the individual torsional rigidities cannot be regarded as a
satisfactory interpretation of the torsional rigidity of the structure as a whole, and
the use of the sum of rigidities for instance in the strain energy methods can
therefore not lead to acceptable results. The torsional rigidities and their mutual
interaction are influences by the capacity to transfer tensional or compressional
stresses (the o called ,,fibre” effect), as well as by the capacity to transfer bending
stresses (the so called ,,flexural” effect). The torsional rigidity of the substitute
plate can be then expressed as (2,3)

= h _3(1—.)_ (1 )
—llf e D 20
-), = h _b__(I—j ( )

where a, b are the coefficients of reduction, defined as

_ Z (Mrruela ' Pa
a'/ Z Mwax)a (Pmaxla ik 2

Z (Mrgpyel oo
b= (22)
\/E(MMAX)L(PMAx)L (=1}
Here — the symbols X ‘MTHUE)Q and Z (MTHUE)L denote the absolute

value of the sum of static moments of the actual elements located in the transverse
or longitudinal section above or under the corresponding central axis, the static
moments being taken with respect to the pertaining axis;

— the symbols ZMrguelagand Z (Mpax)e denoted the absolute
value of the sum of static moments of the parts of the full slab sections, located in
the transverse or longitudinal section above or under the corresponding central
axis, the moments being again taken with respect to the pertaining axis;

— the factors p_, pq are the flexural rigidities, calculated in the manner indicated
above;

= {Praxda ™ Prmaxli is the flexural rigidity of the full slab
whose depth is equal to the maximum depth of the true structural section.
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With these values of vy together with the factors p, n found above we are able to
calculate the dimensionless parameter a.

To illustrate the case we have shown in fig. 3 the variation of the torsional
parameter « for a concrete slab stiffened by differently spaced and differently
deep ribs. It may be seen that simply cutting the slab (cuts of infinitesimal width)
to the depth equal to some 4/5 of overall depth, the parameter is reduced up to
less than one third of the original value, though the volume of the structure has
not been changed. Also with inreased spacing of the longitudinal and transverse
beams the values of « decreases rapidly. For example when the depth of the
longitudinal and the transverse beams is the same, and bo/bl-- lo/1y = 5, then —
for the slabdepth equal to 1/5 of the overall depth — the torsional parameter « is
approximately equal to 1/3, while with the usual assumption (i.e. summing up the
individual rigidities of the elements and then distributing the obtained value over
the width and length of the structure) the torsional rigidity is obtained
considerably smaller (up to 0,1 approximately). Of great influence is naturally the
decreasing of depth of the transverse beams; thus for the limit case that the
transverse stiffness is due only to the slab (i.e. there are no transverse beams) and
when the longitudinal beams are wide apart (b,/b; = 8) we find that the
minimum value of lateral stiffness is @ = 0,12. All the above given values of a are
much better in accordance with experimental results obtained by the anticlastic
tests, than the « values calculated with the usual methods.
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Effect of lateral contraction

When the lateral contraction, as expressed by the parameter 7, is neglected in
constants of integration (pertaining to the solution of the governing equation) as
well as in the expressions for the respective internal stress components, this result
in certains errors, which can be defined by a method derived by the author; thus
also the magnitude of error implicated in the existing usual methods of analysis
can be ascertained. By a suitable transformation of formulas (6)—(12) for the
internal stress components it is possible to find the magnitude of error which arises
due to neglecting the parameter in the governing equation and in the boundary
conditions, or which arises due to neglecting the parameter n only in the formulas
for internal stress components, or — finally — the error which results if 1 is
neglected throughout. In the table 2 below we have given the maximum errors for
the internal stress components (reduced weighted average according to the relative
weight of the individual stress components for specified values of ¢ and a) which
arise due to neglecting the parameter n; the errors have been related to the chosen
value n = 0,25 and calculated in dependence on ¢ and a. The analysis of the results
has shown, that neglecting the lateral contraction leads in practically all cases to
errorsrs of not negligible magnitude, and in most cases these errors lead to results
in the values of the obtained internal stress components smaller then their proper
values (this case of error is indicated by + in the table below). The interval of error
varies between 2 and 30%, for the considered case, that n = 0,25 is neglected. For
the same value n = 0,25 the maximum reduced values of error are obtained for
QL, Mg and ‘Mg (10 to 30%), for Q_ and M__ the error is slightly less (5—20%
and 5—15%). It is noticeable that if n is neglected in only some parts of the
analysis, this does not lead to better agreement with the proper results, but can —
on the contrary — lead to even greater errors (sometimes of more than dangerous
importance) than if n is neglected throughout. Especially sensitive in this respect
are the stress components Mg, M_q, and Qq, where the error which results due to
neglecting n only in the boundary condition or only in the formula defining the
respective stress component can reach tens or even hundreds of percents. All
calculation procedures which neglect or take into account the parameter n only in
some parts of the calculation are therefore quite inadequate. When it is not
possible to perform the exact calculation, it is better to assume n = 0 throughout,
keeping in mind the possible magnitude of error as indicated above.

When lateral contraction is taken into account throughout, the analysis of
shape orthotropic plane structures shows, that the internal stress components are
not evenly distributed over the width even if the load is of uniform distribution
across the width, The factor Ko (evaluated by means of the indicated method for
the indicated method for the case of evenly distributed load or by taking the
integral of the influence surface of the factor K) defines the deflection: for some
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values of 9, @, and 1, and for two locations in the corssection ¢ = mand ¢ = n/4
the value (1+Ke) is given in a further table 3 below.

Table 2. Maximum reduced values of error in %

U N neglected in
| 0,05 0,25 0,5 1,0 2,0

0 +4% #1005 = boundary condition

—7%+—10% formula for M

ML 0 +4% M ———= throughout
+8% 3% ————= boundary condition

—7%+—10% formula for M

0 +8% +13% throughout

+5625% +232% +72% +37% +5% boundary condition

—6007% —255% -85% —50% —17% formula for Mg

Mq 0 +2% +7% +11% +12% throughout
_ +1466% +80% +38% +24% +9% boundary condition
1 —1583% —104% -56% —-39% —21% formula for Mg
1 +28% +28% +25% +22% +20% throughout
0 boundary condition

i 0 e formula for M|_q
‘MLa 0 -throughout
+46% +40% — +35% boundary condition

—33% formula for M o

+28% +23% +17% +15% +13% throughout

‘ 0 +4% +10% boundary condition
i —7%+—10% formula for QI
l 0 +4% +10% throughout
T_ —-24% —17% —-11% —8% boundary condition
QL formula for Q|
| —-24% -17% -11% —8% throughout
—1519%  —65% -28% —-22% —10% boundary conditior

formula for Qq

} 0 +1% +3% 3% <2% throughout
Qa +11%  +10% +7%  +4% +2% boundary condition
0 formula for Qq

+11% +10% +7% 4%  <12% throughout

0 +3% +10% boundary condition

= —7%+-10% formula for Qi
QL 0 +4% +10% throughout
—65% —48% —-30% boundary condition

+11% +7% formula for Q|

—-64% —-39% —-30% throughout
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Table 3. Errors in the factor (1+K©) due to neglection of 1= 0,25

T[ T am [ e |

| {
f 1

J n| a=0 =05 «-= ’aro a=05 a=1|
——_—.f; S O = il < Bl _::T e A |
1 05| 0 1,000 1,000 1,000 | 1,000 1,000 1,000
\ <L 0,25 1,243 1,154 1,114 { 0,989 1,000 1,004L-

o 1,000 1,000 1,000 | 1,000 1,000 1,000
05| 1,340 1,184 1,127 | 0,947 0,978 0,991 |

Comparison shows that with increasing ) the absolute value of the deflection
at the edge of the bridge and in its neighbourhood decreases (the decrease being in
direct proportion to ¢ and indirect proportion to «), which shows that also the
distribution of internal stress cannot be uniform across the width. The effect of
lateral contraction upon the deflections and the stress components can be thus —
even in the case of load iniformly distributed across the width — considerably
important in a number of cases of practical interest.
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SUMMARY

The method presented here shows an exact and very expeditous approach to the analysis
of shape orthotropic plane structures of the bridge type; the calculations are very clear and
simple, so that the desired results are quickly obtainable. The analysis is based on the analogy
to the solution of a true plate (with material orthotropy) by means of the governing Huber
equation. With the presented method it is possible to take into account the lateral contraction
capacity, which is expressed by a special parameter, so that the lateral contraction of the
individual members and their interaction with regard to the deformations ofthe structure as a
whole can be calcdated without any difficulties. Some formulas leading to better (more
correct) values of the flexural and torsional rigidities have been also given, derived by the
author elsewhere; these formulas have been derived with due regard to the influence of lateral
contraction, and it is shown, what errors can arise in the various phases of the calculation
when lateral contraction is neglected. It appears, that the influence of lateral contraction may
be of utmost importance with some of the new materials, which posses considerably high
values of the Poisson coefficients (plastics, light alloys, composites, etc.).
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