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ELASTIC DIELECTRIC WITH MICROSTRUCTURE

M.Plavsi¢ and M.Gligorié¢

Abstract

In this paper a dielectric continuum with microstructure is considered as an
elastic generalized Cosserat continuum in an electcomagnetic field. Thermal effects
have been neglected. Both the differential equations of motion, and the equation
of the deformation energy balance have been derived by a formulation of the
virtual work principle and Piola’s theorem.

1. Model of the dielectric continuum.

Let the dielectric body of the volume V, bounded by a closed surface S, be
located at an instant t, in an initial non—deformed configuration B, and
surrounded by an empty space — a vaccum having a volume V,, and an outside
surface S,. In a deformed configuration B, which corresponds to an instant t > t,,,
the body will have a volume v bounded by a closed surface s. A macroelement dV
of the body in the non—deformed configuration B, will become the element dv in
the deformed configuration [1].

We shall assume that there is not a source of the mass, so that the mass of the
macroelement remains constant during the deformation, i.e. that

dm = p,dV = pdv = const., (1.1)
where
Po=gv ' P74y

are the mean mass densities of the macroelements dV and dv, respectively.

Now we observe the mass center C(XK) of the macroeiement. Then, the
position of an arbitrary point of the macroelement can be determined by

XK =XK+DK, (1.3)

49



with respect to an arbitrary system of material curvilinear coordinates XK. If at
the point X'K the density is Po, then

06 dV' = podV =dm, | p. DK dv =0 (1.4)
dv dv '

since C(XK) is the mass center of the macroelement.

In deformation, the macroelement dV becomes dv, the point C(XK) moves
to C(xk), the vector DX becomes dk, and the polarization vector PK becomes pk.
Then, we have

x'k = xk + gk, (1.5)
where

dk = dk (XK DK t). (1.6)
We assume for the mapping functions (1.6) that they are continuous and

differentiable, and taking into account the fact that DX is an infinitesimal vector,
we can write dk as a power series

de=xh. DK Fxk DEDL %, (1.7)

If we remain at the first approximation dk = xXk DK, then we have the so—called

simple materials for which the equation (1.5) can be written as
RS g B o (1.8)
The microdeformation gradients

. adx o ax
Xk = (3pK Jo-0 = (3

ekt (1.9)

are independent of motion of the point XK, whence it follows that the
deformation is described by the equations

xk = xk (XK,t),xFK=xh( (XL, 1). (1.10)

If at the point x'* the density is p’, then

J mav'= pdv=rdm;, (1.11)
and, from (1.4),,

S p'dkdv'=[p'xke DRAV' = xk | 51 DK gV’ =0, (1.12)

dv dv dv aa
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where we assume that the mass of the microelement is conserved. From (1.12) we
may conclude that C(xk) is the mass center of the macroelement dv.

K
At the center C(XK) we shall observe three non—coplanar vectors D) a=

1,2,3 IDK(q), |# 0, which are attached to macroelement dV. Then, according to
(1.7), we have

dk gy = X DRy - (1.13)
wherefrom
X% = dq D{?ﬂ 18]

where DX, and D'® are mutually reciprocal triads, i.e.

= _ &P (1.15)
Dffg D'} =8,  Dlfg D¥k = 8-

The microdeformation gradients x* « are completely determined by the
deformation of the three non—coplanar vectors DK 4. Using (1.14), the equation
(1.7) can be written as

dk = d ) D((f!})( DK . (1.16)

Vectors DK o) and dk (g, can be considered as directors, so that the motion is
determined by the equations

xk = xk (XKt), dko = dkq (DM (X7), 1) (1.17)

If d*(q) and d(@, are mutually reciprocal triads, then from (1.16) we have

DK = DK, dt@ dk = xK dk, (1.18)

and the equation (1.5) can be written in the form

x'k = xk + dk,, D@ DK . (1.19)

By differentiation, from (1.19) we obtain

Yhowksntd, (1.20)
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where we have made use of the expression (1.18), and where

. o K '
= 8 g 41%= X5 XS 120

Using (1.20) and (1.12), the kinetic energy of a portion v of the body is

2T = [p (vk vy + IR L dKy, d. s D'% D)) dv,

(8) (1.22)
\Y]
where
pdv IKL = p'DK DL dv' = p. DK DL dV'. (1.23)
dv aVv
If we introduce the ,,director coefficients of inertia”’
ap = (& - (1.24)
I et Die D)
and take into the consideration the polarization kinetic energy [2]
2T = J prgkl pe p; dv, (1.25)
v
then, finally, we obtain for the kinetic energy the following expression
27 =va (VK vy +108.dX ) d(g) *+ ¥g%) Pk P ) v, (1.26)

where IKL are the coefficients of inertia of the macroelement with respect to its
center of mass, and v is the inertia coefficient of the polarization.

By differentitation (1.26), and taking into account the mass conservation law
(1.1),we obtain

T=fp (V& vy + TV d gy + T py) d, (1.27)
v
where the inertial spins are defined by the expressions

Iit@® = [ij d“.’,"= |aﬁ'ag(m’ i = |08 d".(a, dj-(,a’), Ii=pi . (1.28)
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The virtual work of the inertial forces, using (1.27), can be written in the
form

5T = fp (vi &x; + [ 8dj(q + [idp;) dv. (1.29)

2. The principle of virtual work.

Let us assume that the surface forces Ti and Hii, as well as the body forces fi
and lii, act on the dielectric body B, so that their time rate of working is

AM = §(Tiwi + Hijp”) ds+ [p (fi v; + lii Vij) dv. (2.1)

Using (1.21), this equation can be written as follows

Am = $(Ti v, + HIl® d; o) ds + [p (i v; + 110 dy(q) dv, (2.2)
S \"
where
Hil@ = Hij (@ lit@) = ij gla) (2.3)
J 'J

The virtual work of the mechanical forces is

P

Ay = $(Ti 5x; + HI(® 8d;(q)) ds + [ p(fix; + 110 5digy) dv. (2.4)

Let us assume also that the electromagnetic surface forces Si and Ri, as well
as the electromagnetic body forces Fi and €i, act on the dielectric body. Their time
rate of working is

Ag = $(S'v, + Ripy) ds+ [p (Fiv, + € i) dv, (2.5)
S v

wherefrom we obtain the corresponding virtual work

5Ag = §(Si bx; + Riép;) ds + [ p (Fidx; + €'6p;)dv. (2.6)
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The total virtual work of both the mechanical and electromagnetic forces is
obtained from (2.4) and (2.6), using the well known transformations, in the form
of

8A ”—'ﬁ]‘ (-I-J ds - t‘kdsk)f)xi + (H”U“ds — h”a',k dSkJ hdl(a.‘ +
S

+ (Rids — rik ds, ) 6p; + || sik + Clvkg‘ﬂ ds, Ox, '+ (2.7)

P - ‘ 1 d :
+J p 10X +111Qbd; g + (sik, — o gp 90X+ €bp; fdv +

#* -"'Jtik’kf)x‘ + tik hxl,k +h'(a)k|k(§1d|(a'; + hil@k !s)dlga;_k +T'kkf;Jp‘ * ik ;’pn,k 'dV,
V

where we have used the well known expressions for the electromagnetic forces.
We now assume the principle of virtual work in the form

6T + 6W = 8 A,

(2.8)
where 6W is a variation of strain energy

W = | pbwdy, (2.9)

and where w is the specific strain energy

Making use of (2.7), (2.9) and (1.29), (2.8) can be written in the form

Jp w'ox; + MYed o) + [Mop, rdv + I pd wdv=
=@ {(T'ds — t'ds, ) 6x, + (H X gs — Gl T Sy +
S

i .‘ ; 0 1
+(R'ds —r kdsk) Sp; + |s'* +Evkg | dsy &x, -+

” j i i 1 C i
+.;,J P (Jr'é)'(" + | (e (Sdi(a) + (5 k’k - d(i gl} E)X“ + €J6pi }dV +

+ [ {yik ik ik
{{t e 0% £ By o +hINRE 6d;(q) + h' ¥k 0di(qy k +

+r'% 8pi+ 1'% 8p;  Jdv.

(2.10)
54




If we apply (2.10) to the tetrahedron and let the tetrahedron shrink to zero
while preserving the orientation of its faces, we obtain the boundary conditions

: . : 1 .
T= {th = [s™ + oVl Ine, (2.11)
R = pil@kn, Hi = hiik n, (2.12)
R'=rny, (2.13)
where
ik i) j
e =h"k dl g . 54

Now, the equation (2.10) can be written in the form

{p (v'6x,+ T¥ §d, o + ['8p;) dv + [ 06 w dv =

- ik ik _1 9 i i
T+ 5% = T 5p9 + oY) bx; + (WK 11 @)5q. 0+

| | L | 2.
1% 8%, + W' O% 8d;) 1 + (rK +€1) 8p; + 1% 8p;  Jav. ,( =

We shall obtain the differential equations of motion by applying Piola’s
theorem in the form presented by TRUESDELL and TOUPIN [3]: the equation
(2.15) for virtual translations is equivalent to Cauchy’s first law of motion, and for
rigid displacements, to Cauchy’s second law.

For virtual translations we have
bw =0, 5x; =const.,  6d;q =0, 5diay k =0,

5p; =0, 8pix=0, (2.16)

and equation (2.15) becomes

{pv'&xidv ={(t”fk + S“Tk — —;—a—i~g‘ + pf’) Sxi dv' (217)

wherefrom
o 4 - 1 6 i i
= 17 # 8% = Soadla’ O (2.18)
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This is Cauchy’s first law of motion, i.e. necessary and sufficient condition for the
balance of momentum, which represents three differential equations of motion.

If we assume that equation (2.18) is valid, equation (2.15) becomes

‘J;P (MY §d, gy + M8p;) dv +{p3) wdv =

{[Iik 5xi g + (ROKHD) 5, 4y + hOK b, 4 +

+(r' +€) bp; +r'%8p; | dv. (2.19)
For virtual rigid displacements we have 6w = 0 and

Bx(i,kJ = 0, 6xli,k] = const, bdi(a] = (lei,k] d"‘(a] .

(2.20)
8dicay k = Ox[ij) day . BPi =Xk PX . Bpik = OX[i ) P
and equation (2.19) becomes
ST+ hIK 4 p (17 — i)+ (rik + € — ) pi +
+r% pJ ] 8x(i ) dv=0. (2.21)
If we write
ril = 4 4 ik 4 p(1 = )+ Ligh + (% pl, (2.22)
and
L0 r”fk +e -0 (2.23)
hen the equation (2.21) can be written in the form
fTij 6X[i,jl dv=0. (224)
v
Since this equation is valid for any Sx[;'j], we obtain
=0, or (7 + h% +p(1i — 1) + Lip + r*pl, )y = 0. (2.25)
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This is Cauchy's second law of motion, i.e. necessary and sufficient condition for
the balance of the moment of momentum.

From (2.25) it follows that 7il is a symmetric tensor. Then, (2.22) and (2.23)
represent the system of twelve differential equations of motion, where 1il and €i

are prescribed, while til, 7ii, hilk, rii and Li have to be determined from the
constitutive equations.

Equation (2.22) can be written in the form

ij = ij + hilQ)k j Q) K i . .
TE AR dl g + @kl +rikpl,

+p (1@ —TI®) gl gy + (M +e' =T P 2.28)
wherefrom it follows

hi(a)kk g pi(a} 2 (Tij .y tll) d(a)-j Ll hi{a)k dj(a,,k +

+pri(a) . Lipjd(a)lj — ik pi,k d(a?; )

(2.27)
Using this equation, (2.19) can be written in the form
{p&wdv =vf[t”‘ 8 + (7' —t — Lipl —rikpl — hi(@k iy, ) x
(2.28)
xd'Y; 8d;(q) + Y% 8d;(q) k + L' 8p; + 1'% 8p; i ] dv,
wherefrom
pow = 1% B, , + (1) — til — Lipl — rikpi, — pil@k gi )
xd'%; 6dicy +h P *5dlyg , + Lidp; + 1'% 5, . (2.29)

This is the expression for the variation of the specific strain energy, which is

torm—invariant with respect to the superposed rigid motion. This expression we
can write in the form

pdw =t X' bx;., +(r' —til — Lip} — r'*ply — h{@%dl 4 1) X
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(@ . .
Xd™") 8di(qy + h'D% XK, 5d;q.c + LiSp, + 1k X"\ 8pi.x, (2.30)

and we see that the specific strain energy is a function of the form

W=W(x.;‘ktd..‘(a}, dl_((a)”(, pk 7 p'.kK,, (2.31)
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YIOPYTUN OIUBJIEKTPUK C MUKPOCTPYKTYPOH

Copepmxanue:

/ B pabore paccMaTpuBaeTcs cTLIOmMIHag ©
OlIaA Ka4vecTBaMy AMIJIEKTPUKA TIDeICTABIA
HMI1 KOHTMHyYm Kocepa B 3NTeKTPOMAarymMTH
npenebperaercs. Oucceperipranbipre ypas
/IaHCa 3HepPruM e opMaLMM BLIBOIATCS U3 C
TY&JBHON 'pabdoThl U Teopembl ITMOIL.

P€la ¢ MUKDOCTPYKTYpoii obnana-
omaa u3 cebs ynpyrmii oGobuien-
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