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ON DYNAMIC PROPERTIES OF DISCLINATIONS IN THE CONTINUUM MODEL

Helmut Giinther

1. What is said today being a disclination essentially is the same as Volterras
distorsion of 4., 5. or 6. kind. Volterras distorsion of 1., 2. or 3. kind are well
known as dislocations. Experimentally they were detected in crystals in 30s, and
the continuum theory of dislocations was given by Kroner, Bilby, Bullough and
Smith and Kondo et al. in 50s.

At latest from the experiments of Trauble and Essmann (1) we known, that
disclinations really exist in crastals too. In the continuum model of the crystal at
first by Anthony (2) was given a field theory of static disclinations. This theory
enables us to calculate stress fields created by a disclination located at a fixed
place. It is an extension of dislocation theory in geometrical terms, that means an
extension of the theory with distant parallelism, describing dislocations, to a
theory with non vanishing curvature. The main point is, that disclinations can be
set in a one to one correspondence to curvature tensor, in formulas

E.=—v. N (1)
with
1
Eij 5f R = 29i Rapg" 9°%
gij = 0y — 2€y;, €;; = elastic strain,
- [‘“Iu. + Py = FLT

T = {gk}+ lel L LS Ty

A
with Chirstoffel — affinity {1}= 79" (=94, *+ 9, +9 ) and
torsion T, '=75(Ij ~Ty;) . According to Anthony v;; describes the disclina-
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tion density and in general is followed by a non vanishing T!Y''. The torsion
| : . : :

parts T::) describes dislocations, and the separation T, '=T!W'+ T can be

done unique.

As for dislocations only, the equations for moving disclinations can be
followed by a geometrical generalization of (1), cf. Gunther 3], [4]. We here only
need the linearized equations. Together with the linearization of (1) they read, cf.
(3], [4].

ale; . + Bt ™ Sy T8 B ;—(vij ty) b, + %[Eriqcqur +
€51 Qi Y Sjrg %ar,i * Sirg Yr il
b) o, o+, Ji1i =841 Spp — Sy
C) ari,r = Eir5 Vrs
d) €, o 2 Wie,i ¥ Vi) = = 2 Wi * i)
e)v, ;=0
f) Vlk o - Eirs Ssk r
where S, =€, V¥ v, . a;=—€,, T, lk is torsion current, viv)

disclination velocity, v, material velocity.

We remember to a possible interpretation of I, cf. [3]. If a disclination is
varying its place, this in general is followed by a creation or annihilation of
dislocations. This also can be followed by detailled consideration of the process of
the motion of a disclination, cf. deWit [5]; geometry is only one way of getting the
equations of moving disclinations.

2. Now, dislocations and disclinations create stress fields, and as a consequ-
ence of these fields they tend to leave its places. If you consider some source in its
own field alone (as in electro dynamics was done e.g.by Abraham and
Sommerfeld, [6]), you get as we will say the field theoretic dynamic equation for
this source. As in electrodynamics for this you need the field and the force only.
Now, from fieid equations you can get energy — impuls equation immediately by a
suitable calculation or in general by Noethers theorem. Than the force on a source
of the field is the consequence from the fact, that the generated field usually does
not define an equilibrium state; that means energy — impuls conservation of the
field is violated. Therefore the divergence of energy — impuls tensor of the field is
not zero but defines the force density on the source. In analogy to Abraham—
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Sommerfeld approach for electrons it is demanded that the whole source is in
equilibrium again. That means, the total force on this source has to be zero, being
an integral equation for the motion of the defect.

On this lines you can get for dislocations the Peach — Kohler — Kosevich
force density

~ 1
I(i = 2(Ors T'rs * 5 po Vs ‘Jrs)

and as the consequence of the field theoretic dynamic equation
K, =Jkdr=0 (integration over the defect)

you get vibrating dislocations (generalizing the string model), cf. Pegel (7), or in
super sound region a differential equation for the motion of this specialized
dislocation with the expression for mass and the Cerenkov damping force (8). As
we have seen, the field equations for disclinations are known. Therefore it is only a
matter of straight forward calculations according to the theory to get the general
expression for the force in a medium with dislocations and disclinations. Refering
to a linearized and isotrop medium with stresses and momentum stresses according
to

a) o —-po\}j =i

ij,i
b) Mis i = Sirs Ors — O3 P = 0,

where p, is the density of the medium,o; and y;; are the stresses and momentum

stresses, y; angular velocity, 6, inertial tensor, and the material equations

a) 0y = 2ue + Noe,
i
b) Mk = Mx;y

hold. Than the force density reads as follows

K = €ix) (0)m Bm * T Xemi # Prim) t Mim Pim) T PV —

_Blk‘bk S“ . (2)
Here the term Ko, + ¢)im IS to be determined from
Sik = Xk * "bk,i .

As we could point out, with suitable specifications and interpretations this force at
first can be found in the papers of Kluge (9).
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3. On the basis of
Ki=/[k,df=0 (3)

we ask for the dynamical properties of a single wedge disclination in a two
dimensional lattice. As is clear, an analogous dislocation would behave as a
Newtonian material point, staying at rest or uniform motion, because this is the
well known behaviour of a straight dislocation in a three dimensional lattice, if
field theoretic forces are considered only. As we will see, the situation  for
disclinations is completely different from this, however.

At first we satisfy | b), c), e), f) by
v33 = 826 (y) & [x —s (1)],
(8% (65

virl =5 (),

azp = — Q6 (yNO [x —s(t)] — 0 (x)), (4)
« «

S23=—=Q6b(y) §[x — s(t)] - s (1),
x (04

Jy =0,

X23 t¥3.2 = Qg (y}g [x — s(t)], (the other components vanish)

where

1 = K2+ X7 jilky + Xx)
5 o = == I | dk
a(x)a(\/) aniJ dx,

. 3
i e VKT +x

= — ilky + Xx)
g(X’ g (\/) 472 f e

dkdx ,
N X

o being a parameter defining the size of the disclination. We now assume, the
inertial term being of the form 0.5 = Py 01 and the terms resulting from
momentum stresses shall be small compared with the terms from force stresses, i.e,

“ij<0|j' l’g,M<}\,‘u.

Expanding strain in a power series of M and restricting to first order terms in M

€=

e i
J g'l Mf'l'

it can be followed from field equations I, I1, 11 and (3) that:

A) The field € ij is statically, tending to the solution of Anthony (2) fora— 0
(for the exact formulas see [4]).
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B) € i is of the form
1

_.
N —

(u;; +u; )

C) A non vanishing force K; only results from €. . The only component different
from zero reads L

Ky = 2u2ffuy 18 (y) 0 (x) dxdy + MQSS as; 8 (y) 8 [x —s ()] dxdy  (5)
1 (0 (04 (0% (43

where u, is to be determined from field equation I, I, IlIl. Assuming a constant
position s(t) = s, of the disclination, after some calculations we get

(So) _ _ MQ‘ So Vvsd + 40 —2a

3 Ana (6)
L Vsd+4a' /53 +40? + 2a
with the limits
Ki{so) —o — o n (sy) (7)
g so >a 4o 9n 1sol,
(so) , MO so g 8
|1<10 so €a  16ma (20{) : (8)

That means, the disclination is bound to the equilibrium position s, = 0. For small

so there is acting a restoring force ~ s2, and for big s, the restoring force will be
constant. )

If the motion of disclination s = s(t) is not prescribed arbitrarily, this
function s(t) is determined by the field theoretic dynamic equation (3). Omitting

the calculations again, we get a non linear integral equation for s (1)

MQ? s (t) MS? LR : .
T e - s CIfydt ofdpfdye 200 5 sin [pCr(t=t")]

o

K(d)
1]

sin [p cosy s (t')] sy 0

. (9)
cosy

where c is the velocity of transversal sound waves.

In order to discuss physical contents of (9) we expand (9) in a power series of
s/2a (being small by definition). Denoting 0 = s/2a, w, = C+/2a, we get,

restricting to third order terms in o »
1 - § . 8 =&
O(t)——203 ‘t’+{[20(t_5o)W+
, ¢ £ —10¢° +5¢
=) Epr 1K =0 (o<} (10
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Taking into consideration first order terms only, there is a formal solution
0=a+bt. (11)

However, (11) soon comes into contradiction to the supposition 0 < 1 and than
restoring forces according to (6) appear. Further, if we ask for periodic solutions
than the point s, = 0 has to be a symmetry point for the function s(t). Therefore
with the initial condition s(0) = 0, only solutions of the kind s(t) = —s(-t) shuolc
to be expected, that is

ol{th=—=o0(-1. (12)
Any periodic solution than would allow an expansion

glt)= a, sin (nwt) (13)
n=1

Nevertheless, it can be shown by the power series expansion of (9) up to any fixed
order in o, that equation (9) for o(t) according to (13) allways demands

#8; =0 Y_ia=0. (14)

That means, any reasonable periodic solution of (9) does not exist.

Therefore, if we ask for the motions of disclinations only due to self forces,
than only damped oscillations are to be expected. In order to get such solutions
the numerical approach to solve (10) seems to be reasonable. The calculations are
not finished as yet. A priliminary result is given by the figure below

g1 o xx grt)
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(For this disclination we have supposed, that it is turned out by any external force
up to a(t) = 04, t <0, but for t > 0 only self forces are acting).
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Pezxroxe

JMCKAMHALMM PAaCMaTpPMBAIOTCA B MOAENIM CILIOLIHEN cpenu. Mcecnemyeresa
TIpM MOMOLUM MHTErPANbHOIO YPABHGHUA, CACAVIONIET0 M3 23K0HA CoxXpaHeHud
SHEePriM MMNYAbCa TEeOPHM II0JIA, IBHKEeHlUe AMCKINMHALMIT Nog JeMCTEMEeM CO0-
CTBEHHBIX Cii1. B pe3yabTate moavuaetcs. urto JAMCKIMHAUMM CBA3AHHBLI ¢ II0-
JIOZKEHMEM DABHOBECHA € XAPAKTECPMCTHYECKO)1 BO3BpALIAlOLIeS] MI0M, JIMcKIU-
HallMIt HE MOTYT COBEPUIMTL IIePUOANMEeCKue COGCTBCHHbIe KoJaebaHuA, BO3MOKbI
TOJILKO 2aTVKaIoLIMe KoJeUaHMA.
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