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OSCILLATIONS OF A DISK IN NONHOMOGENEOUS FLUIDS
AT A SPECIFIC LAW OF STRATIFICATION

Vladan Djordjevi¢

1. Introduction

It is well known that the flow phenomena arising at small forced oscillations
of a body in nonhomogeneous fluids mutually differ very much in those regions of
the fluid where the frequency of the body is greater or less than the Brunt-Vaisala
frequency which depends on the law of stratification [1]. In the first case the
equations describing the steady—state solution are namely of elliptic, and in the
second case of hyperbolic type. The Brunt—Vaisala frequency is constant for an
exponential law of stratification, so that the flow phenomena in that case possess
characteristic properties of elliptic or hyperbolic type of differential equations
throughout the fluid. For this law of stratification Gortler has carried out
experiments with a half—infinite vertical plate which oscillated in the horizontal
direction [1]. In the hyperbolic case the characteristics starting from the edge of
the plate were clearly visual within wholly fluid and were also reflected on its
boundaries. It is also known that there is a certain relationship between these
problems and the problems of small forced oscillations of a body in homogeneous
but rotating fluids, whereby the constant double angular velocity in rotating fluids
[2] takes over the role of the Brunt—Vaisala frequency in nonhomogeneous fluids.
While some concrete problems of oscillations of bodies in rotating fluids have been
discussed in detail [3], [4], whereby some new phenomena have been discovered,
which could not be forseen by simple analysis of the type of differential
equations, as for example the phenomenon of resonance in an enclosed rotating
fluid [5], [ 6], [7], so far solutions of some concrete problems of oscillations of
bodies in nonhomogeneous fluids fail, because of certain difficulties of mathema-
tical nature, even in the case of an exponential law of stratification, in which the
governing differential equations are reduced to the equations with constant
coefficients.

It has been shown in this paper that the governing differential equations can
be by means of a convenient transform of coordinates reduced to the equations
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with constant coefficients at a specific law of stratification, different from
exponential one! The solutions of the cases of elliptic and hyperbolic oscilations
of a disk at this law of stratification have been obtained by means of the method
of integral transforms. It has been shown that the phenomenon of resonance
appears in case of hyperbolic oscillations of an enclosed nonhomogeneous fluid,
with what the known relationship between these problems and the problems of
flows in rotating fluids has been still more deepened. The complex problem of
oscillations in a rotating nonhomogeneous fluid has been analysed, too. It has been
pointed out at some interesting conclusions following from the mutual influence
of the rotation and the stratification of the fluid.

2. The Governing Differential Equations

The governing differential equations in this paper are in the usual notations.
The Euler equation:
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the conditions of incompressibility of individual particles of fluid:
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and the equation of continuity: (, 7) =0.

It is supposed that the fluid is in the field of the gravitational force and that
the stratification is statically stable. If p(z) and p(z) denote the density and the
pressure in the state of equilibrium, they will be bound with the basic equation of
hydrostatic:
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If the small perturbations appearing at forced oscillations of bodies in such a fluid
will be donoted by:

o~ i - ~ —_ - - —
P=p () +p (tr),p=p(z2)+p (tr), V=V (tr),



and if the products of the perturbation quantities will be neglected, that is if a
linearization of the governing equations will be carried out, it will be obtained:
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or in cylindrical coordinates for the case of axisymmetry:
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We will introduce the following scales for length, time, velocity, density and
pressure: oy, to = Vro/9, Uo, Po, Po = Po Uo Vg, and we will denote the
corresponding nondimensional quantities with capitals: T = t/t,, R=r/ry, Z =
z/ry, U = u/ug, W= w"/ugy, Q=p"/p,, Qul2) ="p(z)/ Py, P = p'/ps. We will
obtain:
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where Q," denotes the corresponding derivation. If we introduce now on the usual
way the stream function (T,R,Z) and the function {;, = /R we will obtain by
eliminating:
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If the steady—state solution of this equation is denoted by Jl (R,2Z), it will be: 31
= Y, exp (iT), where 3 =§, \/ro/g, and (3, is the frequency of forced oscillations.
We thus obtain:
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This equation represents the starting point in investigations of small forced
oscillations of bodies in nonhomogeneous fluids. The type of the equation
obviously depends on the ratio of the nondimensional frequency of forced
oscillations and the Brunt—Vaisala frequency N(Z) =+/—Q,'/Q,. In the case of an
exponential law of stratification, for example Q, = exp(—2Z), the equation (1)
becomes an equation with constant coefficients. Nevertheless, some concrete
solutions of this equation fail even in that, at the first sight, simple case, as it has
been remarked in the introduction.

3. Transform of the Governing Equations and
Boundary Conditions

In order to obtain some solutions of the equation (1) for any law of
stratification, we will carry out the following transform of the coordinate Z:

_Z dZ
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and we will obtain:
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This equation can also become an equation with constant coefficients, if:

Qg+—0‘%‘9—°—=iaz, (3)

where a is an arbitrary constant. It will be of elliptic type in case of the upper sign,
and of hyperbolic type in case of the Jower sign. With the initial condition

Q,(0)=1, the equation (3) has the solution:

Q% = (1Fa?) exp (—26*2) £ a*, - (4)

or in dimensional form:
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P (z)=p2 (1 ia’)exp(—2% z) +a?].

Such a law of stratification is very specific and artifical, because it contains the
frequency f; from which naturally it does not depend. Nevertheless, it could be
easily achieved in an eventual experiment. Furthermore, the flow phenomena
éppearing in a nonhomogeneous fluid probably do not depend qualitatively upon
the law of stratification! Consequently, we will accept it in the further work. It
must be a < 1 in the elliptic case, because the stability condition: Q,’ <0 would
not be fulfilled otherwise. In the hyperbolic case the density becomes zero at a
height H, > 0. Consequently, the fluid must be bound in the direction of the Z
axis. The coordinate { can be now calculated. It will be in the elliptic case:
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what gives: for Z=0,{ = 0 and for Z — oo,{ »eo It will be in the hyperbolic case:
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what gives: forZ=0,{=0andforZ =H,, {=¢, = a5

We will assume that the flow has been caused by oscillations in the direction



of z of a disk z = 0, r < ry, which is placed in the aperture of an infinite plate z =
0, r >r,. The boundary conditions will be:

T R exp (ifT), R<1
F Rl 0 . R>1
or:
o, v, -1R<1
t=0: a'léu R‘: 0,R>1 i i A

and for {—cin the elliptic case, and { = {, in the hyperbolic case:

40, 0
agl gy ot =0, for all R. .. (6)
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4. Solutions of the Governing Equations
We will find the solutions of the equation (2) at the specific law of

stratification (4) and with the boundary conditions (5) and (6) by the method of
integral_transforms [8]. If we denote the Hankel integral transform of the function

3. by 171:
U= TRY, (KR) ¢,dR,
o
we will obtain in the elliptic case:
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Ji—a'K* §,=0.
The solution of this equation, which is finite for { = o is:
Y1 = Aexp ( — aK{),

so that the inversion formula leads to:
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Y, = J KAJ1 (RK) exp (— aK{) dK.



Applying the boundary condition (5) the constant of integration is obtained as: A
= —J, (K)/K? so that the function Y is finally:

™’ Jy 4K R
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Following [9], this integral can be expressed by a series in terms of hypergeome-
trical functions, if necessary.

It is obtained in the hyperbolic case:
Sy ~
Y, +a? K? §, =0,

with the solution:

;, = A sin aK{ + B cos aK{.

The applying of the boundary conditions (6) and (5) leads to:
A sin aK¢, + B cos aK{, = 0, B=-J;, (K)/K2.

This system of equations for calculation of the constants A and B has a finite
solution only if K # nm/a{, (n—integer). Since K in the inversion formula passes
through all values from ‘zero to oo, this condition will not be satisfied.
Consequently, in the hyperbolic case at the specific law of stratification (4), which
has been accepted here, the amplitudes of oscillations will become infinite, that is
the resonance will appear. As it was remarked in the introduction, the
phenomenon of resonance, which appears in rotating homogeneous fluids under
similar circumstances, was known still earlier [5], [ 6], [7]. We assume that the
known relationship between these problems has been in such a way, that is by
discovering of the phenomenon of resonance in nonhomogeneous fluids, still more
deepened.

The corresponding solutions in the region Z < 0 can be obtained in a similar
way. By the transform:
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we obtain the same equation (2), as earlier. It will be in the elliptic case:
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It will be in the hyperbolic case:
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The solution in the elliptic case is:
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= — Rexp(iBT)of K sh aK¢ {) dK

while in the hyperbolic case the resonance appears again, as in the region Z > 0.

5. Case of Rotating Nonhomogeneous Fluids

It would be useful to consider briefly at the end the problem of oscillations
of a disk in a nonhomogeneous fluid rotating round the axis z with the constant
angular velocity w. A possibility would be offered with that to investigate the
mutual influence of the rotation, that is of the Coriolis force appearing on this
occasion, and the stratification of the fluid. It is known [10] that in general case
the equilibrium of rotating nonhomogeneous fluids is not possible. The equilibri-
um is possible only in case when the centrifugal force can be neglected regarding
to the gravitational force, what is meaningful for relatively small angular velocities
near the axis of rotation. '

The Euler equation contains in that case en additional term — Coriolis force
and it is:
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while the other governing equations remain unchanged. In case of small
perturbations this equation becomes:
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It is obtained now in the same way as earlier instead of the equation (1)5
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It is seen that this equation becomes an equation with constant coefficients at the
same specific law of stratification (4), as the equation (2). However, its type does
not depend now only on the choice of the sign in the term given by (3), but also
on the ratio of the frequency of forced oscillations (3, and the double angular
velocity of the fluid. For example, in case of the upper sign the equation will be of
elliptic type if B; > 2 w, and of hyperbolic type if §; < 2w. At any rate, it can be
reduced by means of the transform:

§1=§/\/1_ ol
B

to the equation (2) and be solved in the same way. Quite analogous solutions are
obtained, so that it will not be discussed particularly.
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SCHWINGUNGEN EINER SCHEIBE IN GESCHICHTETER FLUSSIGKEIT
BE| EINEM SPEZIFISCHEN STRATIFIKATIONSGESETZ

Vladan D. Djordjevi¢

Zusammenfassung

In der Arbeit wurde gezeigt, wie die Grundleichungen von kleinen erzwungenen
Schwingungen von Korpern in geschichteter Flussigkeit bei einem spezifischen Stratifikations-
gesetz (verschieden von exponential!) zu den Gleichungen mit konstanten Koeffizienten
zuruckgefiihrt werden konnen. Die Losungen von elliptischen und hyperbolischen Schwingun-
gen einer Scheibe wurden durch die Methode der Integraltransformationen erhalten. Es wurde
des Bestehen eines Resonanzefektes in einer rdaumlich begrenzten geschichteten Flussigkeit
gezeigt. Es wurde auch der komplexe Fall von Schwingungen in rotierender geschichteter
Flussigkeit analysiert und auf einige interessante Folgerungen, die aus der Zusammenwirkung
der Rotation und der Stratifikation der Flussigkeit folgen, hingewiesen.
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