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ON BORN'S RELATIVISTIC RIGIDITY AND SOME
PROPERTIES OF MHD STEADY FLOWS

I.Lukacevié¢

Abstract

We consider, in this paper, a vector field in Space—time V,, which is steady
in the relativistic sense, i.e. which does not depend on a timelike parameter. This
means that there exists, in every point of V,, a frame such that corresponding
vector of the field considered is steady with respect to its proper time. We choose
this frame among those which see considered vector in its ,,original’’ length, i.e.
which perform motions locally orthogonal to it. So we obtain a property of that
kind of frames, to have either Born’s rigidity, in the direction parallel to the vector
considered, or to move geodesically.

In the second part of the paper we consider the steadiness of some physical
variables with respect to their proper time, in a MHD continuum. We draw the
conslusion, for an incompressible fluid in a magnetic field with steady covariant
components, that the deformation tensor is two—dimensional and lies in the plane
locally orthogonal to the four velocity and the magnetic field. We obtain also
necessary and sufficient conditions for the steadiness of the magnetic field in a
compressible fluid.

We show, in the third part, for an energetically undetermined MHD
continuum, in stationary Space—time (four velocity is a Killing vector) with a
steady magnetic field, how is varying the intensity of the vorticity along magnetic
field lines, and draw a consequence in the case of a perfect fluid.

1. We consider Space—time V,; with a metric given by the condition that the
quadratic form

® = gag A& A8
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is positive for spacelike vectors A¢ negative and null for, respectively timelike and
light vectors. In this part of the paper we do not restrict ourselves to consider only
Special or General Relativity. In the latter case, metric tensor is supposed to be
continuous, and to have continuous first derivatives. All the other physical
quantities are supposed to be derivable until second order, no matter continuously
or not.

The steadiness of a variable (its independece of a timelike parameter, given by
a tangent unit vector £9) is expressed by the nullity of its Lie derivative in the
direction {2, We shall consider as completely steady a specelike vector field h¢,

given in a domain of V,, if Lie derivatives of both its covariant and contravariant
components are equal to zero:

Ly (hg) =Ex Vo hg + hq Vg tx=0 (1.1)

£E (hB) = (& Vhb — haVgéf =0
wherefrom

(Vakg + Vka) E=0 (1.2)

A is the symbol of covariant derivation and £; the symbol of Lie derivative in the
direction given by §.

The expression inside the brackets in (1.2) being the Lie derivative of the
gravitational potential g,z, that system means that the components of 9qp parallel

to ha do not depend on the proper time of a local observer’s frame with velocity
£2. That condition can be formulated as:

_ 6
Ly (gop) = L¢ (9. 5)Sq S (1.3)

where S} is the projection tensor orthogonal to h® (S? h, =0):

, (hgh” = h? 8%)

o=

Sy =
Explicitely (1.3) can be written as follows:

e RN
Tag = hahgh'h® (V. k5 + V£ ) — hi [hohy (Vat, +V, k) + (1.3
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+hgh? (Vi q + Vpk,)]=0 (1.3)

which can be easily verified. If we multiply (1.3') by h® we obtain (1.2);
conversely, it follows from (1.2) that the left hand side in (1.3’) must vanish. So
these relations are equivalent.

Timelike unit vector £2 is the four velocity of a rigid motion (in the sense of
Born) if it satisfies next relations:

Oag EV0E3+ VﬂEa""anﬁ'uﬂ W =0 (1.4)

(see [1], [3], [5]) where

W= g Vg0 -
is the four acceleration of an observer’s frame. |f considered vector h® is steady
with respect to a frame with velocity £, chosen in such a way that h, has the
same spatial length as in the comoving frame(cf [3]), four velocity £ will be
orthogonal to four vector h,. We shall now restrict ourselves to such local frames.
In space three velocity corresponding to £¢ can be expressed by means of two
components, one of them being equal to the spatial velocity of the comoving
frame (because h® can be a vector generated in a material medium, and attached to
its motion), the other orthogonal to it, with arbitrary intensity and direction. We
have so:

h®t, =0 (1.6)
We must point out that property (1.6) has to be understood in the sense that that
vector field h® is, in every point of the domain considered, orthogonal to a field
£,. which represents four velocities of hypothetic local observers. So the

derivatives of (1.6) must also be null.

If we multiply by h@ the left hand side of (1.4), without the assumption that
Born’s rigidity (1.4) holds, we obtain from (1.2) and (1.6):

From (1.6) and the second relation (1.1) we have

ha Wy =0
Hence
Oag =0 (1.7)
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This means that we have Born’s rigidity of the observer’s frame in the direction
parallel to the vector h®. Suppose, conversely, that a local frame has Born's
rigidity in a direction parallel with a vector which is steady with respect to it. We
can easily conclude that this frame must either perform a geodesic motion (w,=0)
or have four velocity orthogonal to considered four vector. Let us remark that h¢
is not steady in general with respect to its comoving frame.

It is simple to verify that if only contravariant coordinates of h are steady,
together with the condition (1.6) of ,,orthogonal”” motion and Born’s rigidity of
the frame in the direction parallel to it (1.7), we obtain full steadiness of h as a
consequence. But this is not the case when we associate the steadiness of covariant
coordinates only to the other two conditions mentioned above.

2. We shall identify the vector h@, considered in the preceding section, with
the magnetic field vector of a MHD cantinuum, with a constant magnetic
permeability

Magnetic field vector must satisfy Maxwell’s equations for such a medium.
We shall take into consideration only the group of these equations which does not
involve electric current. They read (cf [8], [9]

Voo (h@® ub — w8 ya) = g (2.1)

Where ua is the four velocity of this continuum; it is a unit vector orthogonal to
h,. Of all the other equations describing our fluid we shall take in consideration
only the eGuaiion of conservation of the mass, which is

Va (ru®) =0 (2.2)

where r is the proper density of matter. The equations of motion and
thermodynamic conditions will not be considered.

We shall formulate now the steadiness of covariant coordinates hq only, with
respect to the proper time given by u,:

Lyhg =uQTghg + hg Vgu =0 (2.3)

The deformation tensor ¢4, given by the left hand side of (1.4), when formulated
with respect to u, gives:
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After multiplying Maxwell’s equations (2.1) by uf and obtaining therefrom the
scalar product ha wg (wg = u? Vy uy), we shall obtain, after substitution of that
expression in (2.3) and (2.4):

Owj h& = Va»ua . hﬁ (2.5)

We have the conclusion that, in the case of steadiness of the covariant magnetic
field vector in MHD, this vector is an eigenvector of the deformation tensor 04,
the corresponding eigenvalue V, ua representing the specific rate of change of the
proper volume with respect to proper time, as it is shown in Synge’s monograph (cf
[3]). Magnetic field vector gives then a characteristic direction of the deformation.

If multiplying now Maxwell’s equations by hF, and taking in account right
hand sides of (2.4) and (2.5), we shall have

u® 9y (h?) + Vau . h? =0

After substituting of V ;ua from the equation of continuity (2.2), we obtain
u® gy (rh-)=0 (2.6)

This means that the quantity r h—2 remains constant along world lines. This result
is analoguous to that given by Carstoiu in his paper [7] for classical MHD. Let us
remark that if we add incompressibility (V,ua = 0) to previous conditions, we
shall obtain as a consequence:

Uq@ h =0
cr the deformation is always locally orthogonal to ha,

We shall examine now if conditions (2.5) and (2.6) are sufficient for the
steadiness of h,. Let us write:

u%gy (r-* h*) =0 (2.7)
Oag W = vhg (2.8)
The first of the above equations gives, because of r # 0:
ruddg (h)* — h* u@yr = 0
which, in virtue of (2.2), becomes:
u®q (h)? + h? Vo u@=0
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On the other hand, we have from relations (2.8):

2h® hBV o ug= ph’
and from Maxwell’s equations:

hOhA Vg g = Vg ul (h)? — 2 u& 3 (h)? = 0
Wherefrom we conclude that

h®h8 Yy ug = 5 h? Vyu

A
2
Hence

P =y ud
After substituting this value, obtained for ¢ from (2.9), and using again
Maxwell’s equations, we shall have:

afuha“'hﬁWﬁ 'Ua—Aﬁhﬁ'Ua=0

But from these equations we have

V@ hB = Wﬁ hé&
So finally
"CU ha =0

If the quantity rh—2 is constant along world lines of a MHD continuum, ha
being an eigenvector of the deformation tensor, then corresponding eigenvalue is
Vhud, and covariant coordinates h, remain steady along these world lines. So
relations (2.7) and (2.8) are necessary and sufficient.

We can remark only that all obtained conclusions can be applied to the
magnetic induction vector b, = wh, instead of h,, for a variable magnetic
permeability u.

We recall that, if adding the conditions of steadiness of the contravariant
coordinates ha with respect to proper time to Maxwell’s equations (2.1), we
should obtain at once the incompressibility and the local orthogonality of the
magnetic field and the acceleration vectors:

VQUa=0

Voh@=0 <& h®wa=0 (2.9)
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3. We shall now restrict ourselves to the case of a stationary Space—time, this
condition being given by:

.«Cu (gmj) = J’.\a ug + VBUa =0 {3:1)

The gravitational potential g,z is so subjected to stationarity with respect to the
proper time, determined by u,, of the rest frame corresponding to the magnetic
field. Adding the condition that one type of coordinates of the magnetic field, say
covariant ones h,, are also subjected to the condition of stationarity (or steadiness
as we used to write in this paper) which is given by (2.3), the other type of
coordinates will be automatically steady, as a consequence of (3.1). Under
conditions (2.3) and (3.1) we shall examine the properties of the vorticity tensor,
which is given (cf Ehlers [4]) by:

Wop =V Uar = Vil + s Wy = UgWg (3.2)

The consequence of (3.1) being incompressibility (7,ua = 0) and geodesic motion
(wa& = 0) which is obvious, the scalar w? will reduce to:

w? = weg W =490 (Vg uy - Vg ur)
The variation of that scalar along a magnetic field line will be locally:

h€ ae (w?) = 8g¥ h* Aau')f . VE Vs u” (3.3)
Because of the Ricci identity

VeV Uy zvﬁve Uy + R yep ué

where Rj ., . g is the Riemann—Christoffel curvature tensor of Space—time, we
can write (3.3)as

h€ e (w?) =892 [V (W€ TV uY) = V5 he -V u?]-Vgu, +4Rgep ub wPhe
(3.3)
Maxwell’s equations (2.1) take the form
he Vg ug —u@Vq hs =0

as a consequence of steadiness. The first term at the right hand side of (3.3’) can
be written, when using the above relation,as:

0% [Vg (h€ Vo u?) = Vg he . Vu"]= g% ue Vauy -Vgp  h? (3.4)
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Where use was made of (3.1) also. Using the fact that covariant components of h,,
must be also steady, we have after transformations

g(x”Va l.l,-YG(E - u€ Vﬁ VG h‘-7 Sl gOf*j VQ u’ . h[ Vﬁ V,, Ue (3.4°)

and
¥V qu? -he VsV, U, =go8 Vpur. h®V, Vyue+

* Raepy W0 hE g0y U (3.5)
We obtain again
g% P u? - he VaVpUe =g Vaou? ub V; Vs h, (3.6)

The right hand side term in (3.6) is identical with the one in (3.4). After
substituting (3.4"). and (3.6) in (3.5) we have:

: 1 .
g¥Vqu? - ud VgVs h, = 2 Roepy ud h€ wh?
And finally, from that relation, (3.4) and (3.3'):

h€d¢ (w?) = 2ubh® WAY (Rgepy + 2R5 5cy) (3.7)

This represents an expression which gives a possibility for the generalisation of the
Ferraro theorem of isorotation (cf [6]).Let us take in account the relation given by
Ehlers (cf [4]) and used in [11]:

1 L .
Rwuauﬁ=ua000+§0’ —VaWa+5(0‘ - w?)

where 6 = Agq u@, and 0? = Oqg 0% is ascalar corresponding to the deformation
tensor g, given by (1.4) (the factor 1/4 depends on the definition of 0,7). The
above formula reduces in our case to:

1
Rw udul = — Z w? (38)

Rap being Ricci’s curvature tensor. Its relation with the energy tensor T,; of any
continuum is given by the Einstein field equations:

1
Rag — 5 Raay = — HToy

In the case of a perfect magnetohydrodynamic fluid the left hand side of (3.8)
reduces to a scalar function of the density, pressure and the intensity of the
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magnetic field (cf [11]). If we take into account the incompressibility of our fluid,
presssure must be the function of density only. We have, under the condition that
magnetic field and pressure have constant intensities along magnetic field lines,
varying possibly from one line to another,

h@ g (w?) = 0 (3.9)

as a consequence of (3.8). This represents the ,,isorotation’” along magnetic field
lines. This gives, in virtue of (3.7)

Ub hE w}37 (Réfp"‘) * 2R6,{3’Y€) = 0 (3.10)

as a special consequence.

So we have obtained relation (3.9) without any assumption on the steadiness
of the vorticity tensor itself, and with a more accurate definition of steady—state
than it was the case in [10] and [11].

Let us remark that steadiness was analyzed for general charged fluids with
given energy tensors by Pham Mau Quan (cf [9] for neutral perfect fluid), with
many mathematical developments. Our aim was only to obtain several, special
consequences given above.
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O PEJATUBUCTIYECKOM JECHOCTM BOPHA U HEKOTOFEIX OCOELEH-
HOCTAX Mx2 YCTAHOBUMIIMXCHA TEYEHUMN,
Coaepxanue

PaccMaTpuBaloTCA [OJA CTAUMOHAPHBIX (VCTAHOSUSIIMXCA) BEKTCPOB NO
OTHOLUEHMiO K OJAHOMY BPeMEeHHO-MOogobHOMY NapaMeTpy, KOoTopblit noacupaercsd
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onpegneseHHbiM obpazoM. Bo BTOpoit uacty, B cay4qae oaHoii ML eniousHo#i
CPAIbl, MONY4alTCA HEKOTOPbIe CNONCTBUA OTHOLIEHUS AePOPMALIMM ¥ MArHMAT-
HOTO I0JIA, eclM MCIIoNB30BaTh TOJNBLKO YPaBHEHME HeNpephIBHOCTH. HakoHery
paccMaTpMBaeTcs CTAUMOHAPHOE IIPOCTPAHCTBO-BPeMA C YCTAHOEMBIUMMCA Mar-
HUTHBIM TOJIEM M MOJNYYAeTCA OJHa JOKanbHafl OpMYJIAUMA TeopeMbl deppapo
(MarHMTOrMAPOAMHAMMYECKOI M30POTALMN).
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