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Abstract. Holomorphy angles and sectional curvature in Hermitian elliptic
planes over field C of complex numbers, skew field H of quaternions, and alter-
native skew field O of octonions are considered, and analogues of holomorphy
angles in planes over tensor products of these fields and sectional curvature in
these planes are found.

1. Planes over fields

The geometry of Hermitian elliptic planes over fields C, H and O is exposed in
author’s book [1, pp. 219–283 and 333–369]. These planes are symmetric Riemann-
ian 4-space, 8-space, and 16-space, respectively. For each 2-direction in these spaces
a holomorphy angle and the sectional curvature are determined. The holomorphy
angle α for the 2-direction passing through point X and two orthogonal local unit
vectors a and b is determined by formula

(1)
∑

iā
ibi = u cos α,

where
∑

iā
ibi is Hermitian scalar product of vectors a and b and u is a unit element

of the field for which ū = −u. The sectional curvature K of this 2-direction is equal
to

(2) K = (1 + 3 cos2 α)/r2,

where 1/r2 is the curvature of the plane.
A 2-direction is called holomorphic if α = 0, and antiholomorphic if α = π/2.

Holomorphic 2-directions lie in straight lines of the planes, antiholomorphic 2-
directions lie in normal real 2-chains of the planes, that is sets of points with real
coordinates or figures obtained from these sets by motions in the planes. Straight
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lines in the planes of curvature 1/r2 are isometric to 2-spheres, 4-spheres, and 8-
spheres of radius r/2, respectively, normal real 2-chains in the planes are isometric
to real elliptic 2-planes, 4-spaces, and 8-spaces of curvature 1/r2, respectively.

Since sectional curvature of these planes in holomorphic 2-directions is equal
to constant number 4/r2, these planes are called “planes of constant holomorphic
sectional curvature”.

Holomorphy angles were first met by E. Study in 1905 in his article [2], where he
has defined complex Hermitian elliptic spaces. Study has found sectional curvature
of 2-direction in this space in the form

(3) K0 = (1 + 3k2)/4,

where k 6 1 [2, p. 343], but he did not know the geometric meaning of k.
The tangent spaces to Hermitian elliptic planes over fields C, H, and O are

Hermitian Euclidean planes over same fields exposed in book [1, pp. 168–204 and
339–340].

Holomorphy angles in complex Hermitian elliptic and Euclidean spaces were
defined by many geometers under different names. K. Scharnhorst [3, pp. 97–99]
mentioned that P. Shirokov called them “angles of inclination” (ugly naklona),
S. Kobayashi and K. Nomizu called them “Kähler angles”, G. Rizza called them
“Characteristic deviation” (deviazione caratteristica), and “holomorphic deviation”,
Bang-Yen Chen called them “Wirtinger angles” and “slant angles”.

Since Hermitian elliptic planes are symmetric Riemannian spaces, they are
isometric to totally geodesic surfaces in groups of motions of these planes in their
Killing–Cartan metric. These groups of motions are compact simple Lie groups of
classes A2, C3, F4, E6, E7, E8, respectively. The Lie algebras G tangent to these
groups are direct sums of Lie algebras K tangent to stabilizers of points of these
planes and linear spaces E which can be regarded as tangent spaces to the planes.
Vectors in spaces E can be regarded as local vectors in these planes.

The sectional curvature of 2-direction in a symmetric Riemannian space deter-
mined by two orthogonal unit local vectors a and b is equal to

(4) K = ρ[[ab]a]b,

where [ab] is the commutator of elements a and b of Lie algebra G, and cd is the
scalar product of vectors c and d in Euclidean space E [1, p. 246].

Since K is a Lie algebra, the commutator of two elements in this algebra is an
element in this algebra, the commutator of two elements in subalgebra K and sub-
space E is an element in subspace E, the commutator of two elements in subspace
E is an element in subalgebra K. This property can be written as inclusions

(5) [KK] ⊂ K, [KE] ⊂ E, [EE] ⊂ K.

In the case of Hermitian elliptic planes over fields C, H, and O Lie algebra G
consists of skew symmetric Hermitian (3 × 3)-matrices (Aij = −Āji, i, j = 0, 1, 2)
with zero trace (A00+A11+A22 = 0) and Lie algebra of the group of automorphisms
of the group of motions in the plane. The last group is finite for the plane over C,
is compact simple Lie group A1 for the plane over H, and is compact simple Lie
group G2 for the plane over O.
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Let us denote the (3×3)-matrix with 1 on the intersection of i-th line and j-th
column and zeroes on all remaining entries by Eij . Therefore EijEkl = δjkEil.

Subspace E of the Lie algebra tangent to the group of motions in the plane can
be reduced to the subspace containing matrices E0i and Ei0, i = 1, 2. Matrices A
and B in subspace E corresponding to local vectors a and b have the form

(6) A =
∑

iE0ia
i −∑

iEi0ā
i, B =

∑
jE0jb

j −∑
jEj0b̄

j , i, j = 1, 2.

Since the commutator [AB] of two matrices A and B is equal to difference
AB −BA, the commutator of matrices (6) is equal to

(7) [AB] = −∑
iE00a

ib̄i −∑
i

∑
jEij ā

ibj +
∑

iE00b
iāi +

∑
i

∑
jEij b̄

iaj .

and commutator [[AB]A] has the form

[[AB]A] =

−∑
i

∑
jE0ia

j b̄jai +
∑

i

∑
jEi0ā

ibj āj +
∑

i

∑
jEi0b

j ājai −∑
i

∑
jEi0b̄

iaj āi

−∑
i

∑
jEi0ā

iaj b̄j +
∑

i

∑
jE0ia

j ājbi +
∑

i

∑
jEi0ā

ibj āi −∑
i

∑
jEi0a

j b̄jai

(8)

Formulas (7) and (8) show that matrix (7) corresponds to an element in Lie
subalgebra K and matrix (8) corresponds to a vector in Euclidean subspace E
according to inclusions (5).

Coordinates c1 and c2 of vector c corresponding to matrix (8) are coefficients
at E01 and E02, respectively, that is

(9) ci = −∑
ja

j b̄jai +
∑

jb
j ājai +

∑
ja

j ājbi −∑
ja

j b̄jai

Since the scalar product ab of vectors a and b in subspace E is equal to the real
part of

∑
ia

ib̄i, the scalar product of vector c corresponding to matrix (8) by vector
b in Euclidean subspace E is equal to the real part of scalar product of vectors c
and b. This scalar product is equal to

(10)
∑

ic
ib̄i = −∑

i

∑
ja

j b̄jaib̄i +
∑

i

∑
jb

j ājaib̄i +
∑

i

∑
ja

j ājbib̄i−∑
i

∑
ja

j b̄jaib̄i

In the case of the plane over commutative field C this product can be rewritten
in the form ∑

ic
ib̄i = − (∑

ia
ib̄i

) (∑
ja

j b̄j
)

+
(∑

ib̄
iai

) (∑
j ā

jbj
)

+
(∑

iā
iai

) (∑
j b̄

jbj
)− (∑

iā
ibi

) (∑
j ā

jbj
)

= cos2 α + cos2 α + 1 + cos2 α = 1 + 3 cos2 α

(11)

Since scalar product (11) is real, formula (4) shows that sectional curvature K
of 2-direction in complex Hermitian elliptic plane is equal to

(12) K = ρ(1 + 3 cos2 α).

For finding constant ρ in the case of plane with curvature 1/r2, let us consider
normal real 2-chains in this plane. Since these 2-chains are isometric to real elliptic
plane with curvature 1/r2 and holomorphy angles of 2-directions in these 2-chains
is equal to π/2, we obtain that ρ = 1/r2, that is sectional curvature (11) has the
form (2).
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In the case of the planes over skew fields H and O scalar product (10) can be
reduced to form (11) by permutations of coordinates of vectors a and b, but permu-
tation of two elements in fields H and O is equivalent to addition of commutator
[wz] = wz − zw. Since real parts of these commutators are equal to zero, real part
of scalar product (10) is equal to (11) and sectional curvatures of 2-directions in
Hermitian elliptic planes over skew fields H and O, like this curvature in complex
Hermitian elliptic plane, has the form (2).

In formula (4.36) in book [1, p. 246], which must coincide with formula (2),
there is a misprint.

K. Scharnhorst [3, pp. 99–100] has mentioned that two planes in Euclidean
4-space representing two straight lines in complex Hermitian Euclidean plane iso-
metric to this 4-space are isoclinic, that is straight lines at infinity of these planes
are paratactic lines in elliptic 3-space containing points at infinity of the 4-space.
Analogous property there is for 4-planes and 8-planes in Euclidean 8-space and
16-space representing two straight lines in quaternionic and octonionic Hermitian
Euclidean planes isometric to these 8-space and 16-space which are isoclinic, that
is 3-planes and 7-planes at infinity of these 4-spaces and 8-spaces are paratactic
in elliptic 7-space and 15-space containing points at infinity of the 8-space and
16-space.

Analogously we can prove that two Euclidean 2-planes, 4-planes, and 8-planes
tangent to two 2-spheres, 4-spheres, and 8-spheres representing two straight lines
passing through point X in complex, quaternionic, and octonionic Hermitian elliptic
planes, are isoclinic, that is intersections of these two 2-planes, 4-planes and 8-
planes, respectively, with hyperplanes at infinity of Euclidean 4-space, 8-space, and
16-space tangent to corresponding Riemannian symmetric space at point X are two
paratactic straight lines, 3-planes, and 7-planes in real elliptic 3-space, 7-space, and
15-space, respectively.

2. Planes over tensor products of fields

The first attempt to study holomorphy angles in Hermitian elliptic planes over
tensor products of fields was undertaken in article [4] by author and R. P. Vyplav-
ina.

The geometry of Hermitian elliptic planes over tensor products of fields C by
C, C by H, and H by H is mentioned in book [1, p. 226]. The first of these
planes admits interpretation as pair of complex Hermitian elliptic planes, its group
of motions is isomorphic to direct product of two compact simple groups A1. The
second of these planes admits interpretation as manifold of straight lines in complex
Hermitian elliptic 5-space, its group of motions is isomorphic to compact simple Lie
group A3. The third of these planes admits interpretation as manifold of 3-planes
in real elliptic 11-space, its group of motions is isomorphic to compact simple group
D6.

The geometry of Hermitian elliptic planes over tensor products of fields C by
O, H by O, and O by O is exposed in book [1, pp. 340–369]. The groups of
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motions of these planes are isomorphic to compact simple Lie groups E6, E7, and
E8, respectively.

The tangent spaces to Hermitian elliptic planes over tensor products of fields
are Hermitian Euclidean planes over same tensor products.

The finding analogue of holomorphy angle and sectional curvature in these
Hermitian planes is based on fact proved in book [1, pp. 237, 342, and 346] in-
terpretation of straight lines in Hermitian elliptic planes over tensor product C by
C, C by H, H by H, C by O, H by O and O by O as manifolds of straight lines
in real elliptic 3-space, of straight lines in real elliptic 5-space, of 3-planes in real
elliptic 7-space, of straight lines in real elliptic 9-space, of 3-planes in real elliptic
11-space, and of 7-planes in real elliptic 15-space, respectively. Another proof of
this interpretation was given by E. Vinberg [5].

The groups of motions in Hermitian elliptic lines are isomorphic to groups of
motions in corresponding real elliptic spaces, that is to compact semisimple Lie
group D2 and to compact simple Lie groups D3, D4, D5, D6, and D8, respectively.

If a 2-direction in Hermitian plane over tensor product passes through point X,
a and b are two orthogonal local vectors in this 2-direction issuing from point X,
and through these vectors two straight lines XA and XB are drawn, intersecting
polar straight line AB of point X at points A and B. These points A and B in
planes over tensor products C, by C, C by H, and C by O are represented by two
straight lines in real elliptic 3-space, 5-space, and 9-space, respectively. Points A
and B in planes over tensor products H by H and H by O are represented by two
3-planes in real elliptic 7-space and 11-space, respectively. Points A and B in plane
over tensor products O by O are represented by two 7-planes in real elliptic 15-
space. In these cases the role of holomorphy angles is played by stationary distances
of mentioned straight lines, 3-planes, and 7-planes divided by radius r of curvature
of the Hermitian plane.

The number of these distances is equal to 2 for first three planes, to 4 for
following two planes, and to 8 for last plane.

These distances can be calculated as follows. If coordinates of points A and B
in Hermitian plane over tensor products of fields are ai and bi, the element α equal
to divided by radius r of curvature of Hermitian plane distance between points A
and B is determined by formula

(13) cos2 α = ρ
(∑

i
˜̄aibi

) (∑
j
˜̄bjbj

)−1(∑
k
˜̄bkak

) (∑
l
˜̄alal

)−1
ρ−1,

element ρ is such that right hand part of this equality has the form a+iIb, a+iIb+
jJc+kKd or a+ iIb+jJc+kKd+ lLe+pPf +qQg+rRh, where i, j, k, l, p, q, r are
basis elements in first multiplier of the tensor product and I, J,K, L, P, Q, R are
basis elements in second multiplier of this product. Expressions a + iIb, a + iIb +
jJc+kKd or a+iIb+jJc+kKd+ lLe+pPf +qQg+rRh can be regarded as asplit
complex (double), quadruple, and eightfold numbers, respectively, that is elements
of direct sums of 2, 4, and 8 fields of real numbers. These algebras are commutative
and isomorphic to algebras of diagonal real (2× 2)-matrices, (4× 4)-matrices, and
(8× 8)-matrices, respectively. Expressions cos2 α and α also are elements of these
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algebras, and stationary distances between straight lines, 3-planes, and 7-planes in
real elliptic spaces are coordinates of elements rα in these algebras.

Lie algebras G tangent to groups of motions in in Hermitian elliptic planes over
tensor products of fields are direct sums of Lie algebras K tangent to stabilizers of
points in these planes and linear spaces E which can be regarded as tangent spaces
to the planes. Vectors in spaces E can be regarded as local vectors in the planes.

Lie algebra G consists of skew symmetric Hermitian (3 × 3)-matrices (Aij =
− ˜̄Aji, i, j = 0, 1, 2), where α → ᾱ and α → α̃ are transitions to conjugate elements
in first and second multipliers of tensor product, with zero trace (A00+A11+A22 =
0) and Lie algebra of the group of automorphisms of the group of motions in the
plane. The last group is finite for the plane over tensor product C by C, is compact
simple Lie group A1 for the plane over tensor product C by H, is compact simple Lie
group G2 for the plane over tensor product C by O, is direct product of two compact
simple Lie groups A1 for the plane over tensor product H by H, is direct product
of compact simple Lie groups A1 and G2 for the plane over tensor product H by
O, and is direct product of two compact simple Lie groups G2 for the plane over
tensor product O by O. Commutators of elements in algebras G were determined
by E. Vinberg [6].

Subspace E of the Lie algebra tangent to the group of motions in the plane can
be reduced to the subspace containing matrices E0i and Ei0, i = 1, 2. Matrices A
and B in subspace E corresponding to local vectors a and b have the form

(14) A =
∑

iE0ia
i −∑

iEi0˜̄ai,
∑

jE0jb
j −∑

jEj0
˜̄bj , i, j = 1, 2.

Since in Hermitian elliptic planes over tensor product of fields the metric of
symmetric Riemannian spaces whose groups of motions are isomorphic to groups
of motions in these Hermitian planes, the sectional curvature of 2-directions can be
determined by two orthogonal unit local vectors a and b according to formula (4).

In Hermitian elliptic planes over tensor product of fields, unlike as in planes
over fields, there are 2-directions with zero sectional curvature. These 2-directions
are located in Cartan submanifolds of these planes, where matrices A and B cor-
responding to local vectors a and b commute one with another.

Let us find nonzero sectional curvature of 2-directions in planes over tensor
products of fields located in normal complex, quaternionic, and octonionic 2-chains,
that is sets of points with complex, quaternionic or octonionic coordinates or figures
obtained from these sets by motions in the planes. Since these normal 2-chains are
isometric to Hermitian elliptic planes over fields C, H, or O of the same curvature
1/r2 as considered elliptic Hermitian planes over tensor products of fields, sectional
curvature of these 2-directions has the form (2).

Therefore sectional curvature of 2-directions in Hermitian elliptic planes over
tensor product of fields C by C, C by H, and C by O is equal to

(15) K = (2 + 3 cos2 α0 + 3 cos2 α1)/2r2,

where α0 and α1 are divided by r stationary distances of two straight lines repre-
senting points A and B.
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Sectional curvature of 2-directions in Hermitian elliptic planes over tensor prod-
ucts of fields H by H and H by O is equal to

(16) K = (4 + 3 cos2 α0 + 3 cos2 α1 + 3 cos2 α2 + 3 cos2 α3)/4r2,

where α0, α1, α2, α3 are divided by r stationary distances of two 3-planes represent-
ing points A and B.

Sectional curvature of 2-directions in Hermitian elliptic planes over tensor prod-
uct of fields O by O is equal to

K = (8 + 3 cos2 α0 + 3 cos2 α1 + 3 cos2 α2 + 3 cos2 α3

+ 3 cos2 α4 + 3 cos2 α5 + 3 cos2 α6 + 3 cos2 α7)/8r2,
(17)

where α0, α1, α2, α3, α4, α5, α6, α7 are divided by r stationary distances of two 7-
planes representing points A and B.

Formulas (15), (16), and (17) can be written in unitary form

(18) K =
∑

i(δi + 3 cos2 αi)
/
(
∑

iδi) r2,

where δi = 1, i = 0, 1 for planes over tensor products C by C, C by H, and C
by O, i = 0, 1, 2, 3 for planes over tensor products H by H and H by O, and
i = 0, 1, 2, 3, 4, 5, 6, 7 for plane over tensor product O by O.

In the case of holomorphic 2-directions all angles αi are zeros and formulas
(15), (16), and (17) give K = 4/r2.

In the case of antiholomorphic 2-directions all angles αi are equal to 90◦ and
formulas (15), (16), and (17) give K = 1/r2.

In the case of 2-directions located in normal complex, quaternionic, and octo-
nionic 2-chains all angles αi are equal one to another that is straight lines, 3-planes
and 7-planes in real elliptic spaces representing points A and B are paratactic, and
if we denote this common value of αi by α, formulas (15), (16), and (17) coincide
with formula (2).

Numerator of right hand part of equality (18) is the trace of matrix E +cos2A,
where E and A are (2× 2)-matrices, (4× 4)-matrices, and (8× 8)-matrices, respec-
tively, E is unit matrix, A is diagonal matrix with eigenvalues αi.

Formula (18) can be obtained also from formula (14). Analogously as formula
(10) is obtained from formula (6), from formula (14) the formula differing from
formula (10) by replacing coordinates āi and b̄i by coordinates ˜̄ai and ˜̄bi is obtained.

The matrix E + cos2A coincides with the matrix corresponding to the element
ρ
(∑

ic
i˜̄bi

)
ρ−1 of the subalgebra of the tensor product isomorphic to the direct sum

of 2, 4 or 8 fields of real numbers.

References

[1] B. Rosenfeld, Geometry of Lie Groups, Kluwer, Dordreht–Boston–London, 1997.
[2] E. Study, Kürzeste Wege in komplexen Gebeit, Math. Annalen 60 (1905), 321–377.
[3] K. Scharnhorst, Angles in complex vector spaces, Acta Appl. Math. 69 (2001), 95–103.
[4] B.A. Rozenfel~d, R. Vyplavina, Ugly i orty naklona vewestvennyh 2-plowadok v

�rmitovyh prostranstvah nad tenzornymi proizvedeni�mi tel, Izv. VUZ Mat. 7
(1984), 70–74; English translation: B. Rosenfeld and R. Vyplavina, Angles and unit vectors



142 ROSENFELD

of inclinationa for real 2-areas in Hermitian spaces over a tensor product of fields, Soviet.
Math. (Izv. VUZ), 28:7 (1984), 92–96

[5] E. Vinberg, Short SO3-structures on simple Lie algebras and the associated quasielliptic
planes; in: E. Vinberg (ed.), Lie Groups and Invariant Theory, Amer. Math. Soc. Trans-
lations, Ser. 2, 213, 2005, pp. 43–70.

[6] �.B. Vinberg, Konstrukci� osobyh prostyh algebr Li, Trudy Sem. Vektor. Tenzor.
Anal. MGU 13 (1966), 7–9; English translation: E. Vinberg, Construction of exceptional
simple Lie algebras; in: E. Vinberg (ed.), Lie Groups and Invariant Theory, Amer. Math.
Soc. Translations, Ser. 2, 213, 2005, pp. 41–42.

Department of Mathematics (Received 15 08 2005)
Pennsylvania State University (Revised 20 11 2005)
University Park, PA 16802
USA


