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PROBABILITIES ON FIRST ORDER MODELS
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Abstract. It is known that set algebras corresponding to first order models
(i.e., cylindric set algebras associated with first order interpretations) are not
σ-closed, but closed w.r.t. certain infima and suprema i.e.,

(∗) |∃x α| =
[
i∈ω

|α(yi)| and |∀x α| =
\
i∈ω

|α(yi)|

for any infinite subsequence y1, y2, . . . yi, . . . of the individuum variables in the
language. We investigate probabilities defined on these set algebras and being
continuous w.r.t. the suprema and infima in (∗). We can not use the usual
technics, because these suprema and infima are not the usual unions and inter-
sections of sets. These probabilities are interesting in computer science among
others, because the probabilities of the quantifier-free formulas determine that
of any formula, and the probabilities of the former ones can be measured by
statistical methods.

1. Introduction

We define and investigate probabilities on first order models i.e. on the main
components of first order semantics. Investigating probabilities defined on first
order models is an important device of modelling the physical reality and modelling
by computer.

Interpretations of first order formulas in a model M form a certain algebra
of relations, a cylindric set algebra A′. We consider the probabilities (probability
measures) to be defined on these kind of algebras. A well-known property is that
cylindric set algebras corresponding to first order models are closed for the Boolean
joins and meets (suprema and infima) corresponding to the existential and universal
quantifiers, thus

(1.1) |∃xα| =
⋃

i∈ω

|α(yi)| and |∀xα| =
⋂

i∈ω

|α(yi)|
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are true where y1, y2, . . . yi, . . . is any infinite subsequence with infinite range of
the ω-sequence x1, x2, . . . xj , . . . of the individuum variables in the language, the
formula α may contain free variables other than x, |α| denotes the set of the evalu-
ations satisfying the formula α on the model (|α| is the interpretation of α),

⋃
and⋂

mean Boolean join and meet (suprema and infima).
We investigate probabilities p’s which are continuous with respect to the joins

and meets in (1.1) (partially continuous probabilities), that is p has the following
properties:

(1.2) p |∃xα| = sup
n∈ω

p

(⋃

i∈n

|α(yi)|
)

, p |∀xα| = inf
n∈ω

p

(⋂

i∈n

|α(yi)|
)

for any infinite subsequence y1, y2, . . . yi, . . . with infinite range of the ω-sequence
x1, x2, . . . xj , . . . of the individuum variables in the language (the two properties
above are equivalent to each other). This kind of continuity is remarkable why it
means a kind of extensionality in probability logic: probabilities of quantifier free
formulas determine the probability of any formula (while probability logic is not
extensional, in general). Probabilities of quantifier free formulas can be already
measured by statistical methods. Property (1.2) is unusual since the joins and
meets in (1.1) are different from the ordinary infinite unions and intersections for
sets (see [16]), therefore the σ-additivity of standard distributions is not applica-
ble, special technics are needed to investigate (1.2). Another aspect of this kind of
continuity is: with |∃xα| we can associate a projection of the set |α| parallel to the
x-axis, thus from the viewpoint of measure theory, property (1.2) implies that the
measure of the projection of |α| is determined by the measures of certain transfor-
mations

⋃
i∈n

|α(yi)| of |α|, and this is unusual in the classical theory of measures

and topology (see [3]).
Probabilities defined on certain kinds of algebras of relations are investigated

by several authors, e.g. in [2], [4], [5], [9], [10], [11], [13], [15], [17] (the rele-
vant algebraic properties are investigated e.g. in [3], [6], [7], [8], [12], [14] and
[16]). In these papers probabilities are considered on algebras of closed formulas
or they are only finitely additive, and mainly the existence is treated. Here we give
constructions for probabilities defined for all the formulas with property (1.2).

These investigations play role in probability logic, in inductive and stochastic
programming, in program verification, in stochastic prediction, in artificial intelli-
gence and uncertain reasonings among others.

A relation like (1.1) is true for Lindenbaum–Tarski algebras of formulas of the
language, and for dimension restricted cylindric algebras, in general. Therefore
property (1.2) can be defined also for these algebras. Using that the cylindric set
algebra A′ corresponding to a model is a homomorphic image of the Lindenbaum–
Tarski algebra, probabilities with property (1.2) can be transformed by canonical
homomorphism from the model to the Lindenbaum–Tarski algebra.

First, in Theorem 3.1. we construct probabilities for countable models and
languages, applying only discrete distributions. Making use of the property of
elementary equivalent models, that algebras corresponding them are isomorphic,
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probabilities can be transformed from countable models to non-countable models.
In Theorem 3.2. we show that the Lebesgue measure considered on the unions
of finite dimensional intervals restricted to an infinite power of [0, 1) has property
(1.2). This is an example for continuity of type (1.2) on a non-countable model.

2. Concepts

Let L be a usual first order language. For the sake of simplicity we suppose
that L does not contain function symbols other than constant symbols.

We suppose the knowledge of the concept of cylindric set algebra corresponding
to a first order model M with universe U , of type of L. An element of A is the
set |α| of the evaluations of the individuum variables satisfying the formula α in
M , that is the interpretation of α in M (a set of sequences with members from U).
Thus A is the structure:

(2.1) A =
〈
A, ∪, ∩, ∼UT , UT , ∅, Cj , Djk

〉
j,k∈ω

where T is the set of individuum variables in L and the following known relations
are true for the operations and constants included in (2.1):

|α| ∪ |β| = |α ∨ β| , |α| ∩ |β| = |α ∧ β| ,
∼UT |α| = |¬α| , Cj |α| = |∃xj α| ,
Djk = |xj = xk| .

If L does not contain equality symbol then Djk is missing in (2.1) and A is
called a diagonal free cylindric set algebra (see [7]). We remark that, by definition
of the quantification ∃xj , the meaning of the “cylindrification” Cj |α| is: forming
a cylinder set with base |α| in UT parallel to the xj-axis (forming a projection
parallel to the xj-axis).

By infinite sequence through the paper we mean a sequence with infinite range
and consisting infinitely many members.

Relations in (1.1) are really true for A(moreover, in a sense, these are the only
infinite joins and meets which are included in the algebras A’s in (2.1) (see [8],[15]).
These joins and meets must be different from the ordinary unions

⋃∗
i∈ω |α(yi)| and

intersections
⋂∗

i∈ω |α(yi)| of sets (here
⋃∗ and

⋂∗ are defined in the powerset
P(UT )). For example,

⋃∗
i∈ω |α(yi)| ⊆ |∃x α| is obvious, but equality can not valid

in general.
Now we list some definitions concerning probabilities (see [4], [5], [11], [12],

[13], [15]). Let A be the set algebra in (2.1).

Definition 2.1. A non-negative real function p defined on A is a probability
on A (or probability measure on A), if it is a finitely additive probability on the
Boolean part of A in the usual sense, that is

(i) 0 6 p |α| 6 1 for every formula α
(ii) p

(
UT

)
= 1

(iii) p (|α| ∪ |β|) = p |α|+ p |β| for every formulas α and β with |α| ∩ |β| = ∅.
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Definition 2.2. A probability p defined on A is said to be continuous with
respect to the quantifiers or said to be a quantifier probability measure (in short,
quantifier probability, or Q-probability) if the condition (1.2) is satisfied.

In (1.2) we can suppose that the subsequence y1, y2, . . . yi . . . does not contain
free variables from α. Namely if (1.2) is satisfied under this restriction then it is
also satisfied without this restriction because α has only finitely many free variables
and p is monotonic, this latter implies p

(⋃
i∈n |α(yi)|

)
6 p

(⋃
i∈m |α(yi)|

)
if n 6 m.

Definition 2.3. A probability p defined on A has the product property if
p (|α| ∩ |β|) = p |α| ·p |β| for every α and β such that α and β have no common free
variables. A probability p defined on A is said to be symmetrical if p |α| = p |β|
for every α and β such that there is a one-to-one correspondence between the free
variables of α and β.

The product property obviously corresponds to the concept “independency” in
probability theory.

In [15] a version of the following concept of continuity is investigated: There
is an infinite subsequence y1, y2, . . . yi, . . . of the ω-sequence x1, x2, . . . xj , . . . of the
individuum variables such that p |∃x α| = supn∈ω p

(⋃
i∈n |α(yi)|

)
. This property is

obviously weaker than (1.2) but it is equivalent to (1.2) for the so called symmetrical
probabilities, as it can be proven.

Definitions above for probabilities can be generalized to any dimension re-
stricted cylindric algebra (e.g., to classical Lindenbaum–Tarski algebras).

3. Quantifier probability measures

First, we use σ-additive discrete distributions and their infinite powers. Assume
that U is the universe of a countable model M of a countable language L. Consider
a strictly positive σ- additive probability distribution on U (a distribution is strictly
positive if there is no element with zero probability). This yields a distribution on
the power set P(U) considering it as a Boolean σ set algebra. Let p the T th power
of this distribution on the T th power (P(U))T of the σ set algebra P(U), where
T is the set of the individuum variables in L. Let A be the cylindric set algebra
corresponding to M as in (2.1) and H be the Boolean part of A.

Theorem 3.1. The restriction of p to A is a quantifier probability measure, it
is symmetrical and has the product property.

The main idea of the proof is: the symmetry and product properties will be
obvious by construction. We use these properties to prove condition (1.2), first
for a formula having only one free variable beyond x. If α has more than one
free variables, so α is of the form α(x, z1, z2, . . . zk), we eliminate the free variables
other than x from α by substituting constant symbols for the variables z1, z2, . . . zk.
Further we use the decompositions of the probabilities in terms of conditional dis-
tributions.

Proof. The elements of A are finite dimensional cylinder sets of UT , because
these elements are interpretations of formulas with finitely many free variables, so
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they are subsets of some finite dimensional space. U is countable, consequently
any finite dimensional cylinder set S belongs to (P(U))T , because S is a countable
union of points in a given finite dimensional space. Therefore H ⊂ P(U)T . The
restriction of p can be considered as a probability on H, thus also on A. The
symmetry and product properties follow from the power distribution property.

We have to prove property (1.2). It is sufficient to prove the infimum part, for
example. We should use the elements of U , therefore let us extend the language
L by a set of constants corresponding to the elements of U and interpret every
constant by the original element. Let A∗ be the cylindric set algebra corresponding
to the extended language L′ and model. Evidently H ⊂ H∗ ⊂ P(U)T where H∗ is
the Boolean part of A∗. p can be considered also on A∗ and it has the symmetry
and product properties, too. It is sufficient to prove the infimum property for A∗.

So let an element of A of the form |∀xα| and let y1, y2, . . . yi, . . . be an arbitrary
subsequence of the individuum variables. Let z1, z2, . . . zk be the free variables of
α beyond x.

Let u1, u2, . . . uk be arbitrary fixed constants corresponding to the elements in
U , among those by which the language has been extended. Our first claim is as
follows:

(3.1) p |∀xα(x, u1, u2, . . . uk)| = inf
n∈ω

p

(⋂

i∈n

|α(yi, u1, u2, . . . uk)|
)

.

∀xα(x, u1, u2, . . . uk) is a closed formula, thus it is true or false on M and by
the definition of the concept probability, the left hand side is equal to either 0
or 1. In the case 1, there exist no u0 such that α(u0, u1, u2, . . . uk) is false, since
∀xα(x, u1, u2, . . . uk) is true. Thus the set |α(yi, u1, u2, . . . uk)| coincides with the
whole space UT for every i, hence the right hand side of (3.1) is equal to 1. If the
left-hand side of (3.1) equals 0, then the formula ∀xα(x, u1, u2, . . . uk) is false in the
model, therefore there exists a u0 such that α(u0, u1, u2, . . . uk) is false. Thus the set
|α(yi, u1, u2, . . . uk)| is different from the whole space, therefore the probability m
of |α(yi, u1, u2, . . . uk)| is less than 1, because of the strict positivity of the original
distribution on U . p does not depend on i because of symmetry. The product
property of p implies

p

(⋂

i∈n

|α(yi, u1, u2, . . . uk)|
)

= mn

thus the infimum is zero in (3.1), that is (3.1) is true.
Now consider formulas with two free variables. Notice that the following pro-

perty holds for any formula of the form ϑ′(x, z):

(3.2) p |ϑ′(x, z)| =
∞∑

j=1

p |uj | puj |ϑ′(x, uj)|

where we apply the summation property concerning conditional distributions in
the space {(x, z) : (x, z) ∈ U × U} for the sets |ϑ′(x, z)|, |ϑ′(x, uj)| and |uj |, where
puj denotes the conditional distribution of p with respect the condition z = uj
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(j = 1, 2, . . .), and the uj ’s run over the constant symbols corresponding to the
elements in U .

Relation (3.2) can be generalized for formulas of the form ϑ(y1, . . . yn, z1, . . . zk)
having n + k free variables:

(3.3) p |ϑ(y1, . . . yn, z1, . . . zk)| =
∞∑

j=1

p |vj | pvj |ϑ(y1, . . . yn, vj)|

where vj denotes a k-tuples of constants in U , and the vj ’s (j = 1, 2, . . .) is an
enumeration of the finitely dimensional points in the space Uk.

Specially if ϑ in (3.3) is of the form ∀xα(x, z1, . . . zk) then

(3.4) p |∀xα(x, z1, . . . zk)| =
∞∑

j=1

p |vj | pvj |∀xα(x, vj)|.

Returning to the original infimum condition in (1.2), assume that x, z1, . . . zk

are the free variables of α. Then for the left hand side:

p |∀xα(x, z1, . . . zk)| =
∞∑

j=1

p |vj | pvj |∀xα(x, vj)|

=
∞∑

j=1

p |vj | inf
n∈ω

pvj

(⋂

i∈n

|α(yi, vj)|
)(3.5)

because of (3.4) and (3.1) ((3.1) is true for pvj too, since p and pvj are different
only in a constant for fixed vj).

Let us consider the right hand side of the infimum part of (1.2). Let us de-
note the formula

∧
i∈n α(yi) by ϑ(y1, . . . yn, z1, . . . zk). By the remark following

the definition of Q-probability we can suppose without the loss of generality that
{z1, . . . zk} ∩ {y1, . . . yn} = ∅.

Using the fact that
∣∣∧

i∈n α(yi)
∣∣ =

⋂
i∈n |α(yi)|, apply (3.3) to the right-hand

side of the infimum condition:

inf
n∈ω

p
⋂

i∈n

|α(yi)| = inf
n∈ω

p

∣∣∣∣
∧

i∈n

α(yi)
∣∣∣∣ = inf

n∈ω

∞∑

j=1

p |vj | pvj |ϑ(y1, . . . yn, vj)|

=
∞∑

j=1

p |vj | inf
n∈ω

pvj

(⋂

i∈n

|α(yi, vj)|
)

.

We got the right hand side of (3.5) and the proof is finished. ¤

There are some consequences of Theorem 3.1 applying the Löwenheim–Skolem
theorem: by Löwenheim–Skolem theorem, for a countable language L, arbitrary
infinite model N has an elementary submodel M with countable universe. It is
known that cylindric set algebras corresponding to these models are isomorphic.
Therefore the problem to construct probability on the algebra corresponding to N
can be reduced to a problem solved (in Theorem 3.1).
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If the language is countable, theories has a countable model by Löwenheim–
Skolem theorem. Theorem 3.1 applies to this model and the canonical homomor-
phism transforms the Q-probability from A to the Lindenbaum–Tarski algebra of
the language (see [1], [6], [12]). As a consequence, there exists a quantifier prob-
ability measure on any Lindenbaum–Tarski algebra corresponding to a countable
language.

***

Now we come to another case of quantifier probabilities. We give a construction
for quantifier probability defined for a non-countable model.

Consider the usual real interval [0, 1) and the product set [0, 1)T where T is
any set. Take the finite unions of the finite dimensional intervals in [0, 1)T , where
the sides of these intervals are non-degenerate subintervals of [0, 1). It is known
that these finite unions form a Boolean set algebra and the same is true for the
collection A of the corresponding cylinder sets of infinite dimension. A is obviously
closed with respect to the cylindrifications in [0, 1)T . So A is closed with respect to
all the diagonal free cylindric algebraic operations, therefore A can be considered
as a universe of a diagonal free cylindric set algebra A.

In order to investigateA, let us choose a first order language L′ with individuum
variables x1, x2, . . . xj , . . . without equality and let T be the set of these individuum
variables. Every finite dimensional interval should have a name, therefore let us
associate with each real interval [0, r) a unary predicate symbol Pr, where r ∈ [0, 1).
L′ is a monadic language. Consider the model with universe [0, 1) of type L′, with
the natural interpretations of Pr’s. L′ and also the universe [0, 1) are non-countable.
Obviously the sets in A have Lebesgue measure and property (1.2) is defined for
A.

We are going to use the following version of infimum property in (1.2): for
every formula α

(3.6) |∀xα| = ∅ implies inf
n∈ω

p

(⋂

i∈n

|α(yi)|
)

= 0

(the proof of the equivalence of the original property and (3.6) is easy and left to
the Reader).

Theorem 3.2. The Lebesgue measure on A is a quantifier probability measure.

Proof. Suppose in (3.6) that α has only one additional free variable z other
than x, so α is of the form α(x, z). This case can be generalized for k + 1 free
variables as in Theorem 3.1. Further suppose that α is given in a disjunctive
normal form. By definitions of L′ and the finitely dimensional intervals, |α(x, z)|
can be considered as a finite union of disjoint finite dimensional intervals.

The projections of the members of this union to the z-axis define a partition
{I1, I2, . . . Im} of [0, 1). Let us consider the common refinement F of the members
of the union |α(x, z)| and the two dimensional cylinders with base intervals in
{I1, I2, . . . Im}. For fixed j let the members of this refinement: Kj

1 × Ij , . . . ,K
j
i(j)×
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Ij , (where Kj
i ’s are one dimensional intervals). Then

λ |α(x, z)| = λ

( m⋃

j=1

i(j)⋃

i=1

(Kj
i × Ij)

)
=

m∑

j=1

i(j)∑

i=1

λ(Kj
i )× λ(Ij),

where λ is the Lebesgue measure.
By assumption (3.6), |∀xα(x, z)| = ∅. Therefore for any j and z, z ∈ Ij ,

there is a point (x0, z) not included in |α(x, z)|, thus Kj
i 6= [0, 1) (i = 1, 2, . . . i(j)),

therefore λ(Kj
i ) < 1.

Furthermore, in the space (y1, y2, z)

λ
(|α(y1, z)| ∩ |α(y2, z)|) = λ

( m⋃

j=1

i(j)⋃

i=1

(Kj
i ×Kj

i × Ij)
)

=
m∑

j=1

i(j)∑

i=1

λ2(Kj
i )× λ(Ij).

More generally,

λ

(⋂

i∈n

|α(yi, z)|
)

=
m∑

j=1

i(j)∑

i=1

λn(Kj
i )× λ(Ij)

where we can suppose that yi 6= z by the remark following the definition of Q-
probability. λ(Kj

i ) < 1 implies that the limit of the right hand side is 0 for n →∞,
hence the limit of λ(

⋂
i∈n |α(yi, z)|) is also 0, just as we have to prove. ¤

We remark that probabilities defined for different models corresponding to the
same language L can be “mixed” taking their average according to a distribution. In
this way we can get a probability on the Lindenbaum–Tarski algebra of the language
and supposed that the components are Q-probabilities, this average is also a Q-
probability. Moreover, every probability defined on the Lindenbaum–Tarski algebra
can be composed in this way choosing suitable component probabilities (see [5]).
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