
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 78(92) (2005), 87–92

NOTE ON GRAY CODES FOR PERMUTATION LISTS

Seymour Lipschutz, Jie Gao, and Dianjun Wang

Communicated by Slobodan Simić

Abstract. Robert Sedgewick [5] lists various Gray codes for the permutations
in Sn including the classical algorithm by Johnson and Trotter. Here we give
an algorithm which constructs many families of Gray codes for Sn, which
closely follows the construction of the Binary Reflexive Gray Code for the
n-cube Qn.

1. Introduction

There are (n!)! ways to list the n! permutations in Sn. Some such permutation
lists have been generated by a computer, and some such permutation lists are Gray
codes (where successive permutations differ by a transposition). One such famous
Gray code for Sn is by Johnson [4] and Trotter [6]. In fact, each new permutation
in the Johnson–Trotter (JT ) list for Sn is obtained from the preceding permutation
by an adjacent transposition.

Sedgewick [5] gave a survey of various Gray codes for Sn in 1977. Subsequently,
Conway, Sloane and Wilks [1] gave a new Gray code CSW for Sn in 1989 while
proving the existence of Gray codes for the reflection groups. Recently, Gao and
Wang [2] gave simple algorithms, each with an efficient implementation, for two
new permutation lists GW1 and GW2 for Sn, where the second such list is a Gray
code for Sn. The four lists, JT , CSW , GW1 and GW2, for n = 4, are pictured in
Figure 1.

This paper gives an algorithm for constructing many families of Gray codes for
Sn which uses an idea from the construction of the Binary Reflected Gray Code
(BRGC) of the n-cube Qn.

Our paper is organized as follows. Section 2 describes the Binary Reflected
Gray Code for Qn, and also discusses the generation of the JT list and the CSW
list for Sn. Section 3 gives our algorithm which constructs our new Gray code L(n)
for Sn, and also constructs many families of Gray codes for Sn.

2000 Mathematics Subject Classification: 94B60, 68R05, 20F65, 05C38.
Key words and phrases: Algorithms, Combinatorial problems, Permutations, Gray codes.
The third author partially supported by NSFC(60172005).

87



88 LIPSCHUTZ, GAO, AND WANG

List JT (4) List CSW (4) List GW1(4) List GW2(4)
1234 [123] 123 4
1243 4321 1234
1423 124 3 4312 1243
4123 142 3 4231 1423

412 3 4132 1324
4132 [132] 421 3 4213 1342
1432 241 3 4123 1432
1342 214 3
1324 3421 4132

123 4 3412 4123
3124 [312] 231 4 2431 2143
3142 1432 3142
3412 234 1 2413 3124
4312 243 1 1423 2134

423 1
4321 [321] 432 1 3241 2314
3421 342 1 3142 2413
3241 324 1 2341 4213
3214 1342 3214

321 4 2143 3412
2314 [231] 312 4 1243 4312
2341
2431 314 2 3214 4321
4231 341 2 3124 4231

431 2 2314 2431
4213 [213] 413 2 1324 3421
2413 143 2 2134 3241
2143 134 2 1234 2341
2134

132 4

Figure 1. JT , CSW , GW1 and GW2 Lists for n = 4

2. Gray Codes and the JT and CSW lists

The original idea of a Gray code was to list the codewords (n-bit strings) in
the n-cube Qn so that successive codewords differ in only one bit. Thus a Gray
code for Qn is a Hamiltonian circuit through the 2n vertices of Qn. [The fact that
this can be done for any Qn follows from the construction of the Binary Reflected
Gray Code (BRGC) for Qn (see [3]) which we describe below.]

The above idea of a Gray code has been generalized as follows. A Gray code
for any combinatorial family of objects is a listing of the objects such that only a
“small change” takes place from one object to the next in the list. The definition of
“small change” depends on the particular family, its context, and its applications.



NOTE ON GRAY CODES FOR PERMUTATION LISTS 89

Q3 Q3 reversed
0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Figure 2. Binary Reflected Gray Code for Q4

For example, for a finite group G with a set of generators, a Gray code for G is
usually a Hamiltonian circuit in its Cayley graph or, equivalently, a listing of the
elements of G so that successive elements differ by the product of a generator.

This paper is mainly interested in the following type of Gray code for Sn.
[Other types of Gray codes for Sn also exist.]

Definition 1. A Gray code for Sn is a list L of the elements in Sn such that
successive permutations differ by a transposition.

We begin by describing a recursive construction of the Gray code for the n-cube
Qn. Specifically, Figure 2 shows how the BRGC for Q4 can be obtained from the
BRGC for Q3. That is, first we list the Gray code for Q3 which appears as the
upper left 3× 8 matrix (where the codewords are the columns). Then next to it we
list the Gray code for Q3 but in reverse order. This yields a 3× 8 matrix. Finally,
we add a fourth row consisting of eight 0’s followed by eight 1’s. This gives the
BRGC for Q4.

We show that this is in fact a Gray code for Q4. Observe that only one bit
changes within the first eight columns since the fourth bit is always 0, and only
one bit changes within the last eight columns since the fourth bit is always 1.
Furthermore, the two middle columns (and also the first and last columns) are
identical except for the added last bits, and so again only one bit changes. The
BRGC for Qn is the one obtained recursively in this way beginning with the matrix
[0, 1] for Q = Q1. [Note this construction gives a Hamiltonian circuit, not just a
Hamiltonian path, for the n-cube Qn.]

Discussing the BRGC, Herbert Wilf [7] comments: “This method of copying a
list and its reversal seems to be a good thing to think of when trying to construct
some new kind of Gray code.” We do this below in our main algorithm.

The Johnson–Trotter permutation list is also defined recursively. The list for
n = 4 is shown in Figure 1. Note that the list is partitioned into six “blocks”,
each with four successive permutations. Each block corresponds and is labelled by
a permutation in S3 which is in boldface and is to the right of the block. We note
that the boldface labels form the JT list for S3.

Now in the first block, the largest item 4 sweeps from right to left, in the second
block from left to right, in the third block for right to left, and so on. Also, the
relative positions of the remaining items 1, 2, 3 do not change in each block and
correspond to the label of the block. Moreover, the recursive changes of the relative
positions of 1, 2, 3 occur only from block to block when the largest item 4 is in an
end position. Thus the item 4 does not interfere with any transposition involving



90 LIPSCHUTZ, GAO, AND WANG

the items 1, 2, 3. Thus the Johnson–Trotter list JT (n) is a Gray code for Sn. [In
fact, successive permutations in JT (n) differ by only an adjacent transposition.]

The Conway–Sloane–Wilks (CSW ) list is also defined recursively. The second
column in Figure 1 indicates how CSW (4) is obtained from CSW (3). First the
number n = 4 is appended to each permutation in CSW (3) which appears in
boldface in Column 2. Then a sequence of 3! = 6 permutations is inserted between
each pair of permutations in CSW (3) which end in the same number, that is,
between 123 and 213, between 231 and 321, and between 312 and 132. We refer
the reader to their paper for a full description of their algorithm.

The last two columns in Figure 1 contain, respectively, the Gao–Wang permu-
tation lists GW1 and GW2 for n = 4. Observe that each list is partitioned into
four “blocks”, where each block contains 6 successive permutations (which actually
correspond to the 6 permutations in S3). We describe the construction of the list
GW1(n) here by showing how GW1(4) is obtained from GW1(3). The first block
in GW1(4) contains, in boldface, the permutation list for GW1(3) with each such
permutation preceded by the number 4. The second block contains the same per-
mutation list GW1(3) but now the 4 is in the second position. And so on. The
construction of the permutation list GW2 lies beyond the scope of this paper.

3. Generating Algorithm and a New Gray Code L(n) for Sn

Here we give an algorithm which is used to generate a new Gray code L(n) for
Sn and which can also be used to generate many other families of gray codes for
Sn. First, however, we need some new notation and terminology. Let L be a list.
We let LR denote the list L written backwards, and we let r ∗ L denote the list
consisting of r alternating copies of L and LR; that is:

r ∗ L = [L; LR; L;LR; ...; L or LR] (r components).

Each copy of L or LR will be called a block in r ∗ L. Note that r ∗ L ends in L or
LR according as r is odd or even.

Now let x be a letter. Note first that there are r + 1 places to add x to an
r-letter word w. For example, if w = abcd, then there are 5 places to add x to the
word w as follows:

xabcd, axbcd, abxcd, abcxd, abcdx.

Next we define a new type of list. Let L = [B1;B2; . . . ; Br+1] be a list of r-item
words which is partitioned into r + 1 nonempty sublists Bi (called blocks), and let
x be a letter. Then we define

I[x, L]
to be the list obtained by “interweaving x block by block in L”, that is, where
x is added before the first item in every word in B1, before the second item in every
word in B2, and so on, until x is added after the last item in every word in Br+1.

For example, suppose L = [ab, a′b′; cd; ef, e′f ′], a list of five r = 2 letter words
partitioned into r + 1 = 3 blocks (separated by semicolons). Then

I[x, L] = [xab, xa′b′; cxd; efx, e′f ′x].

The following algorithm applies.



NOTE ON GRAY CODES FOR PERMUTATION LISTS 91

Algorithm 3.1. The input is a permutation list L for Sn−1, where n > 2, and
the output is a permutation list L′ for Sn.

Step 1. Form the list n∗L which consists of n alternating copies of L and LR.
Step 2. Interweave the number n block by block in n∗L yielding L′ = I[n, n∗L].

The fact that L′ is a list of permutations of Sn follows from the fact that L′

contains n! permutations and no two of them are the same.
We are now ready to define our permutation list L(n). Firstly, we let L(1) = [1]

and L(2) = [21, 12]). Then, for n > 2, we let L(n) be obtained from L(n− 1) using
the above Algorithm 3.1. We illustrate how L(3) and L(4) are obtained below.

Example 1. We apply Algorithm 3.1 to L(2) = [21, 12] to obtain L(3):
Step 1. Form the list 3 ∗ L(2) = [L(2);LR(2);L(2)], that is,

3 ∗ L(2) = [21, 12; 12, 21; 21, 12]

Step 2. Interweave 3 block by block in 3 ∗ L(2) yielding

L(3) = [321, 312, 132, 231, 213, 123]

Example 2. We apply Algorithm 3.1 to L(3) to obtain L(4):
Step 1. Form the list 4 ∗ L(3) = [L(3);LR(3);L(3);LR(3)], that is,

4 ∗ L(3) = [321, 312, 132, 231, 213, 123; 123, 213, 132, 231, 312, 321;

321, 312, 132, 231, 213, 123; 123, 213, 132, 231, 312, 321]

Step 2. Interweave 4 block by block in 4 ∗ L(3) yielding L(4) = I[4, 4 ∗ L(3)].
Namely:

L(4) = [4321, 4312, 4132, 4231, 4213, 4123; 1423, 2413, 1432, 2431, 3412, 3421;

3241, 3142, 1342, 2341, 2143, 1243; 1234, 2134, 1324, 2314, 3124, 3214]

Observe that that L(4) has 4(6) = 24 permutations, as expected.

Remark. Suppose in Algorithm 3.1 we change Step 1 so that we form the list
Ln, n copies of L, not alternating L and LR. Then, beginning with L(1) = 1 and
successively applying the modified Algorithm 3.1, we would obtain the Gao-Wang
List GW1 which is not a Gray code for Sn.

The importance of our Algorithm 3.1 comes from the following theorem.

Main Theorem. Suppose L is a Gray code for Sn−1, and suppose L′ is ob-
tained from L using Algorithm 3.1. Then L′ is a Gray code for Sn.

Proof. Since L is a Gray code for Sn−1, we have that LR is also a Gray code
for Sn−1. Thus successive permutations within each block of L′ = I[n, n ∗L] differ
only by a transposition since n is always in the same position and the remaining
members of the list are in the same relative position as in L or LR.

Now consider successive permutations from one block to the next in L′. Note
that the last permutation in L is the same as the first permutation in LR, and the
last permutation in LR is the same as the first permutation in L. Thus the only
change from the last permutation in a block in L′ to the first permutation in the



92 LIPSCHUTZ, GAO, AND WANG

next block is that n interchanges its position with the next integer. Thus again
successive permutations in L′ differ only by a transposition.

Accordingly, L′ is a Gray code for Sn, and the theorem is proved. ¤
We now give applications of our Main Theorem.

Example 3. (a) L(2) = [21, 12] is a Gray code for S2. Therefore our lists L(n)
are Gray codes for Sn.

(b) Consider an integer r > 1, the Johnson–Trotter Gray code JT (r) for Sr,
and the Gao–Wang list GW2(r) which is also a Gray code for Sr. Accordingly,
applying Algorithm 3.1 successively to JT (r) or to GW (r) yields Gray codes for
Sn for n > r.

The above example, which gives two families of Gray codes for almost all Sn,
may indicate that the number of Gray codes for Sn which can be easily generated
by a computer may be more numerous than some may have previously assumed.

Acknowlegement. The work reported here was done while the first author
Prof. Seymour Lipschutz was visiting Tsinghua University. He is thankful to
Tsinghua University for its hospitality.

References

[1] J. H. Conway, N. J.A. Sloane and A.R. Wilks, Gray codes for reflection groups, Graphs and
Combin. 5 (1989), 315–325.

[2] J. Gao and D. Wang, Permutation generation: two new algorithms, (2004), preprint.
[3] E.N. Gilbert, Gray codes and paths on the n-cube, Bell Syst. Tech. J. 37 (1958), 815–826.
[4] S.M. Johnson, Generation of permutations by adjacent transpositions, Math. Comput. 17

(1963), 282–285.
[5] R. Sedgewick, Permutation generation methods, Comp. Surveys 9 (1977), 137–164.
[6] H. F. Trotter, Algorithm 115, Permutations, Comm. ACM 5 (1962), 434–435.
[7] H. Wilf, Combinatorial algorithms—an update, SIAM, Philadelphia, 1989

Department of Mathematics (Received 29 03 2005)
Temple University (Revised 05 12 2005)
Philadelphia
PA 1912, USA
seymour@temple.edu

School of Software
Tsinghua University
Beijing 100084
China

Department of Mathematical Sciences
Tsinghua University
Beijing 100084
China
djwang@math.tsinghua.edu.cn


