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Abstract. We investigate the generalization of the starlikeness of complex
order and the generalization of convexity of complex order for the analytic
functions in the unit disc D = {z : |z| < 1}.

1. Introduction

Let Ω be the family of functions ω(z) regular in the unit disc D and satisfying
the condition ω(0) = 0, |ω(z)| < 1 for z ∈ D. For arbitrary fixed numbers A, B,
−1 6 B < A 6 1, denote by P (A, B) the family of functions p(z) = 1 + p1z +
p2z

2 + · · · regular in D, such that p(z) ∈ P (A,B) if and only if p(z) = 1+Aω(z)
1+Bω(z)

for some functions ω(z) ∈ Ω and for every z ∈ D. This class was introduced by
Janowski [6].

Further let f(z) = z + a2z
2 + a3z

3 + · · · and g(z) = z + b2z
2 + b3z

3 + · · ·
be analytic functions in the unit disc D. Then we say that the function f(z) is
subordinate to g(z), written f ≺ g or f(z) ≺ g(z), such that f(z) = g(ω(z)),
ω(z) ∈ Ω, for all z ∈ D. In particular, if g(z) is univalent in D, then f ≺ g if and
only if f(0) = g(0) and f(D) ⊆ g(D).

Next we consider the following class of functions defined in D. Let CS∗(A,B, b, q)
denote the family of functions f(z) = z + a2z

2 + a3z
3 + · · · regular in D, such that

f(z) ∈ CS∗(A,B, b, q) if and only if

1 +
1
b

(
z
f (q+1)(z)
f (q)(z)

+ q − 1
)

=
1 + Aω(z)
1 + Bω(z)

,

where b 6= 0, b is a complex number, f (q)(z) denotes the derivative of f(z) with
respect to z of order q ∈ {0, 1} with f (0)(z) = f(z) and ω(z) ∈ Ω. The definition
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of the class CS∗(A,B, b, q) is equivalent to f(z) ∈ CS∗(A, B, b, q) if and only if

(1.1)
1 +

1
b

(
z
f (q+1)(z)
f (q)(z)

+ q − 1
)
≺ 1 + Az

1 + Bz
for all z ∈ D, B 6= 0

1 +
1
b

(
z
f (q+1)(z)
f (q)(z)

+ q − 1
)
≺ 1 + Az, for all z ∈ D, B = 0

The geometric meaning of (1.1) is that the image of D by

1 +
1
b

(
z
f (q+1)(z)
f (q)(z)

+ q − 1
)

is inside the open disc centered on the real axis with diameter end points
1−A

1−B
and

1 + A

1 + B
, B 6= 0

1−A and 1 + A, B = 0

Some examples of functions in the classes CS∗(A, B, b, 0), CS∗(A,B, b, 1),
CS∗(1,−1, b, 0), CS∗(1,−1, b, 1) respectively, are the following

for q = 0, f(z) =

{
z(1 + Bz)b(A−B)/B B 6= 0
zeAbz B = 0

,

for q = 1, f(z) =

{∫ z

0
(1 + Bζ)b(A−B)/Bdζ B 6= 0∫ z

0
ebAζdζ B = 0

,

for A = 1, B = −1, q = 0, f(z) =
z

(1− z)2b
,

for A = 1, B = −1, q = 1, f(z) =
∫ z

0
(1− ζ)−2bdζ,

Clearly we have the following classes:
(i) For q = 0, A = 1, B = −1, CS∗(1,−1, b, 0) is the class of starlike functions

of complex order. This class was introduced by Aouf [1].
(ii) For q = 1, A = 1, B = −1, CS∗(1,−1, b, 1) is the class of convex functions

of complex order. This class was introduced by Nasr and Aouf [2].
(iii) For q = 0, A = 1, B = −1, b = 1, CS∗(0, 1,−1, 1) = S∗ is the class starlike

functions. This class is well known [3], [4].
(iv) For q = 1, A = 1, B = −1, b = 1, CS∗(1,−1, 1, 1) = C is the class convex

function. This class is well known [3], [4].
We note that by giving special values to b (which are b = 1 − α, 0 6 α < 1;

b = 1 − (1 − α)(cos λ)e−iα, 0 6 α < 1, |λ| < π/2; b = (1 − (cos λ)e−iλ) we obtain
very important subclasses of starlike functions and convex functions [3], [4].

2. Some results for the class CS∗(A,B, b, q)

We need the following lemmas.

Lemma 2.1. [5] Let ω(z) be a non-constant and analytic function in the unit
disc D with ω(0) = 0. If |ω(z)| attains its maximum value on the circle |z| = r at
the point z1, then z1ω

′(z1) = kω(z1) and k > 1.
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Lemma 2.2. Let f(z) = z + a2z
2 + a3z

3 + · · · be an analytic functions in the
unit disc D. If f(z) satisfies

(2.1)





1
b

(
z
f (q+1)(z)
f (q)(z)

+ q − 1
)
≺ (A−B)z

1+Bz = F1(z), B 6= 0

1
b

(
z
f (q+1)(z)
f (q)(z)

+ q − 1
)
≺ Az = F2(z), B = 0

then f(z) ∈ CS∗(A, B, b, q) and the result is sharp as the function

f
(q)
∗ (z) =

{
z1−q(1 + Bz)

b(A−B)
B , B 6= 0

z1−qeAbz, B = 0.

Proof. Let B 6= 0. We define a function ω(z) by

(2.2)
f (q)(z)
z1−q

= (1 + Bω(z))
b(A−B)

B ,

where (1 + Bω(z))
b(A−B)

B has the value 1 at the origin. Then ω(z) is analytic in D,
ω(0) = 0 and

(2.3)
1
b

(
z
f (q+1)(z)
f (q)(z)

+ q − 1
)

=
(A−B)zω′(z)

1 + Bω(z)
.

Now it is easy to realize that the subordination (2.1) is equivalent to |ω(z)| < 1, for
all z ∈ D. Indeed assume the contrary: There exist z1 ∈ D such that |ω(z1)| = 1.
Then by I. S. Jack’s lemma z1ω

′(z1) = kω(z1), k > 1 and for such z1 we have

1
b

(
z1

f (q+1)(z1)
f (q)(z1)

+ q − 1
)

= k
(A−B)ω(z1)
1 + Bω(z1)

/∈ F1(D)

because |ω(z1)| = 1 and k > 1. But this is a contradiction to the condition (2.1) of
this lemma and so the assumption is wrong i.e., |ω(z)| < 1 for all z ∈ D.

On the other hand we have
1
b

(
z
f (q+1)(z)
f (q)(z)

+ q − 1
)
≺ (A−B)z

1 + Bz
⇔ 1

b

(
z
f (q+1)(z)
f (q)(z)

+ q − 1
)

=
(A−B)ω(z)
1 + Bω(z)

⇔ 1 +
1
b

(
f (q+1)(z)
f (q)(z)

+ q − 1
)

=
1 + Aω(z)
1 + Bω(z)

(2.4)

The equivalencies (2.4) show that f(z) ∈ CS∗(A,B, b, q).

Let B =0. Define a function by
f (q)(z)
z1−q

= eAbω(z). Then ω(z) is analytic in D

and ω(0) = 0 and

(2.5)
1
b

(
z
f (q+1)(z)
f (q)(z)

+ q − 1
)

= Azω′(z).

Similarly by using I. S. Jack’s lemma we obtain

(2.6) 1 +
1
b

(
z
f (q+1)(z)
f (q)(z)

+ q − 1
)

= 1 + Aω(z).

The equality (2.6) shows that f(z) ∈ CS∗(A, B, b, q).
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The sharpness of the result follows from the fact that for

f
(q)
∗ (z) =

{
z1−q(1 + Bz)

b(A−B)
B , B 6= 0

z1−qeAbz, B = 0

we receive (
z
f

(q+1)
∗ (z)

f
(q)
∗ (z)

+ q − 1

)
=

{
(A−B)z
1+Bz = F1(z), B 6= 0

Az = F2(z), B = 0
¤

Lemma 2.3. If f(z) ∈ CS∗(A,B, b, q), then the set of the values of
(
z f(q+1)(z)

f(q)(z)

)

is the disc with the centre C(r) and the radius ρ(r), where

C(r) =
(1− q) +

[
(q − 1)B2 − b(AB −B2)

]
r2

1−B2r2
, ρ(r) =

|b|(A−B)
1−B2r2

, B 6= 0

C(r) = 1, ρ(r) = |Ab|r, B = 0

Proof. If p(z) ∈ P (A,B), then

(2.7)
∣∣∣∣p(z)− 1−ABr2

1−B2r2

∣∣∣∣ 6 (A−B)r
1−Br2

.

The inequality (2.7) was proved by Janowski [6].
By using the definition of the class CS∗(A,B, b, q) and the inequality (2.7) we

get

(2.8)
∣∣∣∣1 +

1
b

(
z
f (q+1)(z)
f (q)(z)

+ q − 1
)
− 1−ABr2

1−B2r2

∣∣∣∣ 6 (A−B)r
1−B2r2

.

After a brief calculations from (2.8) we obtain∣∣∣∣∣z
f (q+1)(z)
f (q)(z)

− (1−q) +
[
(q−1)B2 − b(AB−B2)

]
r2

1−B2r2

∣∣∣∣∣ 6 |b|(A−B)r
1−B2r2

, B 6= 0

∣∣∣∣z
f (q+1)(z)
f (q)(z)

+ q − 1
∣∣∣∣ 6 |Ab|r, B = 0. ¤

Theorem 2.1. If f(z) ∈ CS∗(A,B, b, q), then

(2.9)
M1(A,B, r) 6 |f (q)(z)| 6 M2(A,B, r), B 6= 0

N1(A, r) 6 |f (q)(z)| 6 N2(A, r) < B = 0

where

M1(A,B, r) = r1−q(1−Br)
(A−B)(|b|+Re b)

2B (1 + Br)
(A−B)(Re b−|b|)

2B ,

M2(A,B, r) = r1−q(1−Br)
(A−B)(|b|−Re b)

2B (1 + Br)
(A−B)(|b|+Re b)

2B ,

N1(A, r) = r1−qe−|Ab|r, N2(A, r) = r1−qe|Ab|r

These bounds are sharp because the extremal function is

f
(q)
∗ (z) =

{
z1−q(1 + Bz)

b(A−B)
B , B 6= 0

z1−qeAbz, B = 0
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Proof. By using Lemma 2.3 and after a brief calculations we get

(1− q)− |b|(A−B)r +
[
(q − 1)B2 − Re b(AB −B2)

]
r2

1−B2r2
6 Re z

f (q+1)(z)
f (q)(z)

6
(1− q) + |b|(A−B)r +

[
(q − 1)B2 − Re b(AB −B2)

]
r2

1−B2r2
, B 6= 0

(1− q)− |Ab|r 6 Re z
f (q+1)(z)
f (q)(z)

6 (1− q) + |Ab|r, B = 0

Since

Re z
f (q+1)(z)
f (q)(z)

=
∂

∂r
log

∣∣∣f (q)(reiθ)
∣∣∣ , |z| = r

and using preceding inequalities we obtain

(1−q)− |b|(A−B)r +
[
(q−1)B2 − Re b(AB−B2)

]
r2

r(1−B2r2)
6 ∂

∂r
log

∣∣∣f (q)(reiθ)
∣∣∣

6
(1− q) + |b|(A−B)r +

[
(q − 1)B2 − Re b(AB −B2)

]
r2

r(1−B2r2)
, B 6= 0

(1− q)
r

− |Ab| 6 ∂

∂r
log

∣∣∣f (q)(reiθ)
∣∣∣ 6 (1− q)

r
+ |Ab|, B = 0

Integrating both sides of these inequalities from 0 to r we obtain (2.9). ¤

Corollary 2.1. For q = 0, A = 1, B = −1, b = 1 we obtain
r

(1 + r)2
6 |f(z)| 6 r

(1− r)2
.

This is the distortion theorem of starlike functions. The result is well known
[3], [4].

Corollary 2.2. For q = 1, A = 1, B = −1, b = 1 we get
1

(1 + r)2
6 |f ′(z)| 6 1

(1− r)2
.

This is the distortion theorem for the derivative of convex function. This result
is well known [3], [4].

Corollary 2.3. For q = 0, A = 1, B = −1 the following result is obtained
r

(1 + r)(Re b+|b|)(1− r)(Re b−|b|) 6 |f(z)| 6 r

(1− r)(Re b+|b|)(1 + r)(|b|−Re b)
.

This is the distortion theorem for the starlike functions of complex order.

Corollary 2.4. For q = 1, A = 1, B = −1 the following result is obtained
1

(1− r)(Re b−|b|)(1 + r)(Re b+|b|) 6 |f ′(z)| 6 1
(1− r)(|b|−Re b)(1 + r)(|b|+Re b)

.

This is the distortion theorem for the derivative of convex functions of complex
order.
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Corollary 2.5. (Generalized radius problem) The radius of starlikeness for
the class CS∗(A,B, b, q) is given by

Rcs =
2

|b|(A−B) +
√
|b|2(A−B)2 − 4 [(1− q)B2 − Re b(AB −B2)]

.

This is a generalization of the radius of starlikeness for the class CS∗(1,−1, b, 0),
and a generalization of the radius of convexity for the class CS∗(1,−1, b, 1).

Proof. By using Lemma 2.3 and after simple calculations we get
(2.10)

Re
(

z
f (q+1)(z)
f (q)(z)

)
>

(1− q)− |b|(A−B)r +
[
(q − 1)B2 − Re b(AB −B2)

]
r2

1−B2r2
.

Hence for R < Rcs the left-hand side of the preceding inequality is positive, which
implies that

Rcs =
2

|b|(A−B) +
√
|b|2(A−B)2 − 4 [(1− q)B2 Re b(AB −B2)]

.

Also note that the inequality (2.10) becomes an equality for the function

f
(q)
∗ (z) =

{
z1−q(1 + Bz)

b(A−B)
B , B 6= 0

z1−qeAbz, B = 0.

It follows that

Rcs =
2

|b|(A−B) +
√
|b|2(A−B)2 − 4 [(1− q)B2 − Re b(AB −B2)]

,

and the proof is complete. ¤

We note that, by giving special values to A,B, b, q, we obtain the radius of
starlikeness and the radius of convexity for the important subclasses of univalent
functions. For example:

For A = 1, B = −1, q = 0 and b = 1 we obtain Rcs = 1. This means that the
radius of starlikeness for the class of starlike functions is 1.

For A = 1 B = −1, q = 0 the following radius is obtained

Rcs =
1

|b|+
√
|b|2 − 2Re b + 1

.

This is the radius of starlikeness for the class of starlike functions of complex order.
This radius was obtained by Aouf [1].

Similarly by using Lemma 2.3 and after a simple calculations we get

Re
(

1 + z
f (q+1)(z)
f (q)(z)

)
> (2− q)− |b|(A−B)r − [(2− q)B + (A−B)Re b] r2

1−B2r2
.

Therefore, a generalization of the radius of convexity is

RCC =
2

|b|(A−B) +
√
|b|2(A−B)2 + 4B [B + (A−B)Re b]

.
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Similarly, if we take A = 1 and B = −1, then we obtain

RCC =
1

|b|+
√
|b|2 − 2Re b + 1

,

This is the radius of convexity for the class of convex functions of complex order
that was obtained by Nasr and Aouf [2].

The author would like to thank the referee for his/her suggestion.
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