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Abstract. We partially describe minimal, first-order structures which have
a strong form of the strict order property.

An infinite first-order structure is minimal if its each definable (possibly with
parameters) subset is either finite or co-finite. It is strongly minimal if the mini-
mality is preserved in elementarily equivalent structures. While strongly minimal
structures were investigated more closely in a number of papers beginning with [4]
and [1], there are a very few results on minimal but not strongly minimal structures.
For some examples see [2] and [3].

In this paper we shall consider minimal, ordered structures. A first-order struc-
ture M0 = (M0, . . . ) is ordered if there is a binary relation < on M0, which is
definable possibly with parameters from M0, irreflexive, antisymmetric, transitive
and has arbitrarily large finite chains. We usually distinguish (one) such relation
by absorbing the involved parameters into the language and assuming that < is
an interpretation of a relation symbol from the language, in which case we write
M0 = (M0, <, . . . ).

Two basic examples of minimal, ordered structures are (ω, <) and (ω + ω∗, <)
(where ω∗ is reversely ordered ω and + denotes the (ordinal) sum of partial orders).
We can modify a basic example by replacing the original order by a new one, so
that the structure remains minimal, ordered. For example, we can change < by
taking a finite set of elements from the domain and rearranging them arbitrarily,
leaving the order of the other elements unchanged; e.g. we can take 0 ∈ ω and
make it bigger than all other elements, or incompatible to the others. Also, we can
simply reverse the original order. Note that the ’new’ order obtained in either way
is inter-definable with the original one, so that the structure remains unchanged.
Further, we can enlarge basic structure as follows: starting with (ω, <) we can
replace each n ∈ ω by some (large enough) finite set L(n) and define for a ∈ L(n)
and b ∈ L(m): a < b iff n < m. For example (details are left to the reader):
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Example 0.1. Let L = {(i, n) ∈ ω × ω | i ≤ n}, and (i, n) < (j, m) iff n < m.
Then L = (L,<) is a minimal ordered structure.

Example 0.2. Let U = {(i, n∗) ∈ ω × ω∗ | i ≤ n}, let L be as in the previous
example, and define: (i, n) < (j, m∗) for all i, j, n, m; (i, n) < (j, m) iff n < m and
(i, n∗) < (j, m∗) iff m < n. Then (L ∪ U,<) is a minimal, ordered structure.

Note that in both examples (L,<) is directed upwards and has no ascend-
ing chains of order type ω + 1, whilst (U,<) is directed downwards and has no
descending chains of order type (ω + 1)∗.

Our main result is a characterization of (M0, <) in a minimal, ordered structure
M0 = (M0, <, . . . ). It is done in Section 1 below where we we show that, after
possibly changing < on a finite subset of M0 (as described above), or reversing the
original order, we can partition M0 into two pieces L(M0) and U(M0) such that
L(M0) is upwards directed and unbounded, and has no ascending chains of order
type ω + 1 and either:

U(M0) = ∅ (i.e., (M0, <) is similar to Example 0.1 above); or
U(M0) is downwards directed and unbounded, and has no descending chains

of order type (ω + 1)∗ (i.e., (M0, <) is similar to Example 0.2).
In Section 2 we give a model-theoretic characterization of minimal, ordered

structures M0 = (M0, <, . . . ) which are similar to Example 0.1. in the above sense.

1. Properties of order

Throughout this section we fix a minimal ordered structure M0 = (M0, <, . . . ).
Let p(x) be the set of all formulas in a free variable x (possibly with parameters

from M0), defining a co-finite subset of M0. By minimality, p(x) is a complete 1-
type with parameters from M0; moreover, it is the only type in S1(M0) which is
not already realized in M0 by an element of M0. We write simply p instead of p(x).

If M0 ≺ M = (M, <, . . . ), then by p(M) we denote the set of realizations of p
in M .

Lemma 1.1. (a) {x ∈ M0 | x has immediate successor and predecessor} is
co-finite.

(b) Every realization of p in an elementary extension of M0 has immediate
successors and predecessors which are necessarily realizations of p.

Proof. Suppose that m ∈ M0 does not have immediate successors. Then we
have (exactly) one of the following two cases:

(I) m is a maximal element; (II) M0 |= (∀x > m)(∃y)(m < y < x).
Firstly, we show that there are finitely many possibilities for m in case (I). Note

that the set of maximal elements is a definable antichain; the existence of arbitrary
large finite chains in M0 implies that the antichain can not be co-finite. Therefore,
by minimality, it must be finite.

Suppose our m is in case (II) above. Choose an infinite descending chain above
m, of order type ω∗. Suppose that an element from the chain falls into case (II),
and, then choose a descending chain above it of order type ω∗. We now have a
chain of order type ω∗ + ω∗ (above m), contradicting the minimality assumption.
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We conclude that infinitely many elements of the (first) chain fall into neither of
cases (I) or (II), so they have immediate successors.

Thus the set of elements of M0 having immediate successors (which is definable)
is infinite; by minimality it has to be co-finite. Dually, the set of elements of M0

having immediate predecessors is co-finite, finishing the proof of (a).
To prove (b) note that it easily follows from (a) that any realization of p has

immediate successors, so it remains to show that among them there are no elements
of M0. For, let m ∈ M0. Note that the set of all immediate predecessors of m is
a definable antichain which is, by minimality, finite. Hence, the ‘formula’ ′m is
an immediate successor of x′ does not belong to p, completing the proof of the
Lemma. ¤

Lemma 1.2. Suppose that M0 ≺ M = (M, <, . . . ). Then at least one of the
following conditions holds:

(MIN) Every definable (with parameters) subset of M has a minimal element;
(MAX) Every definable (with parameters) subset of M has a maximal element.

Proof. Suppose that neither (MAX) nor (MIN) hold inM. Let φ(x, m̄) define
a subset of M without minimal element, and let ψ(x, n̄) define a subset of M
without maximal element, where m̄ and n̄ are tuples of elements of M . Note that
φ(x, ȳ) (considered as a formula in variable x, with ȳ fixed) defines a subset without
minimal elements’ is expressible by a first-order formula in variables ȳ, call it φ1(ȳ)
and similarly define ψ1(z̄). Thus

M |= (∃ȳ)(∃z̄)(φ1(ȳ) ∧ ψ1(z̄)),

and hence:
M0 |= (∃ȳ)(∃z̄)(φ1(ȳ) ∧ ψ1(z̄)).

We conclude that there are m̄0 and n̄0 in M0 such that φ(x, m̄0) defines a subset
of M0 without a minimal element, and ψ(x, n̄0) defines a subset of M0 without a
maximal element. Clearly both sets are infinite so, by minimality of M0, both of
them are co-finite and so is their intersection, call it D. D is definable, infinite and
has neither minimal nor maximal elements. It follows that for any d ∈ D both sets
{x | x < d} and {x | x > d} are infinite, contradicting minimality of M0. ¤

Remark 1.1. Satisfaction of (MIN) (or (MAX)) in a structure can be expressed
by a set of first-order sentences; so if it is satisfied in some structure, it must be
satisfied in all structures elementary equivalent to it.

Remark 1.2. The set of minimal (maximal) elements of a definable subset of
M0 is finite: clearly it is a definable antichain, and if it were infinite it would have
to be co-finite, contradicting the existence of arbitrary large finite chains in M0.

Proposition 1.1. M0 is countable.

Proof. Let Lev(0) be the set of minimal and Lev∗(0) the set of maximal
elements of M0. Inductively define Lev(n+1) as the set of minimal and Lev∗(n+1)
as the set of maximal elements of M0 r

⋃
i≤n(Lev∗(i) ∪ Lev(i)).
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Note that if m ∈ M0 r
⋃

i∈ω(Lev∗(i) ∪ Lev(i)), then both {x ∈ M0 | x < m}
and {x ∈ M0 | m < x} are infinite, contradicting the minimality assumption.
Therefore M0 =

⋃
i≤n(Lev∗(i) ∪ Lev(i)). But by the previous remark each Lev(i)

(and also Lev∗(i)) is finite so that the union is countable. ¤

Definition 1.1. We define

L<(M0) = {m ∈ M0 | (m < x) ∈ p}
U<(M0) = {m ∈ M0 | (x < m) ∈ p}
I<(M0) = {m ∈ M0 | (x ⊥ m) ∈ p}.

Usually, we operate with a single ordering relation < inside a structure, in
which case the subscript ‘<’ is omitted, i.e., we write simply L(M0), U(M0) and
I(M0).

Note that any element of M0 must belong to either L(M0) or U(M0) or I(M0),
i.e.:

M0 = L(M0) ∪ U(M0) ∪ I(M0) and M = p(M) ∪ L(M0) ∪ U(M0) ∪ I(M0).

Also we have L(M0) < p(M) < U(M0) and I(M0) ⊥ p(M), in which sense we
consider the set of realizations of p in M = (M, <, . . . ) Â M0 as the ‘middle’ part
of M ; then ‘L’ in L(M0) = {x ∈ M | x < p(M)} indicates that the ‘lower’ part
of M0 (actually of M) is in question. Similarly, U indicates the ‘upper’ and I the
‘incompatible’ part of M.

Note that m ∈ L(M0) iff {x ∈ M0 | m < x} is co-finite or, equivalently, infinite.
Similarly for U(M0) and I(M0). This fact shall be used often in what follows.

Lemma 1.3. (a) Every nonempty subset of U(M0) has a maximal element.
(b) If U(M0) is infinite, then M0 satisfies (MAX).

Dually:
(a′) Every nonempty subset of L(M0) has a minimal element.
(b′) If L(M0) is infinite, then M0 satisfies (MIN).

Proof. (a) Suppose, on the contrary, that a nonempty subset of U(M0) does
not have a maximal element. Then there is m ∈ U(p) such that {x ∈ M0 | m < x}
is infinite and hence (by minimality) co-finite. Then {x ∈ M0 | x < m} is finite,
contradicting (x < m) ∈ p.

(b) Suppose U(M0) is infinite and we prove that (MAX) holds. Let φ(x) define
a nonempty subset D of M0. If D is finite it clearly has a maximal element. Assume
D is infinite. By minimality D must be co-finite and thus E = D ∩ U(M0) 6= ∅.
By (a) E has a maximal element, say d, which is also maximal in D (if d < m and
m ∈ D, then, since (x < d) is in p, (x < m) must be in p, too, i.e., m ∈ U(M0) and
m ∈ E). ¤

We shall describe L(M0), U(M0) and I(M0) in more detail.

Lemma 1.4. If M0 satisfies (MIN), then L(M0) is infinite, directed upwards
(i.e., every finite subset of L(M0) has a strict upper bound in L(M0)) and has no
ascending chains of order type ω + 1.
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Dually, if M0 satisfies (MAX), then U(M0) is infinite, directed upwards and
has no descending chains of order type (ω + 1)∗.

Proof. Suppose that M0 ≺M = (M, <, . . . ) and a ∈ M is a realization of p.
(1) Firstly, we prove that if m1,m2, . . . , mk ∈ L(M0), then there is n ∈ L(M0)

such that m1,m2, . . . ,mk < n.
Note that m1,m2, ..., mk < a and let D(a) = {x ∈ M | m1,m2, ..., mk <x<a}.

By Lemma 1.1 a has a predecessor b realizing p. Then m1,m2, . . . , mk < b, whence
b ∈ D(a) and D(a) 6= ∅ (showing that for any realization c of p D(c) 6= ∅). By
(MIN) D(a) has a minimal element n. But D(n) = ∅ so n is not a realization of p
and from n < a we infer n ∈ L(M0)

(2) Now we show that L(M0) 6= ∅, which combined with (1) implies that there
is an infinite chain of order type ω in L(M0); in particular, L(M0) is infinite.

By (MIN) (in M) the set {x ∈ M | x < a} has a minimal element m. By
Lemma 1.1 m can’t realize p, so m ∈ M0, i.e., L(M0) 6= ∅.

To complete the proof it remains to note that any chain of order-type ω + 1
in L(M0) would, by (1), produce a chain of order-type ω + ω contradicting the
minimality. ¤

Lemma 1.5. If one of U(M0) and L(M0) is finite, then I(M0) is finite, too.

Proof. Without loss of generality, suppose U(M0) is finite. Then M0rU(M0)
is definable and let A be the set of its maximal elements. A is finite by Remark
1.2. By Lemma 1.4 no element of L(M0) is maximal, so A ⊆ I(M0). Thus, for
m ∈ A we have (x < m) /∈ p, and {x ∈ M0 | x ≤ m} is finite. Therefore
B =

⋃
m∈A{x ∈ M0 | x ≤ m} is finite.

We claim that I(M0) ⊆ B. Otherwise, there would exist n ∈ I(M0) with no
maximal elements above it. But the last implies that {x ∈ M0 | n < x} is infinite,
i.e., (n < x) ∈ p and n ∈ L(M0), contradicting n ∈ I(M0). ¤

Proposition 1.2. I(M0) is finite.

Proof. If either of U(M0) or L(M0) is finite we are done by previous lemma,
so suppose that both of them are infinite. By Lemma 1.3 both (MIN) and (MAX)
hold in M0.

The proof goes as follows: assuming that I(M0) is infinite we shall find another
definable ordering relation C on M0, such that: (M0, C, . . . ) is also minimal ordered,
IC(M0) is also infinite, but UC(M0) = ∅, contradicting the previous lemma.

Suppose that I(M0) is infinite. Let M0 ≺ M = (M, <, . . . ) and let a ∈ p(M).
For x ∈ M define Succ(x) to be the set of all immediate successors of x and:

D(x) = {t ∈ M | x < t and (∃y ∈ Succ(x))(y ⊥ t)}.
For x, y ∈ M with D(x), D(y) 6= ∅ define: x C y iff D(y) ⊂ D(x).

We continue with a sequence of claims:
(1) ∅ 6= D(a) ⊂ p(M). In particular {x | D(x) 6= ∅} is co-finite.
We leave to the reader to verify that Succ(a) has at least two elements in which

case Succ(a) ⊆ D(a) and D(a) 6= ∅. To prove the inclusion suppose b ∈ D(a); i.e.,
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there is c ∈ Succ(a) such that a < b and b ⊥ c. By Lemma 1.1 c |= p. Now,
c < U(M0) and b ⊥ c imply b /∈ U(M0). Also a < b implies b /∈ L(M0)∪ I(M0) and
altogether b |= p, completing the proof of (1).

(2) a C b implies b ∈ p(M), i.e., UC(M0) = ∅.
a C b means ∅ 6= D(b) ⊂ D(a) ⊂ p(M) which, by (1), implies D(b)∩ p(M) 6= ∅.

If b ∈ M0 were true, then D(b), being definable in M0, would have to contain the
whole p(M), contradicting D(b) ⊂ D(a) ⊂ p(M).

(3) If m ∈ M0 and m C a, then m ∈ L(M0). Thus LC(M0) ⊆ L(M0).
mCa implies D(m) ⊃ D(a), so by (1) D(m)∩p(M) 6= ∅. But D(m) is definable

in M0 so D(m) ⊇ p(M) implying m < p(M), i.e., m ∈ L(M0).

(4) If m ∈ M0 and m C a, then Succ(m) ∩ I(M0) 6= ∅.
By (3) m ∈ L(M0) so Succ(m) ⊆ L(M0) ∪ I(M0). If Succ(m) ⊂ L(M0), then,

since L(M0) is directed, we have Succ(m) < p(M) and D(m) ∩ p(M) = ∅ which
contradicts m C a.

(5) Conversely, if m ∈ L(M0) and Succ(m) ∩ I(M0) 6= ∅, then m C a.
If i ∈ I(M0)∩ Succ(m), then m < p(M) and i ⊥ p(M) imply p(M) ⊆ D(m) so

m C a by (1).

(6) If m ∈ L(M0), then there exists n ∈ L(M0) such that m ≤ n and n C a.
Thus {x ∈ L(M0) | x C a} is infinite

m ∈ L(M0) implies that {x | m < x} is co-finite, so it must contain some
i ∈ I(M0). Going upwards along a chain connecting m and i we can find along the
way some n ∈ L(M0) having immediate successor in I(M0) which, by (5), implies
n < a.

(7) If m ∈ L(M0) and m C a, then there is n ∈ L(M0) such that m C n C a.
By (3), D(m) ⊇ p(M) is infinite, hence is co-finite by minimality. Let D(m) =

M r {m1,m2, . . . , mk}. Then mi /∈ D(m) ⊃ D(a) implies mi /∈ D(a) 6= ∅ so, by
minimality, the set {x | mi /∈ D(x) 6= ∅} must be co-finite. Therefore, the set
E =

⋂k
i=1{x | mi /∈ D(x) 6= ∅} is co-finite, too. Now, if x ∈ E, then mi /∈ D(x)

so M r {m1,m2, . . . , mk} = D(m) ⊇ D(x) 6= ∅, which is m E x. Further, from (6)
F = {x ∈ L(M0) | xCa} is infinite so E ∩F is infinite, too. Thus for all x ∈ E ∩F
we have m E x C a and the conclusion follows.

To finish the proof of the proposition note that by (7) we have that (M0,C, . . . )
is a minimal ordered structure. By (3) any element from U(M0) ∪ I(M0) is not in
LC(M0), and since by (2) UC(M0) = ∅ we conclude that IC(M0) ⊇ U(M0)∪I(M0).
In particular IC(M0) must be infinite, completing the proof of the proposition. ¤

Summing altogether results of this section we come to a closer description
of (M0, <) in a minimal, ordered structure M0 = (M0, <, . . . ). First of all, by
Proposition 1.2, I(M0) is finite, so after rearranging its elements and possibly
replacing ‘<’, as described in the introduction, we may assume I(M0) = ∅. Now,
we have two cases depending on whether one of L(M0) and U(M0) is finite or not.
In the first case suppose that U(M0) is finite (if L(M0) is finite, reverse the order).
Then after rearranging its elements, we may assume U(M0) = ∅. Thus we have:
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Type(ω) (M0, <) has no maximal elements, it is directed upwards and has
no increasing chains of order type ω + 1.

In the other case both L(M0) and U(M0) are infinite, so by Lemma 1.4 we
have:

Type (ω + ω∗) M0 can be partitioned into L(M0) and U(M0), such that:
(L(M0), <) has no maximal elements, is directed upwards and has no increasing
chains of order type ω + 1 and (U(M0), <) has no minimal elements, it is directed
downwards and has no decreasing chains of order type ω∗ + 1.

2. Model-theoretic properties

We recall Pillay’s notion of semi-isolation. Let N = (N, . . . ) be a first-order
structure, q ∈ S1(∅) and a, b ∈ q(N). Then b is semi-isolated over a (or a semi-
isolates b) if there is a formula φ(x, y) (without parameters) such that N |= φ(a, b)
and whenever N |= φ(a, c), then c ∈ q(N). Semi-isolation is reflexive and transitive.
For transitivity, if a semi-isolates b is witnessed by φ(x, y), and b semi-isolates c
is witnessed by ψ(y, z), it is straightforward to check that (∃y)(φ(x, y) ∧ ψ(y, z))
witnesses that a semi-isolates c.

The following theorem is inspired by [5], see also Proposition 2.1 in [6].

Theorem 2.1. Let M0 = (M0, . . . ) be a minimal structure. Then the following
two conditions are equivalent:

(A) M0 is ordered of Type (ω).
(B) There exists M ÂM0 such that semi-isolation is not symmetric on p(M).

Proof. (A) ⇒ (B). Suppose M0 = (M0, <, . . . ) is ordered by < so that M0 =
L(M0). Let M = (M, <, . . . ) Â M0 be ℵ1-saturated and let a ∈ p(M). Consider
the set C = {tp(m/M0 ∪ {a}) | m ∈ M0} ⊂ S1(M0 ∪ {a}). C is infinite so, by
compactness, it has an accumulation point q ∈ S1(M0 ∪ {a}). Let b ∈ M be a
realization of q. We shall show that a is semi-isolated over b, and that b is not
semi-isolated over a.

Note that (x < a) ∈ tp(m/M0 ∪ {a}) for all m ∈ M0, so (x < a) ∈ q. Thus
M |= b < a and b semi-isolates a via b < y. Further, note that any formula
φ(x, a) (with parameters from M0 ∪ {a}) which is satisfied by b must belong to
some tp(m/M0 ∪ {a}). Therefore, φ(x, a) can not witness that b is semi-isolated
over a, and b is not semi-isolated over a. Semi-isolation is not symmetric on p(M).

(B) ⇒ (A). Suppose M = (M, . . . ) ÂM0 = (M0, . . . ) and a, b ∈ p(M) are such
that a semi-isolates b (witnessed by φ(x, y)) but b does not semi-isolate a. Also, by
replacing φ(x, y) by φ(x, y) ∧ ¬φ(y, x) if necessary, we may assume that φ(x, y) is
asymmetric, i.e., M |= φ(x, y) ⇒ ¬φ(y, x). For x, y ∈ M define:

x < y iff M |= φ(x, y) ∧ (∀t)(φ(y, t) → φ(x, t)).

We will prove a sequence of claims.
(1) < is irreflexive and transitive.
Asymmetry of φ(x, y) implies that < is irreflexive; checking transitivity is

straightforward and is left to the reader.
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(2) a < c implies c |= p, i.e., U(M0) = ∅.
If a < c, then M |= φ(a, c) and, since φ(x, y) witnesses semi-isolation, we have

c |= p.
(3) tp(a/M0 ∪ {b}) is in accumulation point of {tp(m/M0 ∪ {b}) | m ∈ M0}.
Otherwise, there is a formula ψ(x, b) ∈ tp(a/M0 ∪ {b}) (with possible pa-

rameters from M0 not displayed) which is not satisfied by any m ∈ M0. Thus
ψ(x, b) ` p(x) and a is semi-isolated over b; a contradiction.

(4) a < b.
Choose, by (3), a sequence {mk | k ∈ ω} of distinct elements of M0, so that

{tp(mk/M0 ∪ {b}) | k ∈ ω} converges to tp(a/M0 ∪ {b}) (in S1(M0 ∪ {b})). From
φ(x, b) ∈ tp(a/M0 ∪ {b}) we derive that for all but finitely many k ∈ ω φ(x, b) ∈
tp(mk/M0 ∪ {b}), i.e., M |= φ(mk, b) and φ(mk, x) ∈ p. Further, if M |= φ(b, c),
then c |= p, so M |= φ(mk, c) and:

M |= φ(mk, b) ∧ (∀t)(φ(b, t) → φ(mk, t)).

From the convergence of tp(mk/M0 ∪ {b}) to tp(a/M0 ∪ {b}) we get:

M |= φ(a, b) ∧ (∀t)(φ(b, t) → φ(a, t)).

We have just showed that (M0, <) is ordered and that U(M0) = ∅, completing
the proof of the theorem. ¤

Condition (B) in the theorem does not mention any specific order which is
definable in the structure. Therefore if it is satisfied then a minimal, ordered
structure can not be of Type (ω) with respect to one ordering, and of Type (ω+ω∗)
with respect to some other. We get:

Corollary 2.1. If M0 is a minimal ordered structure, then Type of ordering
of (M0, <) does not depend on the particular choice of <.
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