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ON THE DISTRIBUTION OF
M-TUPLES OF B-NUMBERS
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ABSTRACT. In the classical sense, the set B consists of all integers which
can be written as a sum of two perfect squares. In other words, these
are the values attained by norms of integral ideals over the Gaussian field
Q(%). G.J. Rieger (1965) and T. Cochrane, R. E. Dressler (1987) established
bounds for the number of pairs (n,n + h), resp., triples (n,n + 1,n + 2) of
B-numbers up to a large real parameter . The present article generalizes
these investigations into two directions: The result obtained deals with ar-
bitrary M-tuples of arithmetic progressions of positive integers, excluding
the trivial case that one of them is a constant multiple of one of the oth-
ers. Furthermore, the estimate applies to the case of an arbitrary normal
extension K of the rational field instead of Q(z).

1. Introduction. Already E. Landau’s in his classic monograph [4] provided
a proof of the result that the set B of all positive integers which can be written
as a sum of two squares of integers is distributed fairly regularly: It satisfies the
asymptotic formula

(1.1) > 1Nﬁ (c>0).

1<n<Lz, neB

Almost six decades later, G. J. Rieger [9] was the first to deal with the question of
“B-twins”: How frequently does it happen that both n and n + 1 belong to the
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set B? A bit more general, he was able to show that, for any positive integer h and
large real x,

(1.2) Y o< [ (1+%) 10235'
plh

1<n<a
neB, n+heB p=3 (mod 4)

Later on, C. Hooley [2] and K.-H. Indlekofer [3], independently and at about the
same time, showed that this bound is essentially best possible. In 1987, T. Cochrane
and R.E. Dressler [1] extended the question to triples of B-numbers. Replacing
Rieger’s sieve technique by a more recent variant of Selberg’s method, they suc-
ceeded in proving that

(1.3) > 1 < m.

1<n<e
neEB,n+1€B, n+2€B

2. Statement of result. In this article we intend to generalize these estimates
in two different directions: Firstly, instead of pairs or triples we consider M-tuples
of arithmetic progressions (@, n+by), m=1,...,M > 2, where a,, € Z", b, € Z
throughout. Secondly, we deal with an arbitrary number field K which is supposed
to be a normal extension of the rationals of degree [K : Q] = N > 2. Denoting by
Ok the ring of algebraic integers in K, we put

br(n) = {

Our target is then the estimation of the sum

1 if there exists an integral ideal 2 in O of norm N () = n,

0 else.

M
(2.1) S(x) = S(ar,br,....ansbars @) == > ] br(@mn +bm).

1<nLe m=1

Of course, the classic case reported in section 1 is contained in this, by the special
choice K = Q(4), the Gaussian field.

THEOREM. Suppose that (am,bm) € Zt X Z for m = 1,..., M, and, further-

more,
M

H (ambk—akbm) 75 0.

m,k=1
m#k

Then, for large real x,

x
S(al,bl,...,aM,bM; LE) < ')/(al,bl,...,aM,bM) W,

with Ny
’7(a17b17"'7aM7bM):H(1—]—7)7
pEP! p

the finite set of primes P’ = P'(a1,b1,...,an,bar) to be defined below in (4.6). The
< -constant depends on M and the field K, but not on ay,by,...,anr,bas.
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3. Some auxiliary results. Notation. Variables of summation automati-
cally range over all integers satisfying the conditions indicated. p denotes rational
primes throughout, and PP is the set of all rational primes. ‘B stands for prime ideals
in O. For any subset P° C P, we denote by D(P°) the set of all positive inte-
gers whose prime divisors all belong to P°. The constants implied in the symbols
0(+), <, >, etc., may depend throughout on the field K and on M, but not on
a17bb...,an4,bwp

LEMMA 1. For each prime power p®, o > 1, let Q(p®) be a set of distinct
residue classes ¢ modulo p*. Define further

and let

J
Suppose that Q(p*) N Q(p"‘/) = for all primes p and positive integers o # o’. For
real x > 0, let finally

A(x){n€Z+:n§x & né¢ U Q(pa)}.
pEP, a€Zt
Then, for arbitrary real Y > 1,

where

we 2 I G o)

0<d<Y  p>|d

Proof. This is a deep sieve theorem due to A. Selberg [10]. It can be found in
Y. Motohashi [5, p. 11], and also in T. Cochrane and R. E. Dressler [1].

LEMMA 2. Let (¢y)pez+ be a sequence of nonnegative reals, and suppose that
the Dirichlet series

f(s) = Z cnn”?®
n=1

converges for Re(s) > 1. Assume further that, for some real constants A and 3 > 0,

f(s) = (A+o(1)(s—1)7",
as s — 1+. Then, for x — oo,

> % = (g +om)os”

1<n<Lz

Proof. This is a standard Tauberian theorem. For the present formulation,
cf. Cochrane and Dressler [1, Lemma BJ.
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4. Proof of the Theorem. We recall the decomposition laws in a normal
extension K over Q of degree N > 2 (cf. W. Narkiewicz [6, Theorem 7.10]): Every
rational prime p which does not divide the field discriminant disc(K) belongs to
one of the classes

]P’r:{pG]P’Z(P)Z‘ﬁl“"BN/m N(‘Bl):"': N(mN/r):pr}a

where r ranges over the divisors of N, and B1, ..., By, are distinct. As an easy
consequence, if p € P, « € Z7T,

1, if r|a,

(11) o) = {

0, else.
In order to apply Lemma 1, we need a bit of preparation. Let

M
H (ambr, — arby,), p;éM—l},

m, k=1

M
P:—{pEPT:pTHam
m=1

me#k
Pr= |J P;
r|N, r>1
Then we choose
B M
) = U {am VG T b g =1 - 1)
m=1

if p € P¥ and 7 { (a— 1), while Q(p®) := ) in all other cases. Here ~ denotes residue
classes modulo p®, in particular @, ("' is the class which satisfies @,; @, Y =1
mod p®. We summarize the relevant properties of these sets Q(p®), and of the
corresponding sets Q(p®) (see Lemma 1), as follows.

PROPOSITION. Suppose throughout that p € P* and o € Z+.

(i) If pe Px, r 1 (a — 1), then Q(p®) contains exvactly M(p — 1) elements.

(ii) If a positive integer k lies in some Q(p®), it follows that there exists an
m € {1,..., M} such that p®=* || (am k + by,).

(iii) It is impossible that there exist m,n € {1,..., M}, m # n, and a positive
integer k, such that some p € P* divides both an,k + b, and ank + by,.

(iv) If k € Q(p®), it follows that

M
P T (am b+ bn) -

m=1

Consequently, Q(p®) N Q(p®) = 0 for any positive integers a # o
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(v) If k € Q(p*), then

M
I bx(amk+b,) =0.

m=1

As a consequence,

S(x) < #A(x),
where S(x) and A(x) have been defined in (2.1) and Lemma 1, respectively.

Proof of the Proposition. (i) Assume that two of these residue classes would be
equal, say, @y "V (up—1 —by,) and @, "V (vpe—1 —b,), where u,v € {1,...,p —
1}, m,n € {1,..., M}. Multiplying by @, @,, we could conclude that

an(up®t — bm) = am(vpc“_1 —by) mod p<,

or, equivalently, that

(4.2) (anu— am ”u)pa’1 =a, by — am by, mod p<.

Hence p |(ayn by — am by), which is only possible if m = n. This in turn simplifies
(4.2) to
am(u—v)p* =0 mod p%,
thus also u = v. O
(il) If k € Q(p®), there exist j € {1,...,p—1}, m € {1,..., M}, and an integer

q, such that

by +qp™.

Am k= Jpa_
From this the assertion is obvious. O

(iii) Assuming the contrary, we would infer that p divides
(am k =+ b )by, — (an k + bp)b, = (A by — an b))k,

hence p |k, thus p divides also b, and b,,, which contradicts p € P*. (]
(iv) This is immediate from (ii) and (iii). O

(v) By (ii), p* ! || (am k + by,) for some m € {1,..., M}. Recalling that r {
(a—1) (otherwise (p®) would be empty), along with (4.1) and the multiplicativity
of b (+), it is clear that b (amk + by,) = 0. The last inequality is obvious from the
relevant definitions. O

We are now ready to apply Lemma 1. Choosing Y = /z and appealing to part
(v) of the Proposition, we see that

(4.3) S(z) < — .
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To derive a lower bound for Vi, observe that Q(p) = () for every prime p, and
#Q(p?) = M(p—1) for each p € P*. Further, if p ¢ P*, then Q(p’) = 0 throughout.
Therefore, if p € P*, then §(p) = 1 and

1~ M(p—1
0p?) =1 - = #007) = 1 - 2L,

hence
(4.4) L1 _ Mp-l) M

0(p?) 6(p) p*-Mp-1)~ p
Furthermore, for any o > 2,

. M
Mﬁ>1—M@—D§:p”>1—;>O

2<j<a

since M (p — 1) < p? — 1 according to clause (i) of the Proposition, and M = p + 1
is impossible for p € P*. Thus actually 8(p®) > 0 for all primes p and all o € Z™T.
Thus all the terms in the sum Vy are nonnegative, and restricting the summation
to the set

Q= {dzd% s dy € ZJr, y,(dl) #O, dy ED(]P)*)} s

we conclude by (4.4) that

Wwe o Y H( ))2 > MZ(dl)H%:

0<d<Y,deQ pld 0<d1<VY,d1€D(P*) pld1

Mw(dl)
= Z ;u2 (dl) )

dy
0<d1<VY, d1€D(P*)

(4.5)

where w(dy) denotes the number of primes dividing d;. Our next step is to take
care of the primes excluded in the construction of P*. We define
(4.6)

P =P (ay,by,...,an,by) : {pe U]P’ :p | Ham H (ambr — axbm )}

r|N m, k=1
r>1 m;ék
and
M M)
(4.7 v=1(a1,b1,...,anm,bur) = ]___[ (1+ *) = Z 12 (k1) N
pEP’ k1€D(P')

Putting finally
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we readily infer from (4.5) and (4.7) that

Mw(k)
(4.8) YV > > 12 (k) —

kE<VY, keD(Py)

We shall estimate this latter sum by the corresponding generating function

w(k)
fo)= Y i) =TT (1+50)  (Re(s) > ),

keD(Py) pEPy

applying Lemma 2. By hq(s), ha(s),... we will denote functions which are holo-
morphic and bounded, both from above and away from zero, in every half-plane
Re(s) > o¢ > 1/2. We first observe that

(4.9) fs)=hi(s) [T (1 =p7)

pePy

M (Re(s) > 1).

This follows by a standard argument which can be found exposed neatly in G. Tenen-
baum [11, p. 200]. The next step is to consider the Euler product of the Dedekind
zeta-function (x(s): For Re(s) > 1,

(o) =TT =N ™) =hats) [] ( [Ha —p—T3>‘N”) _

L r|N *peP.
=hs(s) [T (1—p)7".
pEPy
Therefore,
M
((Ef((:))))M/N = hy(s) I_PI (1- p_s)_M (Re(s) > 1).
Comparing this with (4.9), we arrive at
(c(sn™
f(s) =hs(s) ——~.
(s) = hs(s) (e (3) ™™

From this it is evident that, as s — 1+,
—M/N _
F(s) ~ hs(1) i (s = 1) MM,

where py denotes the residue of (i (s) at s = 1. Lemma 2 now immediately implies
that

2 Mw(k) M—-M/N M—-M/N
Y. #ER) = > (logY)M MV s (loga) MY,
k<Y, keD(Py)

in view of our earlier choice Y = y/x. Combing this with (4.3) and (4.8), we
complete the proof of our Theorem. [l
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5. Concluding remarks. 1. Taking more care and imposing special condi-
tions on the numbers aq, b1, ..., an, bys, one could improve slightly on the factor ~y
in our estimate. (Observe that Rieger’s bound (1.2) is in fact a bit sharper than our
general result.) But it is easy to see that 7 is rather small anyway: By elementary
facts about the Euler totient function (see K. Prachar [8, p. 24-28]),

1
’Y(alablv"waMubM) < H (1_5> <<(10g10gx)M7
pel’

under the very mild restriction that, for some constant ¢ > 0,

max (am, [bm|) < exp((logz)).

.

2. As far as the asymptotics (1.1) is concerned, the generalization to an ar-
bitrary normal extension K of Q can be found in W. Narkiewicz’ monograph [6,
p. 361, Prop. 7.11], where it is attributed to E. Wirsing. For this question, the case
of non-normal extensions K has been dealt with by R. W.K. Odoni [7]. It may
be interesting to extend our present problem to the non-normal case as well. We
might return to this at a later occasion.
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