TWO EXERCISES CONCERNING THE DEGREE OF THE PRODUCT OF ALGEBRAIC NUMBERS

Artūras Dubickas

Communicated by Aleksandar Ivić

Abstract

Let k be a field, and let α and β be two algebraic numbers over k of degree d and ℓ, respectively. We find necessary and sufficient conditions under which $\operatorname{deg}(\alpha \beta)=d \ell$ and $\operatorname{deg}(\alpha+\beta)=d \ell$. Since these conditions are quite difficult to check, we also state a simple sufficient condition for such equalities to occur.

Let k be a field, and let k^{a} be an algebraic closure of k. Suppose that $\alpha \in k^{\mathrm{a}}$ is of degree d over k. If $\beta \in k^{\text {a }}$ has degree ℓ over k then $[k(\alpha, \beta): k] \leqslant d \ell$, so any $\gamma \in k(\alpha, \beta)$ has degree at most $d \ell$ over k. In particular, $\alpha \beta$ and $\alpha+\beta$ both have degree at most $d \ell$ over k. Furthermore, for a 'generic' β of degree ℓ we have equality, namely, $\alpha \beta$ and $\alpha+\beta$ are both of degree $d \ell$. For some problems concerning linear forms in conjugate algebraic numbers and the Mahler measure of an algebraic number (over \mathbb{Q}) we have $\alpha \in k^{\mathrm{a}}$ satisfying certain conditions (see, e.g., [1], [3]) and need to enlarge the set of such numbers by either multiplying or by adding a 'generic' β (of degree ℓ) in the sense that $\alpha \beta$ (or $\alpha+\beta$) has 'generic' degree $d \ell$. How one can be sure that a particular β have the required properties?

In this note we state some simple sufficient, necessary and necessary and sufficient conditions on β in order that $\alpha \beta$ (or $\alpha+\beta$) is of maximal possible degree. We begin with the following necessary and sufficient condition.

Theorem 1. Suppose that $\alpha \in k^{\mathrm{a}}$ is of degree d over k and $\beta \in k^{\mathrm{a}}$ is of degree ℓ over k. Then $\alpha \beta$ is of degree d $\begin{aligned} & \text { over } k \text { if and only if } \beta \text { is of degree } \ell \text { over } k(\alpha), ~(\alpha \beta)\end{aligned}$ and $\alpha \in k(\alpha \beta)$. Similarly, $\alpha+\beta$ is of degree d€ over k if and only if β is of degree ℓ over $k(\alpha)$ and $\alpha \in k(\alpha+\beta)$.

Proof. The proof follows easily from the following standard diagram:

[^0]

Indeed, since

$$
[k(\alpha \beta): k] \leqslant[k(\alpha, \beta): k]=[k(\alpha, \beta): k(\alpha)][k(\alpha): k]=[k(\alpha, \beta): k(\alpha)] d \leqslant d \ell
$$

we have $[k(\alpha \beta): k]=d \ell$ if and only if $k(\alpha, \beta)=k(\alpha \beta)$ and $[k(\alpha, \beta): k(\alpha)]=\ell$. Of course, $k(\alpha, \beta)=k(\alpha \beta)$ implies that $\alpha \in k(\alpha \beta)$. But then also $\beta \in k(\alpha \beta)$ and so $\alpha \in k(\alpha \beta)$ implies that $k(\alpha, \beta)=k(\alpha \beta)$ too. Consequently, the conditions $k(\alpha, \beta)=k(\alpha \beta)$ and $\alpha \in k(\alpha \beta)$ are equivalent. On the other hand, $[k(\alpha, \beta):$ $k(\alpha)]=\ell=[k(\beta): k]$ if and only if the minimal polynomial of β over k is irreducible over the field $k(\alpha)$, that is β has degree ℓ over $k(\alpha)$. This proves the theorem for $\alpha \beta$. The proof of the theorem for the sum $\alpha+\beta$ is precisely the same.

Set $E=k(\alpha) \cap k(\beta)$ (see the diagram). The degree of β over E is equal to the degree of β over $k(\alpha)$ (see, for instance, [2]). So if E is a proper extension of k then the degree of β over $k(\alpha)$ is smaller than ℓ. Consequently, Theorem 1 implies that $E=k(\alpha) \cap k(\beta)=k$ is a necessary condition for $\operatorname{deg}(\alpha \beta)=d \ell$ (and for $\operatorname{deg}(\alpha+\beta)=d \ell)$ to occur.

Unfortunately, the condition $\alpha \in k(\alpha \beta)$ of Theorem 1 is quite difficult to check. This raises the question on whether there is a simple method of finding many different β satisfying $\operatorname{deg}(\alpha \beta)=d \operatorname{deg} \beta$. The next theorem gives a sufficient condition for this equality to occur.

Theorem 2. Suppose that α is an algebraic number of degree d over a field k of characteristic zero, and let K be a normal closure of $k(\alpha)$ over k. If $L=k(\beta)$ is a normal extension of k of degree ℓ and $L \cap K=k$ then $\operatorname{deg}(\alpha+\beta)=d \ell$. If, in addition, β is torsion-free then $\operatorname{deg}(\alpha \beta)=d \ell$.

Recall that (as in [3]) β is called torsion-free if β^{\prime} / β is not a root of unity for any $\beta^{\prime} \neq \beta$, where β^{\prime} and β are conjugate over k. The condition on β to be torsion-free is necessary in the multiplicative part of Theorem 2. Indeed, the example $k=\mathbb{Q}, \alpha=\sqrt{2}, \beta=\sqrt{3}$ with $d=\ell=2$ and $\mathbb{Q}(\sqrt{2}) \cap \mathbb{Q}(\sqrt{3})=\mathbb{Q}$ shows that $\alpha \beta=\sqrt{6}$ is of degree 2 over \mathbb{Q}, although $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ and $\mathbb{Q}(\sqrt{3}) / \mathbb{Q}$ are normal extensions and $d \ell=4$. Of course, if β is not torsion-free, we can add to it an element $k_{0} \in k$ and consider $\beta_{0}=\beta+k_{0}$ instead. Since $L=k(\beta)=k\left(\beta_{0}\right)$ for any $k_{0} \in k$, it is sufficient to take k_{0} for which $\beta_{0}=\beta+k_{0}$ is torsion-free. (Below, we will show that such k_{0} exists: see Theorem 3.) In the above example we can take $k_{0}=1$. Then $\beta_{0}=1+\sqrt{3}$ and $\alpha \beta_{0}=\sqrt{6}+\sqrt{2}$ is of degree 4 over \mathbb{Q}.

Proof of Theorem 2. The conditions of the theorem imply that $L K$ is a Galois extension of k (see [4] for all standard facts about Galois extensions which are used here). Therefore $\alpha^{\prime}+\beta^{\prime}$ is conjugate to $\alpha+\beta$ for arbitrary pair $\alpha^{\prime}, \beta^{\prime}$,
where α^{\prime} and α are conjugate over k and β^{\prime} is conjugate to β over k. Hence $\operatorname{deg}(\alpha+\beta) \leqslant d \ell$ with inequality being strict if and only if $\alpha+\beta=\alpha^{\prime}+\beta^{\prime}$ with certain $\alpha^{\prime} \neq \alpha$ and $\beta^{\prime} \neq \beta$. Assume that $\alpha+\beta=\alpha^{\prime}+\beta^{\prime}$. Then $L \cap K=k$ implies that $\gamma:=\alpha-\alpha^{\prime}=\beta^{\prime}-\beta \in k$, because $\alpha^{\prime} \in K, \beta^{\prime} \in L$. Let σ be an automorphism of K taking α to α^{\prime}. Suppose that σ is of order $t>1$, so that $\sigma^{t}(\alpha)=\alpha$. Then by adding t equalities $\gamma=\sigma^{j}(\alpha)-\sigma^{j+1}(\alpha)$ corresponding to $j=0,1, \ldots, t-1$ we obtain that $t \gamma=0$. Since char $k=0$, this can only occur if $\gamma=0$, giving $\alpha^{\prime}=\alpha$ and $\beta^{\prime}=\beta$, a contradiction.

Similarly, $\operatorname{deg}(\alpha \beta) \leqslant d \ell$, where $\operatorname{deg}(\alpha \beta)<d \ell$ if and only if $\alpha \beta=\alpha^{\prime} \beta^{\prime}$ with certain $\alpha^{\prime} \neq \alpha$ and $\beta^{\prime} \neq \beta$. Now, a similar argument shows that $\gamma:=\beta^{\prime} / \beta=\alpha / \alpha^{\prime}$ can lie in k, but only if γ is a root of unity (see also [5]). More precisely, if $\sigma: \beta \rightarrow \beta^{\prime}$ is of order t then

$$
\left(\frac{\beta^{\prime}}{\beta}\right)^{t}=\gamma^{t}=\frac{\sigma(\beta)}{\beta} \frac{\sigma^{2}(\beta)}{\sigma(\beta)} \cdots \frac{\beta}{\sigma^{t-1}(\beta)}=1
$$

so β is not torsion-free, a contradiction. This proves Theorem 2 .
We will conclude by showing the following.
Theorem 3. For each $\beta \in k^{\mathrm{a}}$, where k is a field of characteristic zero, there is a $k_{0} \in k$ such that $\beta+k_{0}$ is torsion-free.

Proof. Suppose that there is a $\beta \in k^{\mathrm{a}}$ such that $\beta+k_{0}$ is not torsion-free for each $k_{0} \in \mathbb{Z}$, where \mathbb{Z} is a prime subfield of k. Then, for some fixed β^{\prime} (which is conjugate to β over k and $\left.\beta^{\prime} \neq \beta\right), \omega:=\left(\beta^{\prime}+k_{0}\right) /\left(\beta+k_{0}\right)$ is a root of unity for infinitely many $k_{0} \in \mathbb{Z}$. By Corollary 1.3 of [2], the degree of ω over k is bounded, so there is an absolute constant $n_{0} \in \mathbb{N}, n_{0}>1$, and infinitely many $k_{0} \in \mathbb{Z}$ for which $\left(\beta^{\prime}+k_{0}\right)^{n_{0}}=\left(\beta+k_{0}\right)^{n_{0}}$. Subtracting the left-hand side of this equality from its right-hand side and dividing by $\beta-\beta^{\prime}$ we obtain that

$$
\xi_{0}+\xi_{1} k_{0}+\cdots+\xi_{n_{0}-1} k_{0}^{n_{0}-1}=0
$$

where the coefficients $\xi_{j}=\binom{n_{0}}{j}\left(\beta^{n_{0}-j}-\beta^{n_{0}-j}\right) /\left(\beta-\beta^{\prime}\right) \in k\left(\beta, \beta^{\prime}\right), j=0,1, \ldots$, $n_{0}-1$, do not depend on k_{0}. Now, by taking any n_{0} distinct elements k_{0} (among infinitely many) in order that a respective determinant would be non-zero, we deduce that $\xi_{0}=\xi_{1}=\cdots=\xi_{n_{0}-1}=0$. However, $\xi_{n_{0}-1}=n_{0} \neq 0$, a contradiction.

This research was partially supported by the Lithuanian State Science and Studies Foundation and by INTAS grant no. 03-51-5070.

References

[1] J. D. Dixon and A. Dubickas, The values of Mahler measures, Mathematika, (to appear).
[2] P. Drungilas and A. Dubickas, On subfields of a field generated by two conjugate algebraic numbers, Proc. Edinburgh Math. Soc. 47 (2002), 119-123.
[3] A. Dubickas, On the degree of a linear form in conjugates of an algebraic number, Illinois J. Math. 46 (2002), 571-585.
[4] S. Lang, Algebra, 3rd ed., Graduate texts in mathematics 211, Springer-Verlag, New York, Berlin, 2002.
[5] C. J. Smyth, Conjugate algebraic numbers on conics, Acta Arith. 40 (1982), 333-346.
Department of Mathematics and Informatics
(Received 0108 2004)
Vilnius University
Naugarduko 24
Vilnius 03225, Lithuania
arturas.dubickas@maf.vu.lt

[^0]: 2000 Mathematics Subject Classification: 11R04, 11R32, 12E99.
 Key words and phrases: field, algebraic number, degree, root of unity.

