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SYMMETRIES OF CONSERVATION LAWS
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Abstract. We apply techniques of symmetry group analysis in solving two
systems of conservation laws: a model of two strictly hyperbolic conservation
laws and a zero pressure gas dynamics model, which both have no global so-
lution, but whose solution consists of singular shock waves. We show that
these shock waves are solutions in the sense of 1-strong association. Also, we
compute all projectable symmetry groups and show that they are 1-strongly
associated, hence transform existing solutions in the sense of 1-strong associ-
ation into other solutions.

The concept of classical symmetry groups offers a large number of possibilities
in studying differential equations, in particular in constructing explicit solutions to
linear and nonlinear differential equations or determining and classifying invariance
properties [16, 17]. In various problems of mathematical physics the classical
theory turns out to be insufficient, due to singular objects (like distributions or
discontinuous nonlinearities) which can occur in the equation or equations with
solutions in a weak sense, i.e., weak solutions (distributional, generalized or in
the sense of association). Therefore, the methods of classical symmetry group
analysis of differential equations have been extended to linear equations in the
class of distributions [1, 2], as well as to equations involving generalized functions
[5, 6, 10, 11, 9].

The aim of this paper is to apply techniques of symmetry group analysis in
solving two systems of differential equations given in the form of conservation laws.
The paper is divided into two parts. Section 1 provides a brief overview of the basic
definitions and theorems which are going to be used for studying conservation
laws. We start by recalling some facts on symmetry group analysis, which are
in detail carried out in [16] (see also [17]). Then we turn to symmetries in the
generalized setting, precisely to associated ones. As we will see later, the reason
for this lies in the fact that the solutions of the conservation laws we consider
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are, under certain assumptions, shock waves. Lack of space prevents us from also
giving a short introduction to generalized functions. Therefore, for the notations
and properties of the Colombeau algebra of generalized functions we recommend
[6, 9] or [15]; in particular, definitions of generalized step-functions, splitted delta
functions and m− and m′−singular delta functions are provided in [13]. We close
the introductory part by a short overview of conservation laws. Based on [3, 4, 7,
12, 18] we fix notations and present the general solution of the Riemann problem.
Motivated by [8] and [13] we proceed in section 2 by investigating two systems of
conservation laws: a model of two strictly hyperbolic conservation laws which is
genuinely nonlinear but for which the Riemann problem has no global solution and
a zero pressure gas dynamics model which is linearly degenerative but for which
the Riemann problem also does not have global solutions. In both cases singular
solutions appear, called singular shock waves. We prove that these solutions are
solutions in the sense of 1-strong association. After computing all projectable
symmetry groups of these systems we show that they are 1-strongly associated,
hence transform existing solutions (given in [8] and [13]) into other solutions.

1. Introduction

1.1. Symmetry groups of differential equations. Let S be a system of
differential equations:

∆ν(x, u) = 0, 1 6 ν 6 l.

Denote by X = Rp and U = Rq the spaces of independent and dependent variables
with coordinates x = (x1, x2, . . . , xp) and u = (u1, u2, . . . , uq) respectively. Also,
denote by M an open subset of X ×U . Identify a function u = f(x) with its graph
Γf = {(x, f(x)) : x ∈ Ω} ⊂ X × U, where Ω ⊂ X is the domain of f . Let G be
a local group of transformations acting on M . The transform of Γf by g ∈ G is
defined by g ·Γf = {(x̃, ũ) = g · (x, u) : (x, u) ∈ Γf}. In local coordinates this action
is given by g · f =

(
Φg ◦ (idX × f)

) ◦ (
Ξg ◦ (idX × f)

)−1
, where Ξg and Φg are

smooth function on M , and idX is the identity mapping on X. Supposing that Ξg

does not depend on the dependent variables we get a projectable action of g on f ,
i.e.,

(1) g · f =
(
Φg ◦ (idX × f)

) ◦ Ξ−1
g .

Definition 1.1. The symmetry group of the system S is a local transformation
group G acting on the space of independent and dependent variables with the
property that whenever u = f(x) is a solution of the system and g · f is defined,
g ∈ G, then u = g · f is also a solution of the system.

The n-th prolonged or n-jet space X × U (n) is a space which represents all
independent variables, dependent variables and all different partial derivatives of
dependent variables up to the order n. For the construction of the n-th prolonged
space we refer to [16]. Write M (n) for a subset of n-jet space X×U (n). An arbitrary
point in U (n) will be denoted by u(n) and its components by uα

J , where 1 6 α 6 q,
while J runs over the set of all unordered multi-indices J = (j1, . . . , jk), 1 6 jk 6 p,
0 6 k 6 n.
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The n-th prolongation of a function f : X → U , denoted by pr(n) f , is a
function from X to U (n), which maps x into (∂Jfα(x))α,J , 1 6 α 6 q, 0 6 |J | 6 n.

The n-th prolongation of a group G which acts on M ⊂ X × U , pr(n) G, is
again a local group of transformations which acts on M (n) such that it transforms
the derivatives of a smooth function u = f(x) into the corresponding derivatives of
the transformed function ũ = f̃(x̃). For the precise definition see [16].

The n-th prolongation of a vector field v on M , pr(n) v, is a vector field on the
n-jet space M (n) with the following property:

pr(n) v|(x,u(n)) =
d

dη

∣∣∣
η=0

pr(n)(exp(ηv))(x, u(n)),

where exp(ηv) is the corresponding local one-parameter group generated by v. If

v =
p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα

then we calculate the n-th prolongation of v using the formula:

(2) pr(n) v = v +
q∑

α=1

∑

J

φJ
α(x, u(n))

∂

∂uα
J

,

where the coefficients φJ
α(x, u(n)) are given by

(3) φJ
α(x, u(n)) = DJ

(
φα −

p∑

i=1

ξiuα
i

)
+

p∑

i=1

ξiuα
J,i,

uα
i = ∂uα/∂xi, uα

J,i = ∂uα
J/∂xi and DJ denotes a total differential.

Then the infinitesimal criterion for a system of differential equations reads:

Theorem 1.2. Let

(4) ∆ν(x, u(n)) = 0, ν = 1, . . . , l

be a system of differential equations of a maximal rank (meaning that the corre-
sponding Jacobian matrix J∆(x, u(n)) = (∂∆ν/∂xi, ∂∆ν/∂uα

J ) is of rank l on the set
of all solutions of S, S∆). If G is a local transformation group acting on M ⊂ X×U
and

(5) pr(n) v(∆ν(x, u(n))) = 0, ν = 1, . . . , l, whenever ∆(x, u(n)) = 0,

for every infinitesimal generator v of G then G is a symmetry group of (4).

The condition (5) from this theorem will also be necessary if we additionaly
suppose that the system (4) is locally solvable, i.e., at each point (x0, u

(n)
0 ) ∈ S∆

there exists a smooth solution u = f(x) of the system, defined in a neighborhood of
x0, which has the prescribed “initial conditions” u

(n)
0 = pr(n) f(x0). (We say that

a system of differential equations is nondegenerate if at every point of the solution
set it is both locally solvable and of maximal rank.)

For later use, we mention here a result which is a consequence of the maximal
rank condition (imposed on the system (4) in the above theorem). Namely, under
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the conditions of Theorem 1.2, the infinitesimal criterion (5) can be replaced by
the equivalent condition

(6) pr(n) v(∆ν(x, u(n))) =
l∑

µ=1

Qνµ∆µ(x, u(n)), ν = 1, . . . , l,

for functions Qνµ, µ, ν = 1, . . . , l to be determined.
We finish this short introduction into symmetry groups of differential equations

by a description of a procedure for calculating symmetry groups of a given system
S. The procedure consists of the following steps:

1) Write the vector field (i.e., infinitesimal generator) in the most general form:

v(x, u) =
p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
,

where ξi and φα are functions which should be calculated.
2) According to (2) and (3) calculate the corresponding prolongation of v.
3) Then apply the infinitesimal criterion (5) and equate pr(n) v(∆ν(x, u(n)))

with zero. Since those equations must hold on S∆, eliminate the dependence
of derivatives of u by the equations from the system. After that we have the
equations which have to be satisfied with respect to x, u and the remaining
partial derivatives of u.

4) After solving these equations we obtain a certain number of partial differential
equations for ξi and φα.

5) Compute the ξi and φα from them, thereby computing vector fields v which
generate a Lie algebra of infinitesimal symmetries.

6) At the end find the corresponding one-parameter symmetry groups as the
flows of the infinitesimal generators calculated in the previous step.

1.2. Symmetry groups of weak solutions. Next, we look for the symme-
tries which transform weak solutions of the system of PDEs

(7) ∆ν(x, u(n)) = 0, 1 6 ν 6 l,

into other weak solutions, mainly associated solutions to (7) into other associated
solutions to (7) (hence the system (7) should be replaced by ∆ν(x, u(n)) ≈ 0).
Such a symmetry group is called symmetry group in the sense of association or
associated symmetry group for short. The symmetry groups we are interested in
are projectable in order to avoid the problem of inverting Colombeau functions.
Thus unless explicitly stated otherwise, all symmetry groups are assumed to be
projectable. Beside this, we need some more assumptions on G (cf. [5]). We
suppose that a local transformation group G is slowly increasing, uniformly for x
in compact sets, and analogously for the mapping u(n) 7→ ∆(x, u(n)).

Look at the system

(8) ∆ν(x, u(n)) ≈ 0, ν = 1, . . . , l.

We recall the following definitions from [5]:
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Definition 1.3. u = (u1, . . . , uq) ∈ G(Ω)q is a solution of (8) and also associ-
ated solution to (7) if u = (u1, . . . , uq) has a representative (u1

ε, . . . , u
q
ε)ε ∈ EM (Ω)q

such that for each test function ϕ ∈ D(Ω)

(9)
∫

∆ν(x, pr(n) uε(x))ϕ(x) dx → 0 as ε → 0, 1 6 ν 6 l.

The set of all associated solutions to (7) is denoted by A∆ and moreover, the
set of all u ∈ (G∞)q which satisfies (9) with AB∆. The symmetry group G of (7)
is called A-symmetry group if for every u ∈ A and every gη ∈ G it follows that
gηu ∈ A, whenever gηu is defined. Beside solution in the sense of association we
can also define a solution in the sense of strong association.

Definition 1.4. Let k ∈ N0. Then u = (u1, . . . , uq) ∈ A∆(Ω) (resp. u ∈
AB∆(Ω)) is called k-strongly associated or

k≈-associated solution to the system (7) if
there exists a representative (u1

ε , . . . , u
q
ε)ε ∈ EM (Ω)q such that for each B ⊆ C∞c (Ω)

which is bounded in Ck
c (Ω) we have

lim
ε→0

sup
ϕ∈B

∣∣∣
∫

∆ν(x, pr(n) uε(x))ϕ(x) dx
∣∣∣ = 0, 1 6 ν 6 l.

The space of all k-strongly associated solutions to (7) is denoted by ASk
∆.

Also, ABSk
∆ := ASk

∆ ∩ G∞. The main role in the calculation of associated, resp.
k-strongly associated symmetry groups is played by the theorem which is based
on the factorization property of the system, derived in [6]. In matrix form this
property is given by

(10) ∆
(
Ξη(x, u(x)),pr(n)(gηu)(Ξη(x, u(x)))

)
=Q(η, x, pr(n) u(x))∆(x, pr(n) u(x)),

where Q : W → Rl2 and W is an open subset of (−η0, η0)×M (n) with {0}×M (n) ⊆
W.

Theorem 1.5. Let G be a slowly increasing symmetry group of the system (7)
which admits a global factorization of the form (10). Then

(i) if Q depends only on η, x and u then G is also an ABS∆-symmetry group
of (7);

(ii) if Q depends only on η and x then G is also an ASk
∆-symmetry group of

(7), for each k > 0. Moreover, G is in this case an associated symmetry
group of (7) as well.

1.3. Systems of conservation laws. We look at a system of conservation
laws in one space dimension:

u1
t + (f1(u1, . . . , un))x = 0

...

un
t + (fn(u1, . . . , un))x = 0,

or written in a shorter (matrix) form:

(11) ut + (f(u))x = 0,
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where t > 0, x ∈ R, u = (u1, . . . , un) is the conserved density and f(u) =
(f1, . . . , fn) is the flux. Differentiating (11) we obtain a quasilinear system

(12) ut + A(u)ux = 0,

where A(u) = Df(u) is the Jacobian matrix of f . The systems (11) and (12) are
equivalent for all smooth solutions u. Otherwise, if u has a jump, the left hand
side of (12) contains a product of a discontinuous function with a distributional
derivative, while (11) is still well defined in the distributional sense.

The eigenvalues of the matrix A(u) determine the system of conservation laws
in the following way:

Definition 1.6. The system of conservation laws is hyperbolic, resp. strictly
hyperbolic, if all eigenvalues of the matrix A(u) are real, resp. real and different.

Suppose that the system (11) is strictly hyperbolic and denote by λ1(u), . . . ,
λn(u) the eigenvalues of A(u) with λ1(u) < · · · < λn(u). Next, denote by l1, . . . , ln
and r1, . . . , rn the corresponding left and right eigenvectors. The eigenvalue λi of A
is also called the i-th characteristic speed and the pair (λi, ri) the i-th characteristic
field of (11).

Definition 1.7. The i-th characteristic field of the system (11) is called gen-
uinely nonlinear if Dλi(u) ·ri(u) 6= 0, for all u. The i-th characteristic field is called
linearly degenerate if Dλi(u) · ri(u) = 0, for all u.

If the solution of (11) is a piecewise smooth function u = u(t, x) having a
discontinuity across a line x = γ(t) with u± = limx→γ(t)± u(t, x), then it satisfies
(12) outside the γ, while along the line of discontinuities the Rankine–Hugoniot
conditions holds: (u+ − u−)γ̇ = f(u+)− f(u−).

In order to have a unique solution we must require some additional conditions,
known as entropy conditions. One of the most useful is the Lax condition, which
says that a shock connecting the states u− and u+, travelling with speed γ̇ =
λi(u−, u+) (λi(u−, u+) is an eigenvalue of the averaged matrix A(u−, u+), cf. [3])
is admissible if

(13) λi(u−) > λi(u−, u+) > λi(u+).

Now we define two types of curves: fix a state u0 ∈ Rn. Let ri(u) be the i-th
eigenvector of A(u). The i-th rarefaction curve through u0 is the integral curve of
the vector field ri and is denoted by σ 7→ Ri(σ)(u0). The i-th shock curve through
u0 is the curve of states u which can be connected to the right of u0 by an i-shock,
satisfying the Rankine–Hugoniot conditions. It is denoted by σ 7→ Si(σ)(u0). The
i-th rarefaction and shock curve are tangent to the ri(u) at u0.

Next we study the Riemann problem

(14)

ut + f(u)x = 0

u(0, x) =

{
u−, x < 0,

u+, x > 0.
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Under the assumption that the system is strictly hyperbolic with smooth co-
efficients and each i-th characteristic field is either genuinely nonlinear or linearly
degenerate, there exist three special cases:

(1) Centered rarefaction waves: the i-th characteristic field is genuinely non-
linear and u+ lies on the positive i-rarefaction curve through u−, i.e.,
u+ = Ri(σ)(u−) for some σ > 0. Then the solution of (14) is the centered
rarefaction wave:

u(t, x) =





u−, x < tλi(u−),
Ri(s)(u−), x = tλi(s), s ∈ [0, σ]
u+, x > tλi(u+).

(2) Shocks: again the i-th characteristic field is genuinely nonlinear, but this
time the state u+ lies on the i-th shock curve through u−, i.e., u+ =
Si(σ)(u−). Denote the Rankine–Hugoniot speed of the shock λi(u−, u+)
by λ. Then the solution of (14) is the shock

(15) u(t, x) =

{
u−, x < λt,

u+, x > λt.

(3) Contact discontinuities: the i-th characteristic field is linearly degenerate
and u+ lies on the i-th rarefaction curve through u−, i.e., u+ = Ri(σ)(u−)
for some σ. Then the function (15) is again a solution, but this time called
the contact discontinuity.

The parameter σ, for which u+ = Ri(σ)(u−) or u+ = Si(σ)(u−), is called the
wave strength. Therefore, if u+ lies on the rarefaction or shock curve the solution
of the Riemann problem (14) is one of the elementary waves- a centered rarefaction,
a shock or a contact discontinuity. Otherwise, for u+ sufficiently close to u−, the
Riemann problem (14) can be decomposed in n auxiliary Riemann problems, which
can be solved by an elementary wave. Piecing together those solutions we obtain a
solution of the initial Riemann problem (14).

2. Symmetry Groups of the Systems of Conservation Laws

After we gave the brief overview of the notation and results from symmetry
group analysis (classical and in the generalized setting) and conservation laws, we
turn our attention to concrete systems of conservation laws. As we have just seen,
a system of conservation laws is a system of first order partial differential equa-
tions. We introduced symmetry groups of systems of differential equations as local
transformation groups which act on the space of independent and dependent vari-
ables, transforming the solution of the system to other solutions. Also, we defined
associated and k-strongly associated symmetry groups. The aim of this section is
to verify the results given in the introduction in two examples of conservation laws.
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2.1. A model system of two strictly hyperbolic laws. The first system
we consider is

ut + (u2 − v)x = 0

vt +
(1

3
u3 − u

)
x

= 0
(16)

with initial conditions:

(17) u(x, 0) =
{

u0, x < 0
u1, x > 0 v(x, 0) =

{
v0, x < 0
v1, x > 0.

A motivation for studying this system arises from some physical models like a
model for a nonlinear elastic system or a model for the evolution of ion-acoustic
waves. We start by calculating symmetry groups of the system (16), using the
procedure described in the introduction.

1) Since v denotes one of the dependent variables, denote the infinitesimal
generator by w:

w = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t + φ(x, t, u, v)∂u + ψ(x, t, u, v)∂v.

2) From (2) we get the first prolongation of this vector field

pr(1) w = w + φx∂ux + φt∂ut + ψx∂vx + ψt∂vt ,

and by (3) we calculate

(18)

φx = φx + φuux + φvvx − ξxux− ξuu2
x − ξvuxvx− τxut− τuuxut− τvutvx

φt = φt + φuut + φvvt − ξtux − ξuuxut − ξvuxvt − τtut − τuu2
t − τvutvt

ψx = ψx + ψuux + ψvvx− ξxvx − ξuuxvx− ξvv2
x − τxvt − τuuxvt − τvvxvt

ψt = ψt + ψuut + ψvvt − ξtvx − ξuutvx − ξvvxvt − τtvt − τuutvt − τvv2
t

3) Now we have

∆1(x, t, u, v, ux, vx, ut, vt) = ut + 2uux − vx

∆2(x, t, u, v, ux, vx, ut, vt) = vt + u2ux − ux,

therefore we need to solve the system

pr(1) w(∆1) = φt + 2φux + 2φxu− ψx = 0

pr(1) w(∆2) = ψt + 2φuux + φxu2 − φx = 0,

whenever ut = −2uux + vx and vt = −u2ux + ux. Inserting (18) in these equations
and replacing ut by −2uux + vx and vt by −u2ux + ux, whenever they appear, we
arrive at

φt + φu(−2uux+vx) + φv(−u2ux+ux)− ξtux − ξuux(−2uux+vx)

− ξvux(−u2ux+ux)− τt(−2uux+vx)− τu(−2uux+vx)2

− τv(−2uux+vx)(−u2ux+ux) + 2φux + 2u
[
φx + φuux + φvvx

− ξxux − ξuu2
x − ξvuxvx − τx(−2uux+vx)− τuux(−2uux+vx)

− τv(−2uux+vx)vx

]− [
ψx + ψuux + ψvvx − ξxvx − ξuuxvx

− ξvv2
x − τx(−u2ux+ux)− τuux(−u2ux+ux)− τvvx(−u2ux+ux)

]
= 0
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ψt + ψu(−2uux + vx) + ψv(−u2ux + ux)− ξtvx − ξu(−2uux + vx)vx

− ξvvx(−u2ux + ux)− τt(−u2ux + ux)− τu(−2uux + vx)(−u2ux + ux)

− τv(−u2ux + ux)2 + 2φuux + (u2 − 1)
[
φx + φuux + φvvx − ξxux − ξuu2

x

− ξvuxvx − τx(−2uux + vx)− τuux(−2uux + vx)− τv(−2uux + vx)vx

]
= 0.

4) Apparently, solving this system is quite complicated. Hence, we are going to
look only for projectable symmetry groups. So, assume that ξ and τ only depend
on x and t. Then we have

φt − 2φuuux + φuvx − φvu2uxφvux − ξtux + 2τtuux − τtvx

+ 2φux + 2φxu + 2φuuux + 2φvuvx − 2ξxuux + 4τxu2ux

− 2τxuvx − ψx − ψuux − ψvvx + ξxvx − τxu2ux + τxux = 0

ψt − 2ψuuux + ψuvx − ψvu2ux + ψvux − ξtvx + τtu
2ux − τtux

+ 2φuux + φxu2 + φuu2ux + φvu2vx − ξxu2ux + 2τxu3ux

− τxu2vx − φx − φuux − φvvx + ξxux − 2τxuux + τxvx = 0.

These equations are in fact polynomials of free variables x, t, u, v, ux and vx. The
solution will be found by looking at their coefficients on the left and right hand
side of the equations. Since the functions φ, ψ and their derivatives depend on
x, t, u and v we equate the coefficients of 1, ux and vx to 0. Then we arrive at the
following equivalent system:

φt − ψx + 2uφx = 0

2φ + φv − ψu − ξt + τx + u(2τt − 2ξx) + u2(3τx − φv) = 0

φu − ψv + ξx − τt + u(2φv − 2τx) = 0

ψt − φx + u2φx = 0

ψv − φu − τt + ξx + u(2φ− 2ψu − 2τx) + u2(φu − ψv − ξx + τt) + 2u3τx = 0

ψu − φv − ξt + τx + u2(φv − τt) = 0

5) The general solution of this system is:

ξ(x, t) = c1x + c3t + c4, φ(x, t, u, v) = c3,

τ(x, t) = c1t + c2 ψ(x, t, u, v) = c3u + c5

c1 − c5 are arbitrary constants. The linearly independent infinitesimal generators
of projectable symmetry groups are:

w1 = x∂x + t∂t, w2 = ∂t, w3 = t∂x + ∂u + u∂v, w4 = ∂x, w5 = ∂v

6) It remains to compute the corresponding one-parameter symmetry groups.
Hence, the one-parameter group G1, generated by the vector field w1, is a solution
to the system of ODEs

ẋ(η) = x(η), ṫ(η) = t(η),
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with initial data x(0) = x and t(0) = t, i.e., gη : (x, t, u, v) → (eηx, eηt, u, v) . Since
G1 is a symmetry group, (1) implies that if u and v are solutions of (16) so are the
functions

ũ : (x, t) → u
(
e−ηx, e−ηt

)

ṽ : (x, t) → v
(
e−ηx, e−ηt

)
.

We repeat the same procedure for the remaining symmetry groups and calculate
that G2, G4 and G5 are translations of t, x and v, respectively. Finally, the action of
G3 is given by gη : (x, t, u, v) → (

x + ηt, t, u + η, v + ηu + η2/2
)
, and the functions

ũ : (x, t) → u(x− ηt, t) + η

ṽ : (x, t) → v(x− ηt, t) + ηu(x− ηt, t) + 3η2/2

are solutions of the system whenever u and v are.
Therefore, we calculated all projectable symmetry groups of the system (16)

and all transformed solutions. As we saw, the calculation of non-projectable sym-
metry groups is rather complicated on the one hand, and on the other, as was
mentioned in the introduction, it is enough to study projectable groups if the solu-
tion is in G, D′ or if it is a solution in the sense of association. We recall from [8]
that the system (16) has a solution in the sense of association: the Jacobian matrix
of (16) is

A = Df =
[

2u −1
u2 − 1 0

]
,

the eigenvalues are λ1(u, v) = u−1 and λ2(u, v) = u+1, and the corresponding right
eigenvectors are r1(u, v) = [1 u + 1]T and r2(u, v) = [1 u− 1]T . Since Dλi(u, v) ·
ri(u, v) > 0, i = 1, 2, it follows that both characteristic fields are genuinely nonlinear
and hence the solution consists only of centered rarefaction waves and shocks.

The rarefaction curves are calculated as the integral curves of the vector fields
r1 and r2:

R1 =
{

(u, v) : v =
1
2
u2 + u + c1

}

R2 =
{

(u, v) : v =
1
2
u2 − u + c2

}
,

and the shocks are found from the Rankine–Hugoniot equations:

(19) v − v0 = (u− u0)
(

u + u0

2
∓

√
1− (u− u0)2

12

)
, for |u− u0| 6 12.

The corresponding shock speeds are

γ̇ = u0 +
u− u0

2
±

√
1− (u− u0)2

12
,

where the sign − refers to the speed of 1-shock, and + to the speed of 2-shock. The
Riemann problem (16)–(17) has a classical solution for each (u, v) lying in the area
bounded by

J(u, v) =
{

(u, v) : v =
1
2
u2 + u +

9
2

+ v0 − 1
2
u2

0 − u0 ∧ u > u0 − 3
}
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J1(u, v) =
{

(u, v) : (u, v) satisfies (19) ∧ u 6 u0 − 3
}

J2(u, v) =
{

(u, v) : v =
1
2
u2 − u− 9

2
+ v0 − 1

2
u2

0 + u0 ∧ u > u0 − 3
}

The remaining (u, v) are in the exterior of this area, which we denote by Q and
which is divided by the curves

D(u, v) = {(u, v) : v = v0 + u2 + (1− u0)u− u0 ∧ u 6 u0 − 3}
E(u, v) = {(u, v) : v = v0 + (u− u0)(u0 − 1) ∧ u 6 u0 − 3}

into three open regions. In each of them the solution consists of a singular shock
wave which is given by:

(20)
U(x, t) = G(x− ct) + s1(t)(α0d

−(x− ct) + α1d
+(x− ct))

V (x, t) = H(x− ct) + s2(t)(β0D
−(x− ct) + β1D

+(x− ct)),

where G(x− ct) and H(x− ct) are generalized step functions (cf. [13, Def. 1(a)]),
D(x − ct) = β0D

−(x − ct) + β1D
+(x − ct) is an Sδ-function with value (β0, β1),

β0 + β1 = 1 (cf. [13, Def. 1(b)]), d(x − ct) = α0d
−(x − ct) + α1d

+(x − ct) is an
3′SD-function with value (α0, α1) (cf. [13, Def. 3 with Ex. (ii)]), such that D(x−ct)
and d(x− ct) are compatible and

−c[G] + [G2]− [H] = 0,(21)

s2(t) = s2
1(t)(α

2
0 + α2

1),(22)

s2(t) = σ1t, σ1 = c[H]− 1
3
[G3] + [G], σ1 > 0,(23)

cs2(t) = s2
1(t)(α0u0 + α1u1).(24)

The function s2(t) is called the strength of the singular shock wave and is the most
important part of the solution which has to be uniquely determined. α0 and α1 can
be chosen such that α2

0 + α2
1 = 1, hence the condition (22) becomes s2(t) = s2

1(t),
and the condition (24) becomes α2

0u0 + α2
1u1 = c.

We are going to show that this is a solution in the sense of 1-strong association.

Theorem 2.1. The solution (20) of the system (16) is a 1-strongly associated
solution to (16).

Proof. In order to show this we use Definition 1.4. Let B be a bounded subset
of C1

c (R× [0,∞)). This means that there exists K b R× [0,∞), with the property
supp ϕ ⊆ K for each ϕ ∈ B and with sup(x,t)∈K{|∂αϕ(x, t)| : ϕ ∈ B, |α| 6 1} < ∞ .

It suffices to show that there exist representatives Uε and Vε of the solution (20)
such that

(25) lim
ε→0

sup
ϕ∈B

∣∣∣∣
∫

R×[0,∞)

(
(Uε)t(x, t) + (U2

ε − Vε)x(x, t)
)
ϕ(x, t) dx dt

∣∣∣∣ = 0,

and

(26) lim
ε→0

sup
ϕ∈B

∣∣∣∣
∫

R×[0,∞)

(
(Vε)t(x, t) +

(1
3
U3

ε − Uε

)
x
(x, t)

)
ϕ(x, t) dx dt

∣∣∣∣ = 0.
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Look first at (25). Let ϕ ∈ B. Then

∫

R×[0,∞)

[(
Uε(x, t)

)
t
+

(
U2

ε (x, t)− Vε(x, t)
)
x

]
ϕ(x, t) dx dt

=
∫

R×[0,∞)

[{
Gε(x− ct) + s1(t)

(
α0d

−(x− ct) + α1d
+(x− ct)

)}
t

+
{

G2
ε(x− ct) + 2s1(t)

(
α0u0d

−(x− ct) + α1u1d
+(x− ct)

)

+ s2
1(t)

(
α2

0(d
−)2(x− ct) + α2

1(d
+)2(x− ct)

)−Hε(x− ct)

− s2(t)
(
β0D

−(x− ct) + β1D
+(x− ct)

)}
x

]
ϕ(x, t) dx dt

=
∫

R×[0,∞)

[
− c∂xGε(x− ct) + s′1(t)

(
α0d

−(x− ct) + α1d
+(x− ct)

)

− cs1(t)∂x

(
α0d

−(x− ct) + α1d
+(x− ct)

)
+ ∂xGε(x− ct)

+ s1(t)∂x

(
α0u0d

−(x− ct) + α1u1d
+(x− ct)

)

+ s2
1(t)∂x

(
α2

0(d
−)2(x− ct) + α2

1(d
+)2(x− ct)

)

− ∂xHε(x−ct)− s2(t)∂x

(
β0D

−(x−ct) + β1D
+(x−ct)

)]
ϕ(x, t) dx dt

=
∫

R×[0,∞)

s′1(t)
(
α0d

−(x− ct) + α1d
+(x− ct)

)
︸ ︷︷ ︸

(1)

ϕ(x, t) dx dt

−
∫

R×[0,∞)

[
− cGε(x− ct)︸ ︷︷ ︸

(2)

− cs1(t)
(
α0d

−(x− ct) + α1d
+(x− ct)

)
︸ ︷︷ ︸

(3)

+ G2
ε(x− ct)︸ ︷︷ ︸

(4)

+ s1(t)
(
α0u0d

−(x− ct) + α1u1d
+(x− ct)

)
︸ ︷︷ ︸

(5)

+ s2
1(t)

(
α2

0(d
−)2(x− ct) + α2

1(d
+)2(x− ct)

)
︸ ︷︷ ︸

(6)

−Hε(x− ct)︸ ︷︷ ︸
(7)

− s2(t)
(
β0D

−(x− ct) + β1D
+(x− ct)

)
︸ ︷︷ ︸

(8)

]
ϕx(x, t) dx dt

= (∗)

For the first member of this sum we have
∫

R×[0,∞)

s′1(t)
(
α0d

−(x− ct) + α1d
+(x− ct)

)
ϕ(x, t) dx dt

=
∫ ∞

0

∫

R
s′1(t)

(
α0

(
− 1

2ε
φ
(−x + ct− 4ε

ε

)
+

1
2ε

φ
(−x + ct− 6ε

ε

))1/2

+ α1

( 1
2ε

φ
(x− ct− 4ε

ε

)
− 1

2ε
φ
(x− ct− 6ε

ε

))1/2)
ϕ(x, t) dx dt
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Here we used the 3′SD-function from [13]. Introducing suitable substitutions we
obtain ∫ ∞

0

s′1(t)
∫ ∞

−1

α0

√
ε
(1

2
φ(z)

)1/2

ϕ(−εz − 4ε + ct, t) dz dt

−
∫ ∞

0

s′1(t)
∫ ∞

−1

α0

√
ε
(1

2
φ(z)

)1/2

ϕ(−εz − 6ε + ct, t) dz dt

+
∫ ∞

0

s′1(t)
∫ ∞

−1

α1

√
ε
(1

2
φ(z)

)1/2

ϕ(εz − 4ε + ct, t) dz dt

−
∫ ∞

0

s′1(t)
∫ ∞

−1

α1

√
ε
(1

2
φ(z)

)1/2

ϕ(εz − 6ε + ct, t) dz dt.

Applying the Lebesgue dominated convergence theorem two times successively to
the corresponding sequences we conclude that this term tends to 0 as ε → 0. A
similar argument shows that each of the terms in the sum with the functions d± or
(d±)3, i.e., (3) and (5), also goes to 0 as ε → 0. So, look now at (2). We have

−
∫

R×[0,∞)

− cGε(x− ct)ϕx(x, t) dx dt

=
∫ ∞

0

∫ ct−ε

−∞
cu0ϕx(x, t) dx dt +

∫ ∞

0

∫ ∞

ct+ε

cu1ϕx(x, t) dx dt

= cu0

∫ ∞

0

ϕ(ct− ε, t) dt− cu1

∫ ∞

0

ϕ(ct + ε, t) dt

ε→0−→ (cu0 − cu1)
∫ ∞

0

ϕ(ct, t) dt = −c[G]
∫ ∞

0

ϕ(ct, t) dt,

where we again applied the Lebesgue dominated convergence theorem. For (8) we
obtain

−
∫

R×[0,∞)

−s2(t)
(
β0D

−(x− ct) + β1D
+(x− ct)

)
ϕx(x, t) dx dt

=
∫ ∞

0

∫ ct−ε

−∞
s2(t)

β0

ε
φ
(x− ct + 2ε

ε

)
ϕx(x, t) dx dt

+
∫ ∞

0

∫ ∞

ct+ε

s2(t)
β1

ε
φ
(x− ct− 2ε

ε

)
ϕx(x, t) dx dt

=
∫ ∞

0

s2(t)
∫ 1

−∞
β0φ(z)ϕx(εz − 2ε + ct, t) dz dt

+
∫ ∞

0

s2(t)
∫ ∞

−1

β1φ(z)ϕx(εz + 2ε + ct, t) dz dt

ε→0−→
∫ ∞

0

s2(t)β0ϕx(ct, t)
∫ 1

−∞
φ(z) dz dt +

∫ ∞

0

s2(t)β1ϕx(ct, t)
∫ ∞

−1

φ(z) dz dt

= (β0 + β1)
∫ ∞

0

s2(t)ϕx(ct, t) dt =
∫ ∞

0

s2(t)ϕx(ct, t) dt.
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Repeating this for the remaining terms yields that (4) tends to [G2]
∫∞
0

ϕ(ct, t) dt,
(6) to (α2

0+α2
1)

∫∞
0

s2
1(t)ϕx(ct, t) dt, and (7) to −[H]

∫∞
0

ϕ(ct, t) dt, as ε → 0. There-
fore,

(∗) ε→0−→− c[G]
∫ ∞

0

ϕ(ct, t) dt + [G2]
∫ ∞

0

ϕ(ct, t) dt + (α2
0 + α2

1)
∫ ∞

0

s2
1(t)ϕ(ct, t) dt

− [H]
∫ ∞

0

ϕ(ct, t) dt−
∫ ∞

0

s2(t)ϕ(ct, t) dt = 0,

by (21)–(24) and (25) is satisfied. Similarly we conclude that it is also true for (26).
Hence, the solution (20) is a 1-strongly associated solution to (16). ¤

The projectable symmetry groups calculated at the beginning of this section
transform 1-strongly associated solutions to (16) to other 1-strongly associated
solutions, as shown by the following

Theorem 2.2. The symmetry groups G1–G5 of the system (16) are AS1
∆-

symmetry groups.

Proof. By Theorem 1.5 it suffices to show that G1-G5 are slowly increasing
and have a factorization (10) such that Q depends only on η and x. First we
consider G1. The action of G1 is given by gη : (x, t, u, v) → (eηx, eηt, u, v) . Since
Φ is the identity it follows that the map (u, v) 7→ Φg(x, t, u, v) is slowly increasing,
uniformly for x and t in compact sets. It is easy to see that this is also true for the
remaining groups. Next, for G1 we have

∆1

(
e−ηx, e−ηt,pr(1) u(e−ηx, e−ηt), pr(1) v(e−ηx, e−ηt)

)
= e−ηut + 2e−ηuux − e−ηvx

= e−η∆1

∆2

(
e−ηx, e−ηt,pr(1) u(e−ηx, e−ηt), pr(1) v(e−ηx, e−ηt)

)
= e−ηvt + e−ηu2ux − e−ηux

= e−η∆2,

where ∆1 and ∆2 denote the first, respectively the second equation of the system
(16). The matrix form of this factorization is given by

[
∆̃1

∆̃2

]
=

[
e−η 0
0 e−η

]
·
[
∆1

∆2

]
.

Therefore, the matrix Q depends only on η and Theorem 1.5 provides that the G1

is AS1
∆-symmetry group. The factorizations for G2–G5 are

G2, G4, G5 :

[
∆̃1

∆̃2

]
=

[
1 0
0 1

]
·
[
∆1

∆2

]
,

G3 :

[
∆̃1

∆̃2

]
=

[
1 0
η 1

]
·
[
∆1

∆2

]
,

hence again we conclude that these four symmetry groups are also AS1
∆-symmetry

groups. ¤



SYMMETRIES OF CONSERVATION LAWS 43

2.2. Zero pressure gas dynamics model. The next system of conservation
laws we consider is given by

ut + (uv)x = 0

(uv)t + (uv2)x = 0
(27)

with the same initial conditions (17) as in the previous case. This Riemann problem
is a zero pressure gas dynamics model, where u is a density, hence nonnegative, and
v is a velocity.

The quasilinear form of (27) is obtained by differentiating:
ut + uxv + uvx = 0

utv + uvt + uxv2 + 2uvvx = 0.
(28)

If we compute ut from the first equation of (28) and insert into the second one
we arrive to the following system:

ut + uxv + uvx = 0

u(vt + vvx) = 0.
(29)

From the second equation it can be seen that one possible solution is u = 0, i.e.,
vacuum state. Therefore, we consider the other possibility vt + vvx = 0, looking at
the system

ut + uxv + uvx = 0
vt + vvx = 0.

(30)

The eigenvalues of this system are λ1(u, v) = λ2(u, v) = v, thus the system is
weakly hyperbolic. The corresponding right eigenvector is r(u, v) = [0 1]T , so both
characteristic fields are linearly degenerative. Hence, only contact discontinuities
can appear as a solution and we calculate them: let x = ct be a curve of disconti-
nuities of the system (29). Along this curve the Rankine–Hugoniot conditions must
hold:

c[u] = [uv], c[uv] = [uv2].
Equating c from these equations yields [u][uv2] = [uv]2, so u0u1(v1 − v0)2 = 0.
Therefore, there exist three solutions: u0 = 0, u1 = 0 and v0 = v1. For u0 = 0
we calculate c = v1, λi(u0, v0) = v0 and λi(u1, v1) = v1, i = 1, 2 and similarly for
u1 = 0. In the third case c = v0 = v1 and also λi(u0, v0) = λi(u1, v1) = v0 = v1,
thus the Lax entropy condition (13) is satisfied. Hence the initial conditions (u0, v0)
and (u1, v1) can be connected by contact discontinuity only when v0 = v1. Finally,
combining contact discontinuities and vacuum states we obtain the classical solution
of the Riemann problem (27) when v0 < v1:

(u, v)(x, t) =





(u0, v0), x/t < v0

(0, v(x, t)), v0 6 x/t 6 v1

(u1, v1), x/t > v1.

In the case when v0 > v1 this solution is not uniquely defined and certain nonreg-
ularities appear, which is studied in detail in [13]. In that case the solution of (27)
is again a singular shock wave
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U(x, t) = G(x− ct) + s1(t)(α0D
− + α1D

+) + s2(t)(β0d
− + β1d

+)

V (x, t) = H(x− ct) + s3(t)(γ0d
− + γ1d

+),
(31)

where G and H are generalized step functions, D and d are compatible Sδ-and
3SD-functions (cf. [13, Def. 3 with Ex. (i)]) and

s1(t) = σ1t, σ1 = c[G]− [GH], σ1 > 0,(32)

α0 =
v1 − c

v1 − v0
, α1 =

c− v0

v1 − v0
,(33)

σ1(α0v0 + α1v1) = σ1c = c[GH]− [GH2],(34)

−s2(t)s2
3(t) = s1(t),(35)

α0(v2
0 − cv0) + α1(v2

1 − cv1) = β0γ
2
0 + β1γ

2
1 .(36)

This time the function s1(t) denotes the strength of the singular shock wave.
As for the first system (16) we are going to show that this solution is also a

1-strongly associated solution to (27).

Theorem 2.3. The solution (31) of the system (27) is a 1-strongly associated
solution to (27).

Proof. The proof is similar to that for the system (16), so we have to show
that there exist representatives Uε and Vε of the solutions U and V defined in (31),
such that for arbitrary set B ⊆ C∞c (R × [0,∞)) bounded in C1

c (R × [0,∞)) the
following holds:

(37) lim
ε→0

sup
ϕ∈B

∣∣∣
∫

R×[0,∞)

(
(Uε)t(x, t) + (UεVε)x(x, t)

)
ϕ(x, t) dx dt

∣∣∣ = 0,

and for the second equation:

(38) lim
ε→0

sup
ϕ∈B

∣∣∣
∫

R×[0,∞)

(
(UεVε)t(x, t) + (UεV

2
ε )x(x, t)

)
ϕ(x, t) dx dt

∣∣∣ = 0.

Let B be a bounded subset of C1
c (R × [0,∞)). First we prove (37). Let ϕ ∈ B.

Then∫

R×[0,∞)

[(
Uε(x, t)

)
t
+

(
Uε(x, t)Vε(x, t)

)
x

]
ϕ(x, t) dx dt

=
∫

R×[0,∞)

[{
Gε(x− ct) + s1(t)

(
α0D

−(x− ct) + α1D
+(x− ct)

)

+ s2(t)
(
β0d

−(x− ct) + β1d
+(x− ct)

)}
t
+

{
Gε(x− ct)Hε(x− ct)

+ s1(t)s3(t)
(
α0D

−(x−ct)+α1D
+(x−ct)

)(
γ0d

−(x−ct)+γ1d
+(x−ct)

)

+ s2(t)s3(t)
(
β0d

−(x−ct)+β1d
+(x−ct)

)(
γ0d

−(x−ct)+γ1d
+(x−ct)

)

+ s1(t)
(
α0v0D

−(x− ct) + α1v1D
+(x− ct)

)

+ s2(t)
(
β0v0d

−(x− ct) + β1v1d
+(x− ct)

)

+ s3(t)
(
γ0u0d

−(x− ct) + γ1u1d
+(x− ct)

)}
x

]
ϕ(x, t) dx dt
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=
∫

R×[0,∞)

[
− c∂xGε(x− ct) + s′1(t)

(
α0D

−(x− ct) + α1D
+(x− ct)

)

− cs1(t)∂x

(
α0D

−(x− ct) + α1D
+(x− ct)

)

+ s′2(t)
(
β0d

−(x− ct) + β1d
+(x− ct)

)

− cs2(t)∂x

(
β0d

−(x− ct) + β1d
+(x− ct)

)
+ ∂x

(
Gε(x− ct)Hε(x− ct)

)

+ s1(t)s3(t)∂x

((
α0D

−(x− ct) + α1D
+(x− ct)

)

× (
γ0d

−(x− ct) + γ1d
+(x− ct)

))

+ s2(t)s3(t)∂x

((
β0d

−(x− ct) + β1d
+(x− ct)

)

× (
γ0d

−(x− ct) + γ1d
+(x− ct)

))

+ s1(t)∂x

(
α0v0D

−(x− ct) + α1v1D
+(x− ct)

)

+ s2(t)∂x

(
β0v0d

−(x− ct) + β1v1d
+(x− ct)

)

+ s3(t)∂x

(
γ0u0d

−(x− ct) + γ1u1d
+(x− ct)

)]
ϕ(x, t) dx dt

=
∫

R×[0,∞)

[
s′1(t)

(
α0D

−(x− ct) + α1D
+(x− ct)

)
︸ ︷︷ ︸

(1)

+ s′2(t)
(
β0d

−(x− ct) + β1d
+(x− ct)

)
︸ ︷︷ ︸

(2)

]
ϕ(x, t) dx dt

−
∫

R×[0,∞)

[
− cGε(x− ct)︸ ︷︷ ︸

(3)

− cs1(t)
(
α0D

−(x− ct) + α1D
+(x− ct)

)
︸ ︷︷ ︸

(4)

− cs2(t)
(
β0d

−(x− ct) + β1d
+(x− ct)

)
︸ ︷︷ ︸

(5)

+ Gε(x− ct)Hε(x− ct)︸ ︷︷ ︸
(6)

+ s1(t)s3(t)
(
α0D

−(x−ct)+α1D
+(x−ct)

)(
γ0d

−(x−ct)+γ1d
+(x−ct)

)
︸ ︷︷ ︸

(7)

+ s2(t)s3(t)
(
β0d

−(x−ct)+β1d
+(x−ct)

)(
γ0d

−(x−ct)+γ1d
+(x−ct)

)
︸ ︷︷ ︸

(8)

+ s1(t)
(
α0v0D

−(x− ct) + α1v1D
+(x− ct)

)
︸ ︷︷ ︸

(9)

+ s2(t)
(
β0v0d

−(x− ct) + β1v1d
+(x− ct)

)
︸ ︷︷ ︸

(10)

+ s3(t)
(
γ0u0d

−(x− ct) + γ1u1d
+(x− ct)

)
︸ ︷︷ ︸

(11)

]
ϕx(x, t) dx dt = (∗)
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Consider now each of the terms in the last sum, like in the proof of Theorem
2.1. For (1) we have:∫

R×[0,∞)

s′1(t)
(
α0D

−(x− ct) + α1D
+(x− ct)

)
ϕ(x, t) dx dt

=
∫ ∞

0

∫

R
s′1(t)

(α0

ε
φ
(x− ct + 2ε

ε

)
+

α1

ε
φ
(x− ct− 2ε

ε

))
ϕ(x, t) dx dt

Next, split up this integral as a sum of two integrals and take suitable substitutions.
This yields

∫ ∞

0

∫ 1

−∞
s′1(t)α0φ(z)ϕ(εz − 2ε + ct, t) dz dt

+
∫ ∞

0

∫ ∞

−1

s′1(t)α1φ(z)ϕ(εz + 2ε + ct, t) dz dt

Here we apply the Lebesgue dominated convergence theorem, first to the sequences( ∫ 1

−∞ ϕ(εz−2ε+ct, t) dz
)
ε
and

( ∫∞
−1

ϕ(εz+2ε+ct, t) dz
)
ε
, and then to the sequences(

ϕ(εz − 2ε + ct, t)
)
ε

and
(
ϕ(εz + 2ε + ct, t)

)
ε
. Then the last integral

ε→0−→
∫ ∞

0

s′1(t)α0ϕ(ct, t)
∫ 1

−∞
φ(z) dz dt +

∫ ∞

0

s′1(t)α1ϕ(ct, t)
∫ ∞

−1

φ(z) dz dt

= (α0 + α1)
∫ ∞

0

s′1(t)ϕ(ct, t) dt =
∫ ∞

0

s′1(t)ϕ(ct, t) dt,

since by definition of Sδ-functions,
∫

φ(z) dz = 1 on the domain of φ (and that is
the interval [−1, 1]) and α0 +α1 = 1 by assumption. It is obvious that a procedure
similar to this one and those from the proof of Theorem 2.1 is repeated for each
of the remaining 9 terms (some of them are explicitly calculated in the proof of
Theorem 2.1). The only difference is that for the solution of the system (31) we
used 3SD-functions instead of 3′SD-functions from the solution of (16). This implies
that all terms with d± or (d±)2 tend to 0 as ε → 0.

Joining all together we have

(∗) ε→0−→
∫ ∞

0

s′1(t)ϕ(ct, t) dt− c[G]
∫ ∞

0

ϕ(ct, t) dt +
∫ ∞

0

cs1(t)ϕx(ct, t) dt

+[GH]
∫ ∞

0

ϕ(ct, t) dt−
∫ ∞

0

(α0v0 + α1v1)s1(t)ϕx(ct, t) dt = 0,

since from (32) s′1(t) = c[G]−[GH] and α0v0+α1v1 = c from (34) and the condition
α0 + α1 = 1. Thus (31) is a 1-strongly associated solution to the first equation of
(27). Analogously, it can be seen that the same holds also in the case of the second
equation, which proves the claim. ¤

The next task is to calculate symmetry groups of (27). Let us recall that
(27), (28) and (29) are equivalent systems for all smooth solutions. Also, these
systems are equivalent in the Colombeau algebra, since the elements of this algebra
are equivalence classes of nets of smooth functions. Therefore we look for the
symmetry groups of the quasilinear system (29). We start with the following
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Theorem 2.4. Let ∆(x, u(n)) = 0 and ∆i(x, u(n)), i = 1, . . . , k, be nonde-
generate differential equations on M ⊂ X × U such that ∆ can be written as a
product

(39) ∆ =
k∏

i=1

∆i.

If we denote the corresponding algebras of infinitesimal generators of symmetries
of ∆ and ∆i by g and gi respectively, i = 1, . . . , k, then

(40)
k⋂

i=1

gi ⊆ g.

Proof. Let v ∈ ⋂k
i=1 gi. Then v ∈ gi, for each i = 1, . . . , k, i.e., v is a

generator of a local one-parameter symmetry group of each equation

∆i(x, u(n)) = 0, i = 1, . . . , k.

By the infinitesimal criterion and (6) we may write

(41) pr(n) v(∆i(x, u(n))) = Qi ·∆i(x, u(n)), i = 1, . . . , l,

with well-defined functions Qi, i = 1, . . . , l. Since pr(n) v is a vector field on the
n-jet space M (n), the Leibniz rule for the product derivative yields

pr(n) v(∆) = pr(n) v
( k∏

i=1

∆i

)
=

k∑

i=1

∆1 · . . . · pr(n) v(∆i) · . . . ·∆k

=
k∑

i=1

∆1 · . . . ·Qi∆i · . . . ·∆k = Q ·∆,

where Q = Q1 + · · ·+Ql. Another application of Theorem 1.2 provides that v ∈ g,
which proves the claim. ¤

According to this theorem, the intersection of the symmetry groups of the
system (30) with the symmetry groups of u = 0 will provide symmetry groups
of the system (29). (It should be noticed that due to the inclusion in (40) not
all symmetry groups of (29) will be obtained. However, Theorem 2.4 is of great
help, since a direct computation of the symmetry groups of (29) is a very difficult
task.) The symmetry groups of u = 0 can easily be calculated. Namely, by the
infinitesimal criterion (5) it follows that the infinitesimal generators of u = 0 are
obtained as solutions of v(u) = φ = 0, whenever u = 0 (we assumed here that
v = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t + φ(x, t, u, v)∂u + ψ(x, t, u, v)∂v).

Now we follow the procedure for calculating symmetry groups of the system
(30).

1) w = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t + φ(x, t, u, v)∂u + ψ(x, t, u, v)∂v.
2) The first prolongation is given by pr(1)w = w+φx∂ux +φt∂ut +ψx∂vx +ψt∂vt ,

where φx, φt, ψx and ψt are the same as in (18).
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3) Since the equations of this systems are

∆1(x, t, u, v, ux, vx, ut, vt) = ut + uxv + uvx

∆2(x, t, u, v, ux, vx, ut, vt) = vt + vvx,

we have to solve

pr(1)w(∆1) = φt + vφx + φux + φvx + uψx = 0

pr(1)w(∆2) = ψt + ψvx + vψx = 0.

Again we look only for the projectable symmetry groups. Inserting (18), having in
mind that the partial derivatives of ξ and τ with respect to u and v vanish, and
then substituting ut by −uxv − uvx and vt by −vvx, we obtain

φt − φuvux − φuuvx − φvvvx − ξtux + τtvux + τtuvx

+ φxv + φuvux + φvvvx − ξxvux + τxv2ux + τxuvvx

+ ψux + φvx + ψxu + ψuuux + ψvuvx − ξxuvx − τxuvvx = 0
ψt − ψuvux − ψuuvx − ψvvvx − ξtvx

+ τtvvx + ψvx + ψxv + ψuvux + ψvvvx − ξxvvx + τxv2vx = 0.

4) Coefficients of 1, ux and vx equating with 0 yield the following equations

φt + vφx + uψx = 0

−ξt + τtv − ξxv + τxv2 + ψ + uψ = 0
−φuu + τtu + τxuv + φ + ψvu− ξxu + τxuv = 0

ψt + ψxv = 0
0 = 0

−ψuu− ξt + τtv + ψ − ξxv + τxuv = 0.

5) The solution is

ξ(x, t) = c1 + c3t + (c2 + c8t)x + c5x
2

τ(x, t) = c6 + (c7 + c8t)t + (c4 + c5t)x

φ(x, t, u, v) = uα(x, t, v)

ψ(x, t, u, v) = c3+c2v+2c5xv+c8(tv+x)−v(c7+2c8t+c5x)−v2(c4+c5t),

where α is a function which depends on x, t and v and satisfies the equation

(42)
c8 + c5v + αt + vαx

v
= 0.

The eight constants c1 − c8 generate eight linearly independent infinitesimal gen-
erators of one-parameter projectable symmetry groups, while α(x, t, v) generates
an infinite-dimensional group. From (42) we see that α(x, t, v) must depend on
constants c5 and c8. It is also clear that the function α is not uniquely deter-
mined. Hence, in order to calculate the infinitesimal generators of the projectable
symmetry groups we choose one possibility for α:

α(x, t, v) = −c5x− c8t + β(v).
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Now we can write all infinitesimal generators:

w1 = ∂x, w2 = x∂x + v∂v, w3 = t∂x + ∂v, w4 = x∂t − v2∂v,

w5 = x2∂x + xt∂t − xu∂u + (xv − tv2)∂v, w6 = ∂t, w7 = t∂t − v∂v,

w8 = xt∂x + t2∂t − tu∂u + (x− tv)∂v, wβ = uβ(v)∂u.

6) The one-parameter transformation groups generated by the vector fields
w1 −w8 and wβ are:

(43)

G1 : (x, t, u, v) → (x + η, t, u, v)

G2 : (x, t, u, v) → (eηx, t, u, eηv)

G3 : (x, t, u, v) → (x + ηt, t, u, v + η)

G4 : (x, t, u, v) →
(
x, t + ηx, u,

v

1 + ηv

)

G5 : (x, t, u, v) →
( x

1− ηx
,

t

1− ηx
, (1− ηx)u,

v

1− η(x− tv)

)

G6 : (x, t, u, v) → (x, t + η, u, v)

G7 : (x, t, u, v) → (
x, eηt, u, e−ηv

)

G8 : (x, t, u, v) →
( x

1− ηt
,

t

1− ηt
, (1− ηt)u, ηx + (1− ηt)v

)

Gβ : (x, t, u, v) →
(
x, t, eηβ(v)u, v

)

Since each of the groups in (43) is a symmetry group of the system (30), from (1)
it follows that if u and v are solutions so are the functions

(1) ũ : (x, t) → u(x− η, t), ṽ : (x, t) → v(x− η, t)

(2) ũ : (x, t) → u(e−ηx, t), ṽ : (x, t) → eηv(e−ηx, t)

(3) ũ : (x, t) → u(x− ηt, t), ṽ : (x, t) → v(x− ηt, t) + η

(4) ũ : (x, t) → u(x, t− ηx), ṽ : (x, t) → v(x, t− ηx)
1 + ηv(x, t− ηx)

(5) ũ : (x, t) →
u

(
x

1+ηx , t
1+ηx

)

1 + ηx
, ṽ : (x, t) →

(1 + ηx)v
(

x
1+ηx , t

1+ηx

)

1 + ηtv
(

x
1+ηx , t

1+ηx

)

(6) ũ : (x, t) → u(x, t− η), ṽ : (x, t) → v(x, t− η)

(7) ũ : (x, t) → u(x, e−ηt), ṽ : (x, t) → e−ηv(x, e−ηt)

(8) ũ : (x, t) →
u

(
x

1+ηt ,
t

1+ηt

)

1 + ηt
, ṽ : (x, t) →

ηx + v
(

x
1+ηt ,

t
1+ηt

)

1 + ηt

(β) ũ : (x, t) → eηβ(v)u(x, t), ṽ : (x, t) → v(x, t)

From the remark given after Theorem 2.4 it follows that all calculated symme-
try groups are also symmetry groups of the system (29): for infinitesimal generators
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w5, w8 and wβ the coefficients of ∂u are 1
1+ηxu, 1

1+ηtu and eηβ(v)u respectively,
hence they vanish when u = 0, while for the rest φ = 0.

The matrix factorizations of (27) with respect to symmetry groups in (43) are:

G1, G6 :

[
∆̃1

∆̃2

]
=

[
1 0
0 1

]
·
[
∆1

∆2

]

G2 :

[
∆̃1

∆̃2

]
=

[
1 0
0 eη

]
·
[
∆1

∆2

]

G3 :

[
∆̃1

∆̃2

]
=

[
1 0
η 1

]
·
[
∆1

∆2

]

G4 :

[
∆̃1

∆̃2

]
=

[
1+2ηv

(1+ηv)2
−η

(1+ηv)2

2ηv2

(1+ηv)3
1−ηv

(1+ηv)3

]
·
[
∆1

∆2

]

G5 :

[
∆̃1

∆̃2

]
=

[
1+2ηtv

(1+ηx)2(1+ηtv)
−ηt

(1+ηx)2(1+ηtv)
2ηtv2

(1+ηx)(1+ηtv)3
1−ηtv

(1+ηx)(1+ηtv)3

]
·
[
∆1

∆2

]

G7 :

[
∆̃1

∆̃2

]
=

[
e−η 0
0 e−2η

]
·
[
∆1

∆2

]

G8 :

[
∆̃1

∆̃2

]
=

[
1

(1+ηt)3 0
ηx

(1+ηt)4
1

(1+ηt)4

]
·
[
∆1

∆2

]

Gβ :

[
∆̃1

∆̃2

]
=

[
(1− ηvβ′(v))eηβ(v) ηβ′(v)eηβ(v)

−ηuv2β′(v)eηβ(v) (1 + ηuvβ′(v))eηβ(v)

]
·
[
∆1

∆2

]
.

Therefore, the matrix of factorization Q depends only on x, t and η for all
groups except for G4, G5 and Gβ . In these three cases the factor Q depends also
on v. Beside that, from the transformed solutions we see that the groups G1–G3

and G6–G8 are slowly increasing, uniformly for x and t in compact sets. Thereby
we have proved the next

Theorem 2.5. The symmetry groups G1, G2, G3, G6, G7 and G8 of the system
(27) are 1-strongly associated symmetry groups, i.e., transform 1-strongly associated
solutions to (27) to other 1-strongly associated solutions.

The remaining three groups G4, G5 and Gβ are notAS1
∆-groups for two reasons:

first the condition that the map (u, v) 7→ Φg(x, t, u, v) is slowly increasing, uniformly
for x and t in compact sets, does not hold globally. Second, the solution (31) does
not belong to the algebra G∞, which is necessary by Theorem 1.5.

Under certain assumptions on the solution (u, v) defined in (31), and also on the
parameter η, these problems can be avoided. Namely, if we assume that the function
v is nonnegative and η > 0 (then instead of a group we consider a semigroup) the
symmetry groups G4 and G5 become slowly increasing, while for G8 it should
be supposed that β(v) is a function of L∞-log-type. The second condition from
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Theorem 1.5 (i) would be fulfilled if we assume that the solution (u, v) belongs to
the algebra G∞.
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