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A SIMPLIFIED POINT OF VIEW. Part II
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Communicated by Stevan Pilipović

Abstract. This paper is the second part of [S-1]. Here we consider convolu-
tion products, microlocalization and pseudodifferential operators in the frame
of Colombeau generalized functions.

Introduction

This paper is the second part of a work done in the period 1992–93 in Paris
and Novi Sad. The first part appeared in Bull. Acad. Serbe Sci. Arts Cl. Sci.
Math. Natur., 121(25) (2000). Most notations and the definitions used here are
given in the first part.

The first part introduces topological structures on Colombeau generalized struc-
tures and investigate continuity properties of usual operations such as integration,
convolution, products, derivation and so on. In the second part microlocal proper-
ties of Colombeau generalized functions and “singular” pseudodifferential operators
are discussed extending in the frame of Colombeau generalized algebras many clas-
sical properties and notions. I want to thank professors Oberguggenberger and
Pilipović whose opinions and ideas greatly helped me for this work. This paper is
based on a prepirint in Paris 7 with the same title in 1993.

6. G∞-regularity according to Oberguggenbeger

6.1. Definitions. Oberguggenberger saw that being C∞, is not the good no-
tion of regularity if we want to extend in the frame of Colombeau’s generalized
functions some basic results of analysis, so he proposed the following definition:

Definition 6.1.1. We say that G is “regular” on an open set U , and write
G ∈ G∞ if, g being a representative of G, for every compact subset K of U , ∃N ∈ N,
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such that, for any α ∈ Nn, for any θ, and for any ε small enough:

sup |∂αg(θε, x)| 6 1/εN (we say then that g ∈ E∞
M (Rn))

This can be said in a more concise way: ∀K ⊂⊂ U,∃r ∈ R̄+
e , such that ∀α ∈ Nn,

sup |∂αG| 6 r. If r can be chosen independently of K we say that G is a bounded
regular generalized function, and write: G ∈ G∞b (U).

It is straightforward to verify that regularity is a local notion i.e., if G is regular
in the neighbourhood of any point of U , then it is regular in U .

If G is a tempered generalized function then we say that it is “regular in U”
if for any point x ∈ U , ∃φ ∈ D(U) such that φ ≡ 1 in a neighbourhood of x, and
µ(φG) is regular (G∞).

Examples of regular generalized functions: If F is C∞, and z ∈ C̄, then zF ∈
G∞. One can easily prove

Proposition 6.1.1. If G ∈ Gc(Rn)G with compact support, then F(G) ∈
G∞b (Rn).

Proof. g representative of G, can be chosen with compact support, thus
∂αF(G) can be represented by

h(ε, x) =
∫

K

(ix)αg(θε, x)e−ixydx,

If N is such that for ε small enough, for all x, |g(θε, x)| 6 1/εN , then, g being with
compact support for any multiindex α, there is some constant Cα such that for ε
small enough: ∣∣∣∂α

∫

K

g(θε, x)e−ixydx
∣∣∣ 6 ε−NCα 6 ε−N−1.

As the last bound does not depend on α or on the choice of a compact set,

F(G) ∈ G∞b (Rn). ¤

Likewise we can prove that if G ∈ Gs(Rn), then F(G) is a p-bounded tempered
regular generalized function.

6.2. Topologies in G∞(U). Let (un) be an exhaustive sequence of relatively
compact open subsets (i.e.,

⋃
un = U and un ⊂⊂ un+1; for g ∈ E∞

M (Rn). Now put:

vn(g) = sup{λ ∈ R such that ∀α ∈ Nn, for ε small enough, sup
un

|∂αg(θε, x)| 6 ελ}.

This is a countable set of “valuations”, and defines, as usual, a “sharp” uniform
structure and a “sharp” topology which “pass “to the quotient, defining thus, a
“sharp” (ultra) metric structure, and a “sharp” topology on G∞(Rn).

One can prove paraphrasing what was done in the case of C̄ and a diagonaliza-
tion process, that G∞(Rn) is complete for the sharp uniform structure.

As for a classic topology we consider the {R+ ∪+∞}-valued “seminorms”:

Nm,α(G) = lim
ε→0

sup
um

|∂αg(θε, x)|,
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where (un) is an exhaustive sequence of open sets, and thus define a topology which
in the case of C∞ functions coincides with their usual topology. It is clear that the
above uniform structures do not depend on the choice of the exhaustive sequence un

Of course we can also define the “sharp D′ topology” and the “classic D′ topology”
of the space of regular generalized functions

6.3. The “regular rapidly decreasing” or “Schwartz” generalized
functions.

Definition 6.3.1. We say that g ∈ EM,s(Rn) is “Schwartz”, and write g ∈
E∞

s (R), if ∃a ∈ R such that ∀α ∈ Nn, ∀p ∈ N, for ε small enough, for any x ∈ Rn:

|∂αg(θε, x)| 6 εa〈x〉−p (where 〈x〉 =
√

1 + |x|2).
A tempered generalized function G represented by such a g, will be called a
“Schwartz” generalized function, and we shall write: G ∈ G∞s (Rn).

Likewise, let G∞c (Rn) be the space of the regular generalized functions with
compact support. It easy to see that we have a canonical imbedding of G∞c (Rn)
into G∞s (Rn). One can easily verify the following facts:

Proposition 6.3.1. If G and H belong to G∞s (Rn) then:
(a) G ∗H = H ∗G. (b) F(G ∗H) = F(G)F(H).
(c) F sends G∞s (Rn) into itself and G∞c (Rn) into G∞s (Rn).

On G∞s (Rn) we can consider the following valuation:

v(G) = sup{λ ∈ R | ∀p ∈ N∀α ∈ Nn, for ε small enough, ∀x ∈ Rn

|∂αg(θε, x)| 6 ελ〈x〉−p.}
As usual this defines a Hausdorf topology and a uniform metric structure on
G∞s (Rn), the Sharp Schwartz topology and uniform structure. One can prove:

Proposition 6.3.2. F is continuous from G∞s (Rn) to itself, and if G∈G∞s (Rn),
F−1F(G) = G.

6.4. Irregular support (or G∞-singular support). The property of being
regular is local, thus the following definition [O-1] makes sense:

Definition 6.4.1. If G ∈ G(Ω) we call “irregular support” of G (irsupp(G))
(this can also be called “G∞-singular support”) the complement of the largest open
subset U , such that the restriction of G in U is regular.

This definition is consistent with the definition of “singular support” (ssupp)
for distributions, because:

Theorem 6.4.1. (Oberguggenberger [O-2]) If T ∈ D′(Ω), then ssupp(T ) =
irsupp([T ]).

This theorem is an easy corollary of the following proposition, (also proved by
Oberguggenberger by a slightly different method)

Proposition 6.4.2. D′(Ω) ∩G∞(Ω) = C∞(Ω).
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Sketch of the proof. Regularity being local, we can, without loss of gen-
erality, suppose that T is a distribution with compact support and [T ] is regular,
thus [T ] admits a E∞

M representative R, with compact support and:

R(θε, x) = T ∗ θε(x) + n(θε, x), where n ∈ Nτ (Rn).

But one can prove by straightforward computation, that T being with compact
support T ∗ θε(x) belongs to EM,s(Rn), Thus as R belongs also to this space, so
does n. ¤

One can now easily prove the following lemma:

Lemma 6.4.3. If g ∈ EM,S(Rn) ∩Nτ (Rn), then g belongs also to E∞
M,s(Rn).

Proof. ∀α ∈ Nn, ∃N , ∀p ∈ N, ∃ε1, such that

ε 6 ε1 ⇔ ∀x ∈ Rn|∂αg(θε, x)| 6 εp〈x〉N .

Also ∀α ∈ Nn, ∃M , ∀q ∈ N, ∃ε2, such that

ε 6 ε2 ⇔ ∀x ∈ Rn|∂αg(θε, x)| 6 ε−M 〈x〉−q.

Multiplying the above inequalities, one gets, for ε 6 inf(ε1, ε2), and all x,

|∂αg(θε, x)|2 6 εp−M 〈x〉−q+N .

As we can choose p and q as large as necessary the proof is over. ¤

We can now conclude that R2, given by R2(θε, x) = T ∗θε(x), belongs to E∞
M,S .

and so does R̂. But R̂2(θε, y) = T̂ (y)θ̂(εy), and thus, for given p, as big as necessary,
for ε small enough,

T̂ (y)θ̂(εy) 6 ε−N 〈y〉−p

this inequality being true for all ε smaller than some ε1, if |y| > 1/ε1, and if we
put ε = |y|−1 we obtain T̂ (y)θ̂(1) 6 |y|N 〈y〉−p 6 〈y〉N−p and thus T̂ (y) 6 〈y〉N−p

for y large enough. (We have supposed without loss of generality that θ̂(1) = 1.)
The same kind of bounds can be proved for all derivatives of T̂ . Thus T̂ belongs

to S(Rn), and so does T .
At this stage a natural question (asked by Pilipović and Kataoka) is whether

a distribution (classically) associated to a G∞ generalized function is C∞. Unfor-
tunately this is not the case, as we can see by the following counterexample.

Let g(θ, x) = | log(|η(θ)||nθ(| log(|η(θ)|x). It is easy to verify that g ∈ E∞
M (R),

because for ε small enough, | log(|ε|)|p 6 ε−1 and η(θε) is proportional to ε If now
φ ∈ D(R), by a change of variables, we obtain:∫

g(θε, x)φ(x) dx =
∫

θ(u)φ(u(| log(|η(θε)|−1)) du

which converges to φ(0) (by dominated convergence). Thus [g] is associated to δ
which is not smooth. This happens in some sense because logarithm increases too
slowly.

In fact we have a stronger result from Proposition 6.4.2 but we first need a
definition.
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Definition 6.4.2. Let G, H be two generalized functions represented by g and
h respectively and T a distribution. If b is one strictly positive real number we say
that G and H (respectively G i T ) are strongly b-associated if:

∀ϕ ∈ D′
∫

(g(θε, x)− h(θε, x)ϕ(x) dx = o(εb)
(

resp.
∫

(g(θε, x)− 〈T, ϕ(x)〉 = o(εb)
)

.

We can now state the following theorem.

Theorem 6.4.4. If T is a distribution strongly b-associated to a G∞-regular
generalized function G for some positive b, then T is C∞.

Proof. Regularities being local we can suppose without loss of generality that
both T and G (as well as representative g of G) have compact supports included
in some compact set K.

Putting a = b/2 and

〈Sε, ϕ〉 def=
(
〈T, ϕ〉 −

∫
g(θε, x)ϕ(x) dx

)
ε−a

we immediately see that 〈Sε, ϕ〉 = o(εa). As weak convergence of distributions
takes place in the dual of some Ck for adequate integer k, using Banach–Steinhauss
Theorem we have 〈Sε, ϕ〉 6 C‖f‖k, for some constant C. Thus, putting fξ(x) =
e−iξx we obtain for an adequate constant C:

|Ŝε(ξ)| = |ε−a(T̂ (ξ)− ĝ(θε, ξ)| 6 C〈ξ〉k.

Note now that G is G∞ and has a compact support thus we can see that Ĝ ∈ G∞s
and hence for every positive real r we have some constant Cr such that:

|T̂ (ξ)| 6 C1ε
a〈ξ〉k + ε−N+aCr〈ξ〉−r.

For any given p > 0 chose ε = 〈ξ〉(−k−p)/a and now chose r to be such that
((−k − p)/a)a−N − r = −p. We thus obtain for an adequate constant Cp:

∀ξ |T̂ (ξ)| < Cp〈ξ〉−p.

Analogous bounds can be proved for all derivatives. Thus (̂T )(ξ) ∈ S(Rn) hence
T ∈ S i.e., T is a C∞-function. ¤

6.5. Microlocalisation. As in distribution theory, one does not only want to
know “where” some generalized function is “regular”, but also “in which directions”
it is not so microlocally. To make this more precise:

Definition 6.5.1. We say that the generalized function G is “Schwartz” in
the open cone Γ, if for every y ∈ Γ, there is some smooth function ψ, positively
homogeneous out of some ball centered on zero and not containing y, with support
in Γ, such that ψ ≡ 1 on a neighbourhood of y, and ψ.G is “Schwartz”.



116 SCARPALÉZOS

It is clear that if G is “Schwartz” on two open cones Γ1 and Γ2, it is also so in
Γ1 ∩ Γ2 and in Γ1 ∪ Γ2, this property is thus “local” in the space of directions. If
G is “Schwartz” on Γ we write G ∈ G∞s (Γ).

We can now give the following definition:

Definition 6.5.2. We say that GεG(Ω), is “microlocally” regular (G∞) in an
open conic set Γ ⊂ Ω × Rn (“conic” in the second variable), if, for any (x0, y0) ∈
Ω× R there exist an open neighbourhood U of x0, a conic neighbourhood Γ of y0,
φ ∈ D(Ω) with supp(φ) ⊂ U , and ψ, smooth, with support in Γ and positively
homogeneous (of degree 0) out of a ball, not containing y0, such that ψ(y)F(φG)
is “Schwartz”.

The irregular wave fron set of G (I.W. F.(G)) will be the complement of the
largest conic open set Γ where G is microlocally regular.

This definition is consistent with the definition of the wave front set for distri-
butions, because we have the following theorem :

Theorem 6.5.1. If T ∈ D′(Ω), W. F.(T ) = I.W.F.([T ]).

Proof. The proof is a straightforward corollary of Proposition 6.4.2 and is
obtained using a “conic microlocalization” by adequate functions φ and ψ as above.

¤
If now T and S are two distributions such that W. F.(T )∩ (W.F.(S))′ = ∅, TS

is classically defined by TS = F−1(F(T ∗ S)).
We want now to compare [TS] with [T] [S] and investigate whether they are

“equal” in some sense. This is done in the following proposition:

Proposition 6.5.2. If T and S are two distributions, such that:

(1) W.F.(T ) ∩ (W.F.(S))′ = ∅,
then, [T.S] D′

= [T ][S], and thus the usual product of distributions “coincides” in the
distribution sense, with their product as generalized functions.

Sketch of the proof. The hypothesis (1) and Theorem 6.5.4 imply that

(2) I. W. F.[T ] ∩ (I.W. F.[S])′ = ∅.
the required property being local, given any point x0, we can, without loss of gener-
ality, suppose that S and T are with compact support and copy for the generalized
functions [T ] and [S], what we did for the distributions T and S to define their
product.

But the condition (1) on I. W. F for [T ] and [S], becomes, by Fourier Transform,
the condition on the slow directional support of Proposition 5.6.6 [S-1] and by
inverse Fourier transform we easily get the result. ¤

7. Kernel operators

7.1. Definitions. From now on, for technical reasons, the definitions and
proofs will be given in the “nonintrinsic model”, (the translations, back to the
intrinsic model, are a straightforward but cumbersome exercise).
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Having defined “sharp” topologies we can speak of continuous linear operators,
between spaces of generalized functions, A simple way to construct such operators,
is the use of “kernels”; more precisely: Let N ∈ G(Rn×Rn) represented by RN . We
say that N is properly supported, if for every compact K of Rn, π−1

i (K)∩Supp(N)
is a compact subset of Rn × Rn (where πi are (for i = 1, 2) the first and second
projections).

Let us suppose RN also “properly supported” (this is possible without loss of
generality). If G is a generalized function represented by g, we can define:

h(ε, x) =
∫

RN (ε, (x, y))g(ε, y)dy.

This makes sense because if x stays in a compact set K, the integrant is nonzero
only on a compact set.

It is easy to verify that h ∈ EM (Rn) and that if g ∈ N(Rn), so does h. So it is
easy to define an operator N̄ that associates [h] to [g]=G.

Given now our definitions of sharp topologies, it is straightforward to verify
that this operator is continuous.

If we had not supposed N properly supported, we would however have been
able to define an operator from Gc(Rn) to G(Rn), because we can always choose
for G a representative g with compact support.

If now N is a properly supported distribution, it is straightforward (but cum-
bersome) to verify that if T is also a distribution, then N(T ) is equivalent to the
distribution defined by the usual procedure. More precisely:

Proposition 7.1.1. If N is a properly supported distribution kernel and Ñ is
the kernel operator it defines, N̄ being the operator defined by [N ] as above, then if
T is a distribution ∫

Ñ(T )φdx =
∫

(N̄ [T ])φdx, ∀φ ∈ D(Rn).

7.2. Some regularity properties of kernel operators. Now we can “gen-
eralize” some standard regularity results; for example:

Proposition 7.2.1. If N is a properly supported generalized kernel which be-
longs to G∞(Rn × Rn), then N̄ is regularizing (i.e., sends G(Rn) to G∞(Rn)).

Proof. The proof is straightforward using the definitions. ¤
Likewise we prove:

Proposition 7.2.2. If N is G∞, then N̄ is regularizing (from Gc(Rn) to
G∞(Rn)).

We can also prove the following equivalent to a classical result (an analogous
result is proved in [O-1]).

Proposition 7.2.3. If N is a properly supported generalized kernel, such that
N is G∞ out of the diagonal set ∆ in Rn × Rn, and such that: N̄(G∞c (Rn)) ⊆
G∞(Rn), and t(N̄)(G∞c (Rn) ⊆ G∞(Rn), then N̄ is “pseudolocal”, i.e., for any
G ∈ G(Rn), irsupp(N̄(G)) ⊆ supp(G).
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Sketch of the proof. Let x0 ∈ Rn and U an open neighbourhood of x0,
and V another open neighbourhood of x0, relatively compact in U , and choose
φ ∈ D(Rn) such that φ ≡ 1 on V , and supp(φ) ⊂ U . N̄(G) can be written:
N̄(G) = N̄(φG) + N̄((1− φ)G). But N̄(φG) is G∞and N̄((1− φ)G) is represented
by ∫

N(ε, (x, y))(1− φ(y))g(ε, y)dy,

where N and g are adequate representatives; thus if x stays in V ′ ⊂⊂ V , as the
integrant will be integrated only out of V , the couples (x, y) to consider, will never
meet the diagonal; thus the result will be G∞. ¤

Of course other results can also be generalized by analogous methods. (If we
wanted to work with tempered generalized functions, we would have been able to
introduce another definition for kernel operators, using θ̄ for integrations, but here
we will use just the operators defined as above.)

8. Generalized pseudodiferential operators
according to Oberguggenberger

8.1. Introduction. Classically, in order to define a pseudodifferential opera-
tor A, we take an “amplitude” i.e., aC∞ function a(x, y, ξ) such that if K ⊂⊂ Ω×Ω,
α, β, γ ∈ (Nn)3

∀ξ ∈ R sup
(x,y)∈K

|∂α
ξ ∂β

x∂γ
y (a(x, y, ξ))| 6 C〈ξ〉m−α,

where C and m are adequate constants, and define the operator A on D(Ω) (and
by duality on D′(Ω)), by:

A(φ) =
∫∫

exp(−i(x− y)ξ)a(x, y, ξ)φ(y) dy dξ.

The integral being understood as an “oscillatory integral”), i.e.

def=
∫∫

exp(−i(x− y)ξ)(1 + ∆ξ)k(a(x, y, ξ)φ(y)) dξ̄ dy.

where d̄ξd def= dξ/2πn, and k is large enough for convergence.
Oberguggenberger and Gramchev investigated, in [O-1], how this could be gen-

eralized for G(Ω). In this section, we will recall some definitions, and sketch how
some microlocality properties can be generalized, in the frame of new generalized
functions.

8.2. Definitions of generalized amplitudes and P.D.O. Let aε(x, y, ξ) :
Ω× Ω× Rn → C be C∞ on (x, y, ξ), and locally bounded on the variable ε ∈ R+.
We will say that a is a “generalized amplitude” of the following types, if:

1) “General generalized amplitude”: ∃m such that ∀(α, β, γ) ∈ (Nn)3 ∀K ⊂⊂
Ω× Ω, ∃N ∈ N, ∃C > 0, for ε small enough, for any ξ in Rn

sup
K
|∂α

ξ ∂β
x∂γ

y (aε(x, y, ξ))| 6 Cε−N 〈ξ〉m−|α|.
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2) “Regular generalized amplitude”: ∃m, ∃N ∈ N, ∀(α, β, γ) ∈ (Nn)3, ∀K ⊂⊂
Ω× Ω, ∃C > 0 such that for ε small enough and any ξ ∈ Rn:

sup
K
|∂α

ξ ∂β
x∂γ

y (aε(x, y, ξ))| 6 Cε−N 〈ξ〉m−|α|.

3) “Smoothing amplitude”: ∃N ∈ N, ∀m ∈ R, ∀(α, β, γ) ∈ (Nn)3, ∀K ⊂⊂
Ω× Ω, ∃C > 0 such that for ε small enough:

sup
K
|∂α

ξ ∂β
x∂γ

y (aε(x, y, ξ))| 6 Cε−N 〈ξ〉m−|α|.

4) “Null amplitude”: ∃m, ∀(α, β, γ) ∈ (Nn)3, ∀K ⊂⊂ Ω× Ω, ∀q ∈ N, ∃C > 0,
such that for ε small enough and for any ξ

sup
K
|∂α

ξ ∂β
x∂γ

y (aε(x, y, ξ))| 6 Cεq〈ξ〉m−|α|.

5) “Classical amplitude”: If a is an “general amplitude” not depending on ε
If [u] ∈ Gc(Rn) we can define A([u]) as being represented by:

A(uε)(x) =
∫∫

exp(i(x− y)ξ)aε(x, y, ξ)u(ε, y) dy dξ̄

def=
∫∫

exp(i(x− y)ξ)〈ξ〉−p(I −∆)p(aε(x, y, ξ)uε(y)) dy dξ̄,

where p is chosen large enough for convergence.

It is now easy to verify that if u ∈ EM,c(Ω), then A(u) ∈ EM (Ω), and that if
u ∈ Nc(Ω), A(u) ∈ N(Ω). Thus we can define the operator A, as an operator from
Gc(Ω) to G(Ω),

If, paraphrasing what is done in the classical case, we put an adequate sharp
topology in Gc(Ω), we can see that this operator is continuous. One can also see
that, if a is a “null amplitude”, then A[u] = 0 (thus amplitudes can be considered
as members of a quotient space.)

Note that, using θ̂, we can have an alternative definition of O.P.D. not using
oscillatory integral techniques; such an idea could be used if we wanted to define
“Fourier integral” operators with globally critical phase function. (An analogous
idea has been used by Pilipowić in [Pi-1])

8.3. Properly supported operators.

Definition 8.3.1. An operator A is called a properly supported operator iff
∀K ⊂⊂ Ω, ∃K ′ ⊂⊂ Ω, ∃K ′′ ⊂⊂ Ω, such that

i) supp(u) ⊂ K ⇐ supp(A(u)) ⊂ K ′.
ii) If u = 0 on K, then A(u) = 0 on K ′′.

It is easy to see that, if A is a kernel operator with a properly supported kernel,
then A is a properly supported operator.

In [O-1] Oberguggenberger and Gramchev proved that:

Theorem 8.3.1. If A is a properly supported P.D.O, then it sends Gc(Ω) to
itself, and can be extended to an operator from G(Ω) to itself.
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Sketch of the proof. Using the definition, the first assertion is straightfor-
ward. As for the second: Choose an exhaustive sequence Ωn, with Ω̄n ⊂⊂ Ωn+1,
and put Kn = Ω̄n and let K ′

n, K ′′
n be as in the definition, and increasing. Let

κm ∈ D(K ′′
m+1) with κ ≡ 1 on K ′′. Put Am(u) def= A(κmu)/Ωm. One can easily

verify that the Am(u) constitute a coherent sequence of elements of G(Ωm) and
thus define a unique element “A(u)” of G(Ω). ¤

The continuity of A is a straightforward consequence of definitions. If we can
define A with the help of a “properly supported amplitude” on (x, y), then it is
easy to verify that A is “properly supported”.

8.4. Regular amplitudes and regular P.D.O. Oberguggenberger and
Gramchev noticed that the generalized P.D.O. with regular amplitude share many
properties in common with the classical ones; for example

Proposition 8.4.1. If A has a regular amplitude, then it sends G∞c (Ω) to
G∞(Ω).

Sketch of the proof. Looking at representatives we have (by Leibnitz for-
mula):

∂αA(u)(ε, x) def=
∑

λ+µ=α

cλ,µ

∫∫
exp(i(x− y)ξ)iξλ〈ξ〉−2N (I −∆y)2N∂µ(aε(x, y, ξ)u(ε, y)) dy dξ̄,

where N is large enough for convergence.
Note that, when x remains in a compact set K and y ∈ supp(u), we have:

|∂µ(aε(x, y, ξ)| 6 Cε−M 〈ξ〉m,

for an adequate constant C, and ε small enough, m and M being constants, not
depending on µ, (a is regular). And as u is regular, we have a constant p such that
for any ν ∈ Nn, sup |∂νu(ε, y)| 6 ε−p, for ε small enough. Now the end of the proof
is obtained by straightforward computation. ¤

The classic P.D.O. are “pseudolocal” (ssupp(A(u)) ⊆ ssupp(u). The “same” is
true for regular P.D.O. because, as proved in [O-1],

Theorem 8.4.2. If A admits a regular amplitude and u ∈ G∞c (Ω), then

isupp(A(u)) ⊆ isupp(u).

The proof can be based on the following:

Proposition 8.4.3. If A is a properly supported regular P.D.O., if W ⊂⊂ Ω,
and if u restricted to the open set W is regular, the same is true for A(u)/W

Sketch of the proof. Let ω ⊂⊂ W , K ⊂⊂ ω and φ ∈ D(ω), φ ≡ 1 on K,
then A(u)−A(φ(u)), is represented by I(ε, x) defined by:

I(ε, x) =
∫∫

exp(i(x− y)ξ)|x− y|2p(−∆)p(aε(x, y, ξ)u(ε, y)(φ(y)− φ(x))) dy dξ̄,



COLOMBEAU’S GENERALIZED FUNCTIONS 121

where p is as large as necessary. This makes sense because if φ(x) − φ(y) 6= 0,
|x − y| > δ = d(K, ∂(ω)). So applying ∂α

x on the above expression, we obtain by
straightforward computation, using Leibnitz formula, and the regularity of u, that
A(u) − A(φ(u) is regular. But we know that A(φ(u)) is regular on ω, so A(u) is
also regular on ω. ¤

8.5. Smoothing operators and global symbols. A smoothing operator is
an operator from Gc(Ω) to G∞(Ω). As one can guess:

Proposition 8.5.1. If a is a “smoothing amplitude”, then it defines a smooth-
ing operator.

Proof. If U ∈ Gc(Ω) is represented by u, also with compact support, then
A(U) is represented by I, where:

Iε(x) =
∫∫

exp(i(x− y)ξ)〈ξ〉−2k(I −∆y)k(aε(x, y, ξ)u(ε, y)) dy dξ̄,

where k is large enough for convergence. By Leibnitz rule, this can be written:
∑

|α+γ|62k

∫∫
Cα,γ exp(i(x− y)ξ)〈ξ〉−2k∂α

y (aε(x, y, ξ))∂γ
y (u(ε, y) dy dξ̄,

where Cα,γ are adequate constants. Again by Leibnitz rule, for adequate constants
we have the formula

(3) ∂λ
x (I(ε, x)) =

∑

|α+γ|6k,µ+ν=λ

Cα,γ,µ,ν

×
∫∫

exp(i(x− y)ξ)(iξ)µ〈ξ〉−2k∂ν
x∂α

y (aε(x, y, ξ))∂γ
y u(ε, y) dy dξ̄.

But u belongs to EM,c(Ω), thus, there exist N , such that for all γ, with |γ| 6 k
sup(∂γ

y u(ε, y)) 6 ε−N , and a is “smoothing”, thus there exist M such that ∀α, ∀ν,
∀(x, y) ∈ K × (supp(u)) then, for ε small enough, |∂α

y ∂ν
x(aε(x, y, ξ)| 6 ε−M 〈ξ〉m.

Now, putting those bounds into (3), one obtains bounds not depending on λ. Thus
we can now easily conclude. ¤

We also can guess that “smoothingness”, depends on what happens near the
diagonal. This is true because:

Proposition 8.5.2. If the amplitude a is flat, regular, and equal to zero on the
diagonal, then a is a smoothing amplitude.

To prove this, we first prove the following lemma:

Lemma 8.5.3. If a is regular and flat and zero on the diagonal, there exist N
and m, such that any for any α, β, γ, q, for ε small enough, and any (x, y) ∈ K×K ′

|∂α
ξ ∂β

x ∂γ
y (aε(x, y, ξ)/|x− y|2q) 6 ε−N 〈ξ〉m−α,

and thus a/|x− y|2q, is extended to a regular amplitude.
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Sketch of the proof of the lemma. Write y = x + h, and use Taylor
expansion up to order 2q; and use now the fact that all derivatives are zero on the
diagonal, and the rest is divisible by |x− y|2q as well as the fact that a is a regular
amplitude. ¤

Proof of the proposition. Looking at formula (3), and multiplying and
dividing the integrants by |x− y|2k, with k > |λ|, we get terms like:
∫∫

exp(i(x− y)ξ)|x− y|2k(|x− y|−2k(iξ)µ〈ξ〉−2k∂ν
x∂α

y (aε(x, y, ξ)∂γ(uε(y)) dy dξ̄.

By integration by parts on ξ, this is equal to:
∫∫

exp(i(x− y)ξ)(−∆k
ξ (|x− y|−2k(iξ)µ〈ξ〉−2k∂ν

x∂α
y (aε(x, y, ξ)))∂γ

y u(ε, y) dy dξ̄.

But as |γ| 6 2k, sup |∂γ
y u(ε, y)| 6 ε−N , for ε small enough. Now by Leibnitz rule,

we easily see that the expression in brackets is bounded by C〈ξ〉m−2k+µε−M for an
adequate constant C. Thus we can now easily see that we can find a constant C ′

such that for ε small enough,

sup |∂λ
xIε(x)| 6 C ′ε−N−M .

As M + N does not depend on the order of derivation (λ), A(u) is regular. ¤

Now we can deduce that each P.D.O. can be described, up to a regularizing
operator, by an amplitude concentrated on {|x− y| 6 a}. We can even prove that:

Proposition 8.5.4. If A is a regular P.D.O., then it can be defined, up to a
smoothing operator, by an amplitude depending only on x and ξ, that will be called
a “global symbol” of the operator.

Sketch of the proof. For given δ > 0, we write A = A1 + A2, where A1

has an amplitude concentrated on {|x− y| 6 δ}, and A2 is smoothing, but now A1

is properly supported, so A1(exp(ixξ) makes sense. But A1(U) can be defined by:

A1(u)(ε, x) = A1

(∫
exp(ixξ)ûε(ξ)dξ̄

)
.

(This makes sense because, u being with compact support, we have F−1F(u) = u.)
But as û is rapidly decreasing on ξ,

A1

(∫
exp(ixξ)ûε(ξ)dξ̄

)
(x)

=
∫∫∫

exp(i(x− y)ξ)[(exp(−ixξ)A1(exp(ixξ)]u(ε, y) dy dξ̄.

and pε(x, ξ) = [exp(−ixξ)A1(exp(ixξ)] is the required “symbol”.
(Here we abusively use the same notations for representatives and generalized

functions.) ¤
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8.6. Microsupport and “pseudomicrolocality” of regular P.D.O.

Definition 8.6.1. Let A be a regular P.D.O. with global symbol a. We say
that A is “microlocally smoothing” in the neighbourhood of (x0, y0), if there exist
an open conic neighbourhood (ω × Γ) of (x0, y0), such that if φ and ψ are two C∞

functions such that:
i) φ ∈ D(ω), φ ≡ 1 on ω′, where ω′ is some open neighbourhood of x0 in ω.
ii) ψ(ξ) is a positevely homogeneous function for |ξ| > 1, with support in Γ and

ψ ≡ 1 on Γ′ ∩c B(0, 1), where Γ′ is some open conic neighbourhood of ξ0.
Then: ψ(ξ)φ(x)aε(x, ξ) is a smoothing symbol.
The complement of the largest open conic (always “conic” will mean conic

in ξ) where A is “microlocally smoothing”, will be called the “microsupport” of
A(µ supp(A)).

This definition is appropriate because a “microlocally smoothing symbol” gives
rise to a “microlocally smoothing operator”; more precisely:

Proposition 8.6.1. If A is a regular P.D.O., microlocally smoothing in the
conic neighbourhood of (x0, ξ0), then if U ∈ Gc(Ω), imply that A(U) is microlocally
regular in the neighbourhood of (x0, ξ0).

Sketch of the proof. We have to investigate the behavior of F(φ(A(U)),
which can be represented (up to elements of G∞s (Rn)) by:

Iε(η) =
∫∫∫

exp(i(x− y)(ξ − η))φ(x)〈ξ〉−2kaε(x, ξ)(I −∆y)k(uε(y)) dx dy dξ̄,

where a is the global symbol of A, u a representative of U that we can suppose with
compact support, and k large enough for convergence, for example, such that the
absolute value of the integrant is bounded, for ε small enough by ε−N−L〈ξ〉−n−1,
where N is the constant used in the definition of the regularity of the symbol and
L is such that: vε(y) def= (I −∆y)kuε(y) 6 ε−L.

Put bε(x, ξ) = 〈ξ〉−2kφ(x)a(ε, ξ). The above integral can be written as:

Iε(η) = I1
ε (η) + I2

ε (η),

where

I1
ε (η) =

∫∫
exp(ix(xi− η))ψ(ξ)bε(x, ξ)v̂ε(ξ) dx dξ̄

I2
ε (η) =

∫∫
exp(ix(ξ − η))(1− ψ(ξ))bε(x, ξ)v̂ε(ξ) dx dξ,

where ψ is as in the Definition 8.6.1. ¤

It is easy to verify (using definitions) that I1
ε is in G∞s (Rn), because it is clear

that ψb is a smoothing symbol.
Let us now investigate the behavior, for any given p ∈ N and α ∈ Nn, of

(4) |η|2p∂α
η (I2

ε (η)) =
∫∫

exp(ix(ξ − η))|η|2p(−ix)α(1− ψ(ξ))bε(x, ξ)v̂(ε, ξ) dx dξ̄.
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Multiplying and dividing the integrant by 〈ξ − η〉2p, and integrating by parts, we
can write the expression in (4) as:

∫∫
exp(ix(ξ − η))(|η|2p〈ξ − η〉−2p)(1− ψ(ξ)∆p

x((−ix)αbε(x, ξ))v̂(ε, ξ) dx dξ.

We have to bound this when η remains in a cone Γ′′ conically relatively compact in
Γ′ (i.e., (Γ′′ ∩ S(0, 1)) ⊂⊂ (Γ′ ∩ S(0, 1)). To do this we use the following geometric
lemma (whose proof is an easy exercise).

Lemma 8.6.2. If Γ′′ is a conic open set, relatively conically compact in an open
cone Γ′, then there exist δ > 0, such that ∀ξ ∈c Γ′, ∀η ∈ Γ′′, |η| · |ξ − η|−1 6 δ−1.

It is straightforward to verify that the integrant is bounded by ε−N−L〈ξ〉−n−1,
for ε small enough, and thus there is a constant C such that, for ε small enough,
when η remains in the conic neighbourhood Γ′′ of ξO

|η|2p∂αI2
ε (η) 6 Cε−N−L.

As N +L does not depend on p and α, we have proved that I2 represents an element
of G∞s (Γ′′).

Following the same steps, using pseudolocality (isupp(φA(U)) = isupp(A(φU))
and the microlocal regularity of U one can prove

Proposition 8.6.3. A regular P.D.O. A is pseudomicrolocal, i.e., if U is
microlocally regular in the (conic) neighbourhood of (x0, ξ0), then A(U) is also
microlocally regular in the neighbourhood of (x0, ξ0); and thus

I.W. F.(A(U)) ⊆ I. W. F.(U).

9. Conclusion

We have seen how Housdorf topological and uniform structures can be defined
on various spaces of new generalized functions, and how most microlocal definitions
and properties can be generalized. It appears that the structure of generalized
functions is quite close to classical structures, (replacing some times equality by
“equality in the sense of distributions”).

One can conjecture that many more classical results can be generalized along
those lines. For example many kinds of generalized “Fourier integral operators
“might be defined, as well as “oscillatory integrals” without classical meaning.
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