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AN ASYMPTOTIC FORMULA
FOR A SUM INVOLVING ZEROS
OF THE RIEMANN ZETA-FUNCTION

Yuichi Kamiya and Masatoshi Suzuki

ABSTRACT. E. Landau gave an interesting asymptotic formula for a sum in-
volving zeros of the Riemann zeta-function. We give an asymptotic formula
which can be regarded as a smoothed version of Landau’s formula.

1. Introduction

Let ¢(s) be the Riemann zeta-function. It is important to study non-trivial
zeros p = [+ iy of ((s). Weil’s explicit formula is one of useful formulas for the
study of p. Roughly speaking, it connects certain sums involving p with sums
involving prime numbers in terms of test functions and those Mellin transforms.
We can refer to Lang [6] or Patterson [7] for the details of Weil’s explicit formula.

In this paper, as an application of Weil’s explicit formula with a certain test
function, we shall study the asymptotic behaviour of a quantity involving p, that

is,

(1.1) 3w,
P

Some suitable choice of the test function enables us to get asymptotic formulas for
(1.1).

THEOREM 1.1. (i) For v=u or v =0 we have

1 1 log(16m2)+C
Zeu/ﬂ—vp — log, _ M + O(l)’ U — +0,
)

V16emu U V167w

where C is the Euler constant, and the sum Zp runs over all non-trivial zeros p
counting with multiplicity.
(ii) For any integer m > 2 we have

: A(m
ZeuPZJr(logm)p _ ( ) + O(l), u — 40,
Varu
P
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where A(m) = logp if m is a power of a prime p and A(m) = 0 otherwise. The
implied constant depends on m.

(ii)" Let K be a closed interval contained in (—o0,0) —J,,{—logm}, where m
is a power of a prime. Then we have

Zeup2_vp — 0(1), u — +0,
P

uniformly for v in K.
(iii) For any integer m > 2 we have

2 A(m)
eur—(osm)p — 7 4L O(1), u— +0.
Ep: my4ru ()

The implied constant depends on m.
(iii)" Let K be a closed interval contained in (0,00) — Uy, {logm}, where m is
a power of a prime. Then we have

Zeu;ﬂ,vl) — O(]_)’ u — +0,
p

uniformly v in K.

We can see asymptotic behaviours different from each other for the quantity
(1.1) and the difference depends on the choice of v. The first and second terms
on the right-hand side of the asymptotic formula in (i) come from the logarithmic
derivative of the gamma factor appeared in the functional equation of {(s). On the
other hand, the first terms on the right-hand sides of the asymptotic formulas in
(ii) and (iil) come from the logarithmic derivative of ((s).

The asymptotic formula in (ii) is related to the results of Landau [5], Gonek
[3] [4], and Fujii [2]. Landau [5] proved that, for fixed = > 1,

T
p— _
E xf = 27TA(:E) + O(logT)
0<y<T

holds. Gonek [3] [4] gave uniform versions of Landau’s result, and Fujii [2] gave a
refined formula for it under the Riemann Hypothesis. The asymptotic formula in
(ii) may be regarded as a smoothed version of Landau’s with the measure given by
the Gaussian function.

The asymptotic formula in (i) may be regarded as a smoothed version of the
asymptotic formula for N(T), number of non-trivial zeros p with 0 < v < T. To
see this, let us consider the case v = w in (i) under the Riemann Hypothesis. Then
the asypmtotic formula in (i) is

2
—u(ijae?y L ) 1 log(167%) +C
E e =——1o ———— 4+ 0(1).
V167w gu V16w S
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The sum on the left-hand side is written as an integral form, and, by integration
by parts, it follows that

o0 T2 1 1 log(1672) +C
N (e T = = Jog — — 28T 5.
/0 (Tyd(e™™) o/Iomu 2 u 2V/16mu S
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2. An explicit formula for a sum involving zeros
of the Riemann zeta-function

In this section we give an explicit formula, which is a variant of Weil’s explicit
formula.

LEMMA 2.1. For any positive uw and any real v we have

Zeup27'up — QU log 7 67v2/4u +1

4y
P
1 s _ N2 1 > A(n) e 2
_ Aln)e (v+logn)®/4u e (v—logmn)*/4u
\/47runz::2 () \/47TunZ::2 n
u/4—v/2 o 1 t )
g /,Oo g 44| e gt — (B G)0),

where the functions E and G, are defined by

1 1 1 2
E(z) = (7 - 1) lzl/2=e/2 G () = —o?/4u
@) = Gr—7 ~qa T1)e @)= Vit

and E x G, means the convolution of E and G, that is,
(ExGy)(v) = / E(z)Gy,(v—z)d.

PROOF. Since
dl’ 2

< 1
—(v+log x)? /4u s __ us“—vs
—ec ’— =¢e ,
o VAdru x
we have

1 14+d0+ico C/

00 1 ,
— s eusz—vsds - _ Aln e—(U-HOg") /4u
211 14+86—ioco C ( ) nZ:Q ( )\/ﬁ

We also have

1 1+5+ico 41 R 1 —d+ioco 4/ 5 R
S(S)eus —vs g S(S)Bus 7vsd5+zeup —vp _ pu—v.
p

2mi 1+6—1i00 C 2mi —d—100 C
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The first term on the right-hand side can be expressed in the following form by the
functional equation of {(s):

1 —d+i00 CI 1T /s 1T /1—s ,
b - 1_ 1 _——— (7) _77(7> us —vsd
2 ( cU-srlem =55 3) a2 )¢ §

—d—ioc0

1 & An) ~(v—logn)?/4 logm 24
_ e~ (v—logn u_|_ e~V u_1q
\/47runzz:2 n 4y

1 (T 4\ Tl N\ wisaeine ,
o e v i (1/2+1it) _U(1/2+Zt)dt.
ir _w(r(4+’2)+r(4 12)>€

Hence we have

Zeupzfvp —eUTY _ log 7 671}2/411, +1
5 4y

2 2
e—(v+10g71) /4w e—(v—logn) /4u

1 1 <= An)
" Vi 2N Vi

u/d=v/2 oo /1 gy TV /1t 2,
67 I -7 I e —ut -Ht(u—'u)dt
T /_ (I‘(4+22)+F(4 22))6 '

o0

This formula is a special case of Weil’s explicit formula (with the test function
ﬁe_(v“og 2)*/4u) "but we supply a proof to make the paper self-contained.

Let us denote the last term on the right-hand side by H. By the expression
(see, for example, [1, p. 28, 1. 16])

I °° 1 1
f(z) =logz —/ (e“ 1" 2 + 1)6’”dm, Rez > 0,
0 _
we have
u/4—v/2 oo 1 ¢ 1 t }
H = eT/ <log<4 + 2'5) + 1og(Z . 12)) Ut Hit(u—o) gy
™ —00
™ o \e¥ — T U
w/4—v/2 00 1 t )
- 5 / logh + ii‘ LTt gy
™ —0o0

_ /°° (; I 1)e—m/2—x/2$e—<v—x>2/4udx_

Co\e2lfl =1 20 Aru

Hence we obtain the lemma. O
3. Proof of Theorem

To obtain the estimates in the theorem we consider separately each term on
the right-hand side of Lemma 2.1.

LEMMA 3.1. We have 0 < (E*G,)(v) < 1.
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PROOF. It is easy to verify that 0 < < 1. Hence
0< (ExGy)(v) < / Gl O

Here, we remark on the convolution (F x G,)(v). The assertion of Lemma 2.1
is enough for the proof of the theorem, but we can obtain a more precise behaviour
of the convolution. It is not hard to verify that the function E has the property
|E(v —x) — E(v)| < Clz|, where C is a positive absolute constant. Hence we have

(B + Gu)(v) = E(v)| </OOIE(U—$) E(v)|Gy(z)dz

4
c/ 2] Gu(w)dz = Oy 22,
T

that is, (F * Gy)(v) = E(v) + O(V/u).
The next lemma is the key for the proof of the theorem.

LEMMA 3.2. For 0 < u < 1 we have
> 1 t 2, .
] ‘7 ‘7‘ . —ut -Ht(u—v)dt
/_Oo og 1 —1—22 e

B O(ﬁ) ifv#u and v #0,
Vilogl —/Z(4log2+C)+O(1), ifv=wuorv=0,
where the implied constants are absolute.

PrOOF. Firstly, we consider the case v # u and v # 0. We have

Lt 2,
(31) / log‘Z + 15’ LUt +zt(u7v)dt

i 2 2 uU—v
:/0 10g<116+z%u) e Cos(t(\/ﬁ ))\%

/0 (e i+ﬁ> -e*>sm<““ﬁ“>>df

e [l ) e

:‘wa%f: <ﬁ;%®fﬁ“*m@f»“
e (g

N

S oo th L)

say. As for I; and I, we easily have
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32) |L|< 2/ et §/ dt + 2/ Lt =10~
0 t2 + u/4 u 0 f t2 f

(3.3) |I2] < 8/ e~V dt = 4y/7.
0

As for I3 we have

2

34) || < /(log( +i—u)‘e—f2(4t2+2)dt

<1og1-/we—t2(4t2+2)dt+/2‘1og(“+t2)‘ (442 + 2)dt
u 0 0 16 4
+/Oo’log(u+t2>
) 16 4

1 o 1
< log —+ / logt - e (4% + 2)dt < log -
2

e (442 + 2)dt

Substituting (3.2), (3.3), and (3.4) into (3.1), we obtain the first estimate of this
lemma.

Next, we consider the case v = u. We have

(3.5) / log‘ +zf‘ —ut® gt
oo 14

& 1 2 2 dt
= 1 [R— . —t -
/0 Og(lﬁ * 4u) © Va

log i o ‘ e w  t? 2
u ity — [ 1 (7 7) gt
Va o +f/o *\16 "2
ﬁlogu 1 o0 t2 _¢ & —t
:7\/1; +ﬁ ; logz~e dt+\/ﬂ | log(1+42) e " dt
log 1 1 1
_vT Su g =,
2 JVu Vu Vu
say. As for Jy we have
v u 2 ° u 2
_ —t —t
(3.6) J2f/0 1og(1+ t2)~e dt+/ﬁlog(1+4t2).e dt
</ﬁ1 (1+ o )de+ /OO Lot
</ og 1 ﬁt26
5 Vi oy u (1 _p
= Vulog ~ dt —e "dt
\/ﬂog4+/o 42 +u +zx/ﬂﬁe

g\/ﬂlogng?\/ﬂJr%/ —dt<<\f
Vi

12
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For J; we have

(3.7) Ji = / logt-e ' —— —log4 / eV dt
0 2 0

1,1 Y
= 5T (5>7\/E10g2— > (4log2+0).

Substituting (3.6) and (3.7) into (3.5), we obtain the second asymptotic formula in
this lemma in the case v = u.

Finally, we consider the case v = 0. We have

3.8 log|~ + iL| - emut*Hitugy
( 87 ti5
e 1 ¢ dt
= /0 log(16 7) et cos(\/ﬁt)ﬁ
log% > 2 1 o0 t? 2
= e~ cos(vut)dt + —= log — - e cos(y/ut)dt
. b e
1 > U 42
+ ﬁ/o log(l + E) ~e" cos(y/ut)dt
log L 1 1
LK+ —=Ka + K,
Vu Vu Vu
say. As for K3 we have
(3.9) |K3] < Jo < V.
For K, and K> we use
. cos(vut) =1+ O(ut”).
3.10 Vu 14 O(ut?

From (3.10) it follows that
(3.11) K, :/ e dt + O(u/ e—t2t2dt> = g +O(u),
0 0

[e'e] t2 [e'e] t2
(3.12) Ky = / log — - e ¥ dt + O(u/ log — - e_tztzdt>
0 4 0 4

= —g(4log2 +C) + O(u).

Substituting (3.9), (3.11), and (3.12) into (3.8), we obtain the second asymptotic
formula in this lemma in the case v = 0. O

To obtain the theorem we now consider the asymptotic behaviour of the quan-
tity

ZA e —(v+logn)?/4u 1 i n (v—logn)?/4u

3.13
( ) \/ 4u s NZT

n=2
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in Lemma 2.1. The behaviour of this quantity depends on the choice of v. For the
casev=0and 0<u<1
e—(logn)2/4u — e—(logn)z/Sue—(logn)z/Su < e—(logn)Q/Se—(logQ)z/E%u

)

and hence (3.13) is of exponential decay as v — +0. For the case v = —logm,
m > 2 is an integer, and 0 < u < 1 we have
e~ u L (—log m+logn)? <e 8u(—logrn—i—logn)? 5 (— log m+log(m+1))?
L e #0em?(1-RER)® = 5 (~ logmtlog(m+1))* ) £y
and

1 2 1 2 1 2 1 2
e—m(—logm—logn) < e—fu(logn) < e—g(logn) e—@(logQ) ,
and hence (3.13) is

A(m) ( 7% log2 o0 . 0
= — —+ O 3 Og TL)
Vamu Z

e~ 8u( log m+log(m+1))
Vu

For other v we can similarly consider the asymtotic behaviour of (3.13).
Combining the above arguments and Lemmas 2.1, 3.1, and 3.2, we obtain the
assertion of the theorem.

_|_

Z Aln Z A(n)eé(logn)zi>>.

m#n=2 n>m?2
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