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Abstract. The Hecke L-function Hj(s) attached to the jth Maass form
for the full modular group is estimated in the mean square over a spectral
interval for s = 1

2
+ it. As a corollary, we obtain the estimate Hj(

1
2

+ it) ¿
t1/3+ε for t À κ

3/2
j , where 1/4 + κ2

j is the respective jth eigenvalue of the

hyperbolic Laplacian. This extends a result due to T. Meurman.

1. Introduction

We adopt the notation of the monograph [Mo] of Y. Motohashi; thus the Hecke
L-function Hj(s), defined for Re s > 1 by the Dirichlet series

Hj(s) =
∞∑

n=1

tj(n)n−s,

is related to the jth Maass form ψj for the full modular group, and the coefficients
tj(n) are the corresponding Hecke eigenvalues for ψj . The form ψj is an eigen-
function of the hyperbolic Laplacian, and the respective eigenvalue is written as
1/4 + κ2

j with κj > 0. In [JM1] it was proved—as a generalization of the main
result in [J4] concerning the case t = 0—that

∑

|κj−K|6K1/3

αj

∣∣∣Hj

(1
2

+ it
)∣∣∣

4

¿ K4/3+ε for 0 6 t 6 K2/3,
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where αj = |ρj |2/ cosh(πκj) with ρj the first Fourier coefficient of ψj . Since it is
known that αj À κ−ε

j (see [Iw1]), this implies that

(1.1) Hj

(1
2

+ it
)
¿ κ

1/3+ε
j for 0 6 t 6 κ

2/3
j ;

in the case t = 0, this was first shown by A. Ivić [Iv2]. The “trivial” bound is
Hj( 1

2 + it) ¿ (t + κj)1/2+ε which follows from the functional equation of Hj(s) by
the convexity principle, so that the estimate (1.1) may be viewed as a subconvexity
bound. More generally, one may conjecture the validity of the hybrid subconvexity
estimate

(1.2) Hj

(1
2

+ it
)
¿ (κj + t)1/3+ε for t > 0.

This has been proved by T. Meurman [Me2] for t À κ3
j , but in view (1.1) the case

κ
2/3
j ¿ t ¿ κ3

j still remains open. It is our purpose to shrink this problematic range

to κ
2/3
j ¿ t ¿ κ

3/2
j as a corollary of our main theorem. Finally, in [JM2], even

this gap is filled, and the conjecture (1.2) is thus verified. It should be noted that
the same estimate without 1/3 in the exponent would be an analogue of Lindelöf’s
hypothesis, and this is of course the ultimate goal in this context.

As a notational convention, we let ε denote generally a small positive constant,
not necessarily the same at each occurrence, which may depend on other ε-numbers,
whereas δ will stand for a small positive constant which will be fixed throughout
that context where it is introduced.

Theorem. For t > 0 and 1 ¿ G ¿ K, we have

(1.3)
∑

K6κj6K+G

αj

∣∣∣Hj

(1
2

+ it
)∣∣∣

2

¿ (GK + t2/3)1+ε.

Choosing G = 1, we obtain immediately the following corollary.

Corollary. For t À κ
3/2
j , we have Hj(1

2 + it) ¿ t1/3+ε.

For orientation, we note that a standard argument based on the approximate
functional equation for Hj(s) and the spectral large sieve (Lemma 4 below) gives
the bound ¿ (GK+t)1+ε for the sum in (1.3), so that the case t ¿ K1+ε is anyway
clear. The remaining case t À K1+ε will be divided into two subcases,

K1+ε ¿ t ¿ K3+ε,(1.4)

t À K3+ε,(1.5)

which will be treated by different arguments. Namely, in the case (1.4), we are going
to apply the Bruggeman–Kuznetsov Spectral–Kloosterman sum formula and van
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der Corput’s method, while the main tools in the case (1.5) will be certain transfor-
mation formulae for Dirichlet polynomials (analogous to those in [J1]), the method
of “overlapping intervals”, the spectral large sieve, and an arithmetic lemma from
the Bombieri-Iwaniec method. The transformation device and the last mentioned
lemma are common features of the present paper with [J2], where an alternative
proof of Iwaniec’s well-known estimate for the fourth moment of the zeta-function
over a short interval on the critical line was given.

Though the arguments in the cases (1.4) and (1.5) will be different, the start-
ing point is nevertheless the same: by the approximate functional equation for
Hj(s), say in the form of the Reflection Principle due to K. Ramachandra (see [Iv1,
Sec. 4.4]), we may reduce the proof of (1.3) to showing that

(1.6)
∑

K6κj6K+G

αj |Sj |2 ¿ (GK + t2/3)1+ε,

where

(1.7) Sj =
∑

M6m6M ′
tj(m)m−1/2−it

with M < M ′ 6 2M and M ¿ t. Since (1.6) follows immediately from the spectral
large sieve inequality if M ¿ (GK + t2/3)1+ε, we may suppose henceforth that

(1.8) (GK + t2/3)1+ε ¿ M ¿ t.

2. The case (1.4)

It suffices to prove (1.6) in the special case

(2.1) G = t2/3K−1−δ + Kδ,

where δ > 0 is a small positive constant, for the general assertion then follows on
subdividing the range for κj into subranges of length about (2.1) if the original range
is longer, applying then (1.6) to each of these, and adding finally the estimates.
Also, an estimate for the weighted sum

(2.2) S =
∞∑

j=1

αjh(κj)|Sj |2,

where

h(r) = K−2
(
r2 +

1
4

) {
exp

(
−

(r −K

G

)2
)

+ exp
(
−

(r + K

G

)2
)}

,

entails the same estimate for the sum (1.6), so that we may henceforth consider the
sum (2.2). We write it as

(2.3) S =
∑

M6m,n6M ′
(mn)−1/2(m/n)it

∞∑

j=1

αjh(κj)tj(m)tj(n),
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and apply in the inner sum the following Bruggeman–Kuznetsov sum formula (for
a proof, see [Mo, Theorem 2.2]) which transforms a spectral sum into an arithmetic
expression involving Kloosterman sums

S(m,n; `) =
∑

a (mod `),(a,`)=1

e((am + ān)/`),

where aā ≡ 1 (mod `) and e(α) = e2πiα.

Lemma 1. Let h(r) be even and regular in the strip | Im r| 6 1/2, and there
|h(r)| ¿ (1 + |r|)−2−ε. Then we have, for any positive integers m, n,

(2.4)
∞∑

j=1

αjh(κj)tj(m)tj(n) = − 1
π

∫ ∞

−∞

σ2ir(m)σ2ir(n)
(mn)ir|ζ(1 + 2ir)|2 h(r) dr

+
δm,n

π2

∫ ∞

−∞
rh(r) tanh(πr) dr +

∞∑

`=1

1
`
S(m,n; `)h+(4π

√
mn/`)

with

h+(x) =
2i

π

∫ ∞

0

rh(r)
cosh(πr)

(J2ir(x)− J−2ir(x)) dr.

Here δm,n = 1 if m = n, and δm,n = 0 otherwise.

The contribution of the first term on the right of (2.4) to the sum S is negative
(because σ2ir(n)n−ir is real for real r) and can thus be neglected. Also, the δ-term
is easy, for its contribution is ¿ KG.

In our treatment of the Kloosterman part in (2.4), we first truncate the sum
over ` as in [JM1] (or [JM2]), namely to the range

(2.5) 1 6 ` ¿ `0 = M(GK)−1 log K.

Indeed, the contribution of the remaining values of ` to S is ¿ K−A, for any fixed
positive A, which is negligible.

Next the integral transform h+(x) and the Kloosterman sum S(m,n; `) are
substituted into (2.4), and the resulting expression is further substituted into (2.3),
where the sums over m and n will be estimated for fixed r, `, and a.

At this stage, we need the following asymptotic expansion for the J-Bessel
function (see [EMOT, Sec. 7.13.2, Eq. (17)]):

J2ir(x) ∼ 1√
2π

(x2 + 4r2)−1/4 exp(iω(r, x) + πr − πi/4),(2.6)

ω(r, x) =
√

4r2 + x2 − 2r log
(
2r/x +

√
1 + 4(r/x)2

)

as r and x tend to infinity. The relation (2.6) gives the leading term of the ex-
pansion, and the subsequent terms not written down involve positive powers of
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(x2 + 4r2)−1/2 together with the same oscillatory factor; then the error term will
be of the order O(x−A), where the positive number A can be chosen arbitrarily
large taken that the expansion is sufficiently long. This will be applied with x
larger than r, and then the first approximation to ω(r, x) is simply x, the second
approximation is x − 2r2/x, and so on. Suppose now that uniformly for all a and
r ³ K we have

(2.7)
∑
m,n

(m/n)ite((am + ān)/`) exp
(
νiω(r, 4π

√
mn/`)

) ¿ T (`),

where ν = ±1 and m, n run over any subintervals of [M, M ′]. Then, using (2.6)
and two-dimensional summation by parts (see [K, Theorem 1.6]), we see that the
contribution of the `-term in (2.4) to the sum S is

(2.8) ¿ M−3/2GK`1/2T (`).

For convenience, we formulate the two-dimensional partial summation formula.

Lemma 2. Let f(m,n) and g(m,n) be number theoretic functions and suppose
that the partial derivatives fx, fy, and fxy are continuous in the rectangle [1, X]×
[1, Y ]. Put

G(x, y) =
∑

16m6x

∑

16n6y

g(m,n).

Then
∑

16m6X

∑

16n6Y

f(m,n)g(m,n)

=
∫ X

1

∫ Y

1

G(x, y)fxy(x, y) dy dx−
∫ X

1

G(x, Y )fx(x, Y ) dx

−
∫ Y

1

G(X, y)fy(X, y) dy + G(X, Y )f(X, Y ).

The double exponential sum in (2.7) can be estimated by the following lemma
[K, Theorem 2.16] if ` is sufficiently large. The notation A ³ B means that the
positive quantities A and B are of the same order of magnitude, that is A ¿ B
and B ¿ A.

Lemma 3. Suppose that

|fxx| ³ λ1, |fyy| ³ λ2, |fxy| ¿
√

λ1λ2, |fxxfyy − f2
xy| À λ1λ2

throughout a rectangle D = [A,A + M ]× [B, B + N ] with M,N > 1. Then
∑

(m,n)∈D

e(f(m, n)) ¿ (
Mλ1 + N

√
λ1λ2 + 1

)(
Nλ2 + M

√
λ1λ2 + 1

)
(λ1λ2)−1/2

× (
1 + log(MN) + | log λ1|+ | log λ2|

)
.
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In the case of the sum (2.7), we have

f(x, y) = (t/2π) log(x/y) + (ax + āy)/` + (ν/2π)ω(r, 4π
√

xy/`).

If now ` is sufficiently large, say ` À tδ, then λ1, λ2 ³ t/M2 since we have M ¿ t.
Also, fxy ¿ (M`)−1 is of a lower order of magnitude than λ1 and λ2, so that the
assumptions of Lemma 3 are satisfied, and it follows that T (`) ¿ t1+ε. Therefore
the quantity (2.8) summed over tδ ¿ ` ¿ `0 is ¿ GKt1+εM−3/2`

3/2
0 . By (2.1) and

(2.5), this is ¿ t2/3+ε.
On the other hand, if ` ¿ tδ, then we estimate the double sum in (2.7) by

Cauchy’s inequality as ¿ M1/2
(∑

m

∣∣∑
n

∣∣2)1/2
. Here the square of the n-sum is

written out as a double sum and the m-sum is taken inside. Then we end up with
exponential sums of the type

∑
m

e (ω(r, 4π
√

mn1/`)− ω(r, 4π
√

mn2/`)) .

The diagonal terms give a contribution ¿ M3/2 to the original double sum. Es-
sentially the same comes from the non-diagonal terms, by a combination of van
der Corput’s lemma and the “first derivative test” ([Iv1, Lemmas 2.4 and 2.1]; the
former is used in its simplest case). After a subdivision of the n-sum in (2.7), we
may suppose that |n1 − n2| 6 cM for a suitably small positive constant c. In this
way, we see that T (`) ¿ M3/2tδ. Then, by (2.8), the contribution of the the values
` ¿ tδ to S is ¿ GKt5δ/2.

Remark. The above argument works in the case (1.5) as well, but then we
get an additional term which is about of the order t/K and exceeds thus t2/3 for
t À K3. Therefore we need an alternative method in this case.

3. The case (1.5)

For t À K3, the term t2/3 dominates on the right of (1.6) whatever the size of
G, so that it suffices to prove the estimate

(3.1)
∑

K6κj62K

αj |Sj |2 ¿ t2/3+ε

with Sj as in (1.7). By (1.8), we may suppose that

(3.2) t2/3+2δ ¿ M ¿ t

for some small δ > 0.
To begin with, we express the sum Sj approximately in terms of certain short

sums related to the rationals ρ = a/q (in their lowest terms) with Q 6 q 6 2Q,
where Q > 1 is a parameter to be specified in a moment. In general, there are

L =
∑

Q6q62Q

ϕ(q) ∼ 9Q2

π2
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such numbers ρ in the interval [0, 1]. Therefore, statistically, one may expect that
there are about λ = Lη numbers ρ in an interval of length η if η À Q−2. We specify
now Q = Mt−2/3−δ, η = Q−1 noting that then λ ³ Q. Let u > 0 be a “moothing
parameter”, the role of which will be to produce smooth weight functions by an
averaging procedure, and define

(3.3) Sj(ρ, u) =
∑

m∈I(ρ,u)

tj(m)m−1/2−it,

where

I(ρ, u) =
[

t

2π(ρ + 2η)
+ u,

t

2π(ρ + η)
+ u

]
.

In applications of the transformation method of [J1] to Dirichlet polynomials, the
sum related to ρ is usually chosen to be symmetric with respect to t/(2πρ), but
we prefer to work with the asymmetric ranges I(ρ, u) in order to get a transformed
sum of a more convenient form in the sense that all the indices of summation will
be of the same order of magnitude.

The smoothing procedure in (3.3) runs as follows: writing u = u1 + · · · + uJ

with 0 6 uj 6 U , where J a sufficiently large fixed positive integer and

(3.4) U = Mt−1/2+δ,

we average Sj(ρ, u) over the variables uj to construct a weighted sum, say Sj(ρ).
This device, used originally in [J1], improves the accuracy of the Voronoi transfor-
mation of exponential sums. But as yet we keep u fixed, restrict ρ to the interval

R =
[

t

2πM ′ − η,
t

2πM
− 2η

]

noting that then I(ρ, u) ⊆ [M + u,M ′ + u], and show next that the sum

(3.5) S̃j(u) = λ−1
∑

ρ∈R

Sj(ρ, u),

a linear combination of partially overlapping sums, is a good approximation to Sj

in the sense that

(3.6)
∑

K6κj62K

αj |Sj − S̃j(u)|2 ¿ t2/3+ε

uniformly for 0 6 u 6 JU .
To compare the sums Sj and S̃j(u), we write their difference as

(3.7) Sj − S̃j(u) = λ−1
∑

M6m6M ′+u

am(u)tj(m)m−1/2−it,

and apply the spectral large sieve inequality, which we state as the following lemma
(see [Mo, Theorem 3.3]).
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Lemma 4. For C(log K)1/2 6 G 6 C−1K(log K)−1/2, where C > 0 is suffi-
ciently large constant, and for any complex vector {c(n)} with N 6 n 6 2N , we
have

∑

K6κj6K+G

αj

∣∣∣∣
∑

N6n62N

c(n)tj(n)
∣∣∣∣
2

¿ (KG + N(log K)3/2)
∑

N6n62N

|c(n)|2.

Since M À t2/3 À K2, we see that the left hand side of (3.6) is

(3.8) ¿ λ−2tε
∑

M6m6M ′+u

|am(u)|2.

Now m lies in the interval I(ρ, u) with ρ ∈ R whenever ρ lies in the interval

R ∩
[

t

2π(m− u)
− 2η,

t

2π(m− u)
− η

]
.

Therefore, for m ∈ [M,M ′], the deviation from λ of the number of our rationals
ρ in the above interval is measured by |am(u)|. The interval R contains the latter
interval in the intersection if

M + u + 2π(m− u)Mηt−1 6 m 6 M ′ + u− 2π(m− u)M ′ηt−1.

This holds for all m in (3.8) up to ¿ Mt−1/3+δ exceptions. Since am(u) ¿ λ
by the above remarks, the contribution of these exceptional values to (3.8) is ¿
Mt−1/3+δ+ε ¿ t2/3+2δ.

To the other values of m, we apply the following well-distribution property of
rationals (see [J3, J4]).

Lemma 5. Let Q > 1, L =
∑

Q6q62Q ϕ(q), 0 < ∆ 6 1/3, λ = 2∆L, and let
λ(x) denote the number of the rationals a/q with (a, q) = 1 and Q 6 q 6 2Q in the
interval [x−∆, x + ∆]. Then

∫ 1

0

(λ(x)− λ)2 dx ¿ ∆Q2 log3(1/∆).

If we now interpret am(u) statistically as above, we may view m as a continuous
variable and the sum over m in (3.8) can be replaced by the corresponding integral
with a small error. After a simple change of variable, this integral can be estimated
by Lemma 5 with ∆ = η/2 and x running over an interval of length ³ t/M ; by
periodicity, Lemma 5 readily implies an estimate even for integrals over intervals
of length exceeding one. In this way, the remaining part of (3.8) is seen to be
¿ MQ−1tε log3 Q ¿ t2/3+2δ. Thus the inequality (3.6) is verified.

At this point, we average Sj(ρ, u) over u as explained above, constructing thus
a smoothed sum which we denoted by Sj(ρ). In other words, we average the sum
S̃j(u) producing the sum

S̃j = λ−1
∑

ρ∈R

Sj(ρ).
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This is a good approximation to Sj in the sense that (3.6) holds with S̃j in place
of S̃j(u), and hence the inequality

(3.9)
∑

K6κj62K

αj |S̃j |2 ¿ t2/3+ε

implies the desired estimate (3.1). Thus it remains to prove (3.9).
Next we are going to transform the sums Sj(ρ) as in [J1], that is by a summation

formula of the Voronoi type, which in the present case reads as follows (see [Me1,
Theorem 2]): if f ∈ C1[A,B], then

(3.10)
∑′

A6n6B

tj(n)e
(an

q

)
f(n)

=
πi

q sinhπκj

∞∑
n=1

tj(n)e
(
−an

q

) ∫ B

A

{
J2iκj

(4π

q

√
nx

)
− J−2iκj

(4π

q

√
nx

)}
f(x) dx

+ 4εjq
−1 cosh πκj

∞∑
n=1

tj(n)e
(an

q

) ∫ B

A

K2iκj

(4π

q

√
nx

)
f(x) dx,

where εj is the parity sign of the jth Maass form. The convention of summation on
the left is that if A or B is an integer, then the corresponding term is to be halved.
We apply this with −ρ = −a/q in place of a/q and with f(x) = x−1/2−ite(ρx);
the role of the factor e(ρx) here is to damp the oscillations of x−it. The range of
summation is the interval I(ρ, u), or ultimately the interval

(3.11) I(ρ) =
[

t

2π(ρ + 2η)
,

t

2π(ρ + η)
+ JU

]

once the smoothing has been done.
The above argument yields a transformation formula for the sum Sj(ρ) if the

Bessel functions are expressed by their asymptotic formulae and the integrals are
approximately evaluated by the saddle point method. In fact, such a formula has
been worked out by T. Meurman (see [Me2]). On the other hand, analogous but
somewhat simpler transformation formulae for Dirichlet polynomials involving the
divisor function d(n) or Fourier coefficients of holomorphic cusp forms can be found
in [J1], and to avoid complications we want to utilize the latter results.

In our case, the dominating contribution will come from the J-Bessel part of
(3.9), and moreover from a suitable sum over n ∈ [c1M, c2M ] for some positive
constants ci, with c1 sufficiently small and c2 sufficiently large, for otherwise the
respective integrals will be negligible by the general principle that an exponential
integrals with a smooth weight function and without a saddle point is small.

The strategy of such a “comparison argument” is as follows. The dominating
contribution in (3.10) will come from the J-Bessel part, and the integrals will be
calculated by the saddle point method. In our case, the oscillatory part of the
asymptotic formula (2.6) for the J-Bessel functions with r = κj can be made
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independent of κj since it is sufficiently small compared with x, and then the
J-integrals in (3.10) will be approximately of the same structure as those in the
corresponding formula involving d(n) in place of tj(n), as far as the leading term of
the saddle point method is concerned. The analogue of (3.10) for a sum involving
d(n) in place of tj(n) (see [J1, Theorem 1.7]) is a generalization of Voronoi’s classical
summation formula, and it will serve as a simplified model for us. This formula
involves the Bessel function Y0(x), and in fact the same function emerges in (3.10)
if we let heuristically κj tend to zero. Indeed, by the definition of Y0(x), we have

Y0(x) = lim
r→0

J2ir(x)− J−2ir(x)
i sinh(2πr)

,

so that

πi

q sinhπκj

∫ B

A

{
J2iκj

(4π

q

√
nx

)
−J−2iκj

(4π

q

√
nx

)}
f(x) dx(3.12)

≈ −2π

q

∫ B

A

Y0

(4π

q

√
nx

)
f(x) dx.

For the clarity of presentation, we postpone the justification of this approximation
and the omission of the other terms in (3.10) to the next section. As we mentioned
above, the point is that the leading explicit terms on both sides of (3.12) will
coincide in our case, and these terms will play a dominating role in the proof of
(3.9).

To transform the smoothed subsum Sj(ρ) according to the comparison prin-
ciple, we introduce some notation. Write the interval (3.11), that is the range of
Sj(ρ), as

I(ρ) = [M1,M2] =
[

t

2πρ
− µ1,

t

2πρ
− µ2

]
,

put N = a2µ2
2M

−1
2 , N ′ = a2µ2

1M
−1
1 , let χ(s) be in the functional equation ζ(s) =

χ(s)ζ(1− s), and define

φ(x) = arsinh(x1/2) + (x + x2)1/2.

Note that µi ³ tηρ−2 ³ M2Q−1t−1 = Mt−1/3+δ and a ³ M−1Qt, so that N, N ′ ³
M .

Then, assuming for a moment that the approximation (3.12) holds and that
the K-Bessel part in the summation formula is negligible, we may quote from
[J1], Theorem 4.3, the following leading explicit part of the transformation formula
for Sj(ρ) (it is easy to check that the conditions of that theorem are satisfied, in
particular the condition µi À aqtε holds by our choice of Q):

Sj(ρ) ∼ π1/4(2aqt)−1/4ρitχ
(1

2
+ it

) ∑

N6n6N ′
tj(n)w(n, ρ)

× e
(
n
(a

q
− 1

2aq

))
n−1/4

(
1 +

πn

2aqt

)−1/4

exp
(
2itφ

( πn

2aqt

)
+

π

4

)
,
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where w(n, ρ) is a piecewise smooth bounded weight function. To read the above
sum literally from [J1], one may view the sum Sj(ρ) as the difference of two more
symmetric sums (with respect to the point t/(2πρ)) and take then the difference
of the transformed sums. Of course, there is nothing to correspond to the leading
term in Theorem 4.3, for tj(n), unlike d(n), is a function of oscillating sign. The
error term in [J1] is

¿ a2q−1µ
1/2
i t−3/2U log t ¿ Q(t/M)2(Mt−1/3+δ)1/2t−3/2U log t ¿ M1/2t−5/6+δ

with U as in (3.4), and its proof makes use of well-known properties of the divisor
function. Though a full analogy between the estimates for d(n) and tj(n), that is
the Ramanujan–Petersson conjecture, is still an open problem, it suffices for our
purposes that tj(n) is known to be essentially bounded in mean, and this property
follows in fact from the estimate

∑

n6x

t2j (n) ¿ κε
jx

due to H. Iwaniec (see [Iw2, Lemma 1]). The contribution of the above error terms
to the sum S̃j is ¿ Q(t/M)M1/2t−5/6+δ ¿ (M/t)1/2 ¿ 1, which is negligible.

We substitute now the preceding approximate formula for Sj(ρ) to the defini-
tion of S̃j getting a double sum over n and ρ. Then, using the spectral large sieve,
we reduce the sum (3.9) to the estimation of sums of the type

(3.13) tM−2
∑

a1/q1

∑

a2/q2

∣∣∣∣
∑

n³M

e

(
n
(a1

q1
− a2

q2
− 1

2a1q1
+

1
2a2q2

))

× exp
(

2it
(
φ
( πn

2a1q1t

)
− φ

( πn

2a2q2t

)))∣∣∣∣;

we applied partial summation to simplify the n-sum and used the estimate
λ−2(aqtn)−1/2 ¿ M−3t1+3δ.

Since the number of the relevant rationals ρ is ¿ Q2(t/M) ¿ Mt−1/3−2δ, the
diagonal terms contribute ¿ (tM−2)(Mt−1/3−2δ)M ¿ t2/3.

Turning to the non-diagonal terms, we classify these into ¿ log2 t groups either
according to the conditions

∥∥∥a1

q1
− a2

q2

∥∥∥ ³ ∆1,(3.14)

|a1q1 − a2q2| ³ ∆2Mt−1/3−2δ(3.15)

for some positive numbers ∆i, or allowing the right hand side of (3.14) or (3.15)
vanish so that we may put ∆1 = 0 or ∆2 = 0 (both of them cannot vanish si-
multaneously outside the diagonal). As usual, ‖α‖ denotes the distance of α from
the nearest integer. The number of such pairs (a1/q1, a2/q2) can be estimated by
the following well-known lemma of E. Bombieri and H. Iwaniec (for a proof of a
generalized version, see [HW]):
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Lemma 6. The number of the pairs of rationals (a1, q1, a2/q2) satisfying ai ³
A, qi ³ Q, and

∥∥∥a1

q1
− a2

q2

∥∥∥ 6 ∆1,

|a1q1 − a2q2| 6 ∆2AQ

with ∆1, ∆2 > 0 is

(3.16) ¿ AQ + ∆2(A2 + Q2) + ∆1(∆1 + ∆2)A2Q2.

The n-sum in (3.13) is estimated by van der Corput’s lemma [Iv1, Lemma 2.4],
that is by the corresponding integral and a bounded term in our case. To this end,
we have to analyse the oscillatory nature of this sum. Note that

φ′(x) =
(1 + x

x

)1/2

.

In (3.13), we write the summand as e(f(n) with

f(n) = n
(a1

q1
− a2

q2

)
+ g(n)

and
g(n) = n

(
− 1

2a1q1
+

1
2a2q2

)
+ (t/π)

(
φ
( πn

2a1q1t

)
− φ

( πn

2a2q2t

))
.

Then for x ³ M , qi ³ Mt−2/3−δ, ai ³ t1/3−δ, and assuming (3.15) (possibly for
∆2 = 0, meaning that the left hand side vanishes), we have

f ′(x) =
a1

q1
− a2

q2
+ θ∆2t

2/3+δM−1,(3.17)

f ′′(x) = g′′(x) ³ ∆2t
2/3+δM−2,(3.18)

where θ ³ 1. Note that the second term in (3.17) is ¿ t−δ by (3.2).
A saddle point x0 satisfying f ′(x0) = 0 and x0 ³ M can possibly exist only if

(3.19) ∆2t
2/3+δM−1 ³ ∆1.

In the case (3.19) we use the “econd derivative test” [Iv1, Lemma 2.2] and (3.18) to
show that the n-sum is ¿ Mt−1/3−δ/2∆−1/2

2 , and otherwise the above mentioned
“first derivative test” is applicable.

Let us consider the case (3.19) first. Then ∆1 < ∆2, and for the quantity
(3.16), say B, we have the estimate

(3.20) B ¿ Mt−1/3 + ∆2t
2/3 + ∆1∆2M

2t−2/3−4δ ¿ Mt−1/3 + ∆2t
2/3 + ∆2

2M,
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where we ignored some unimportant δ-factors for simplicity. We may suppose that
∆2 À t−1/3, for otherwise the right hand side of (3.20) will be as in the case of the
diagonal terms. By the second derivative test, we get the contribution

¿ (tM−2)(Mt−1/3∆−1/2
2 )B ¿ t1/3∆−1/2

2 + t4/3M−1∆1/2
2 + t2/3∆3/2

2 ¿ t2/3

to the sum (3.13).
We are now left with the case |f ′(x)| ³ r, where r = ∆1 or r = ∆2t

2/3+δM−1

depending on which one of the terms on the right of (3.17) dominates, and we have
to estimate the quantity

(3.21) tM−2Br−1.

First, if r = ∆2t
2/3+δM−1, then ∆1 < ∆2 as above, and B can be estimated

as in (3.20). Hence (3.21) is

¿ ∆−1
2 + t/M + ∆2t

1/3 ¿ t1/3,

since again we may suppose that ∆2 À t−1/3.
Finally, if r = ∆1, then we have ∆1 À ∆2t

2/3+δM−1 and

B ¿ Mt−1/3 + ∆1M + ∆2
1M

3t−4/3.

Hence the quantity (3.21) is

¿ t2/3(M∆1)−1 + tM−1 + ∆1Mt−1/3.

Here we may suppose that M∆1 À t1/3 since obviously a natural lower bound for
the positive values of ∆1 is ∆1 À Q−2 = t4/3+2δM−2. Hence we get again the
estimate ¿ t2/3.

4. The structure of the transformed sums

In the preceding section, it remained to be verified that if the sum Sj(ρ) is
transformed by the summation formula (3.10), then the functional structure of the
transformed sum will be independent of κj , as far as the “first approximation” is
concerned, if κj is sufficiently small compared with t, namely κj ¿ t1/3−ε.

We establish this structural invariance by showing that both sides of (3.12)
give the same leading term, and the other terms in this approximation are of sim-
ilar structure but of smaller order of magnitude. Because we are interested in
estimations, only the leading term is significant.

The comparison of both sides of (3.12) amounts to the comparison of the re-
spective Bessel functions, for which we have the asymptotic formulae

Y0(x) ∼
( 2

πx

)1/2

sin
(
x− π

4

)
,
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(4.1)
J2ir(x)
sinhπr

∼
( 2

πx

)1/2

eix−iπ/4;

by (2.6), the latter asymptotic formula holds if r is large and r ¿ x1/2−ε, and this
condition holds by (1.5) and and our choice Q = Mt−2/3−δ if r ³ K and x ³ M/Q.
We used here the approximation ω(r, x) = x− 2r2/x+ · · · noting that the function
exp(−2ir2/x+ · · · ) can be written as a descending series with leading term 1. Now,
since the leading term on the right of (4.1) is independent of r = κj , the same is
true for the first approximations of the respective transformed sums for various
values of κj .

In the preceding analysis we had n in a suitable interval [c1M, c2M ] with c1 a
sufficiently small and c2 a sufficiently large positive constant. In the case n > c2M ,
the same comparison principle works, and as in [J1], the corresponding J-Bessel
terms will be small because then the integrals in the summation formula have no
saddle point. The same is true also for n < c1M ; now we have to appeal again to
the formula (2.6).

Finally, to deal with the K-Bessel terms in (3.10), we apply the following
formula (see [L, p. 140]):

(4.2) K2ir(y) =
22irΓ( 1

2 + 2ir)
y2ir

√
π

∫ ∞

0

cos ys

(1 + s2)2ir+1/2
ds.

By use of Stirling’s formula and a saddle-point argument, we see that the function
cosh(πr)K2ir(y) decays rapidly if y exceeds the “transitional point” 2r since then
there is no saddle point in the s-integral and one may integrate repeatedly by parts
with respect to the trigonometric factor in the integrand. In our case, with r = κj

and y = 4π
√

nx/q, the transitional value occurs for

n ³ n0 = K2Q2/M = K2Mt−4/3−2δ.

By the above remark, the n-sum can be truncated to n 6 n0t
ε.

By (4.2), the dependence of K2iκj (4π
√

nx/q) on x is given by the function

(4.3) x−ir exp(±4πis
√

nx/q),

and using again a saddle-point argument we may restrict s to s ¿ KQ/
√

nM + 1.
If the function (4.3) is written as e(iϕ(x)), then the occurrence of a saddle point for
the K-Bessel integrals in (3.10) with f(x) = x−1/2−ite(ρx) (times a smooth weight
function) and [A,B] = I(ρ) would require that |ϕ′(x)| should be comparable with
|ρ− t/(2πx)|, that is with η = 1/Q = t2/3+δ/M . But we have

ϕ′(x) ¿ K/M + (KQ/
√

nM + 1)
√

n/MQ−1 ¿ (K/M)tε ¿ t1/3+ε/M,

so that no saddle points occur, and therefore the contribution of the K-Bessel
functions to (3.10) is negligible.
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