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Abstract. If G is a maximal exceptional graph then either (a) G is the cone
over a graph switching-equivalent to the line graph L(K8) or (b) G has K8

as a star complement for the eigenvalue −2 (or both). In case (b) it is shown
how G can be constructed from K8 using intersecting families of 3-sets.

1. Introduction

A finite graph is said to be exceptional if it is connected, has least eigenvalue
λmin > −2 and is not a generalized line graph. It was proved by Cameron, Goethals,
Seidel and Shult [2] in 1976 that an exceptional graph is representable in the root
system E8 and hence has at most 36 vertices, each of degree at most 28 (see also [1,
Chapter 3] or [3, Chapter 3]). The problem of describing the exceptional graphs
remained open until recently, when the maximal exceptional graphs were found
using a computer implementation of the star complement technique described in
Section 2 [5]. (An exceptional graph is said to be maximal if it is not a proper
induced subgraph of another exceptional graph.)

Each exceptional graph is an induced subgraph of (at least) one maximal ex-
ceptional graph, and the purpose of this note is to show how all the maximal
exceptional graphs can be constructed from K8.

The cone over a graph G is the graph K1∇G obtained from G by adding a
vertex adjacent to all vertices of G. It is convenient to partition the maximal ex-
ceptional graphs into three types: (a) cones of order 29, (b) graphs of order greater
than 29 with a vertex of degree 28, (c) graphs with maximal degree less than 28.
There are 430 maximal exceptional graphs of type (a), 37 of type (b) and 6 of type
(c). It has already been noted in [5] that those of type (a) are cones over graphs
switching-equivalent to the line graph L(K8), and so we concentrate our attention
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on the graphs of types (b) and (c). A construction for the graphs of type (b), inde-
pendent of star complements, is described in [5, 6]. A computer-free construction
of the maximal exceptional graphs of type (c) is given in [9], along with explicit
representations in E8 of the six graphs concerned.

2. Star complements

Let G be a finite graph with µ as an eigenvalue of multiplicity k. A star set
for µ in G is a set X of k vertices such that µ is not an eigenvalue of G −X, the
subgraph induced by the complement X of X. The subgraph G−X is called a star
complement for µ in G. Star sets and star complements exist for any eigenvalue
of any graph: proofs of this and the related results which follow can be found in
[7, Chapter 7]. If µ 6= −1 or 0 then the H-neighbourhoods of vertices in X are
non-empty and distinct; in particular, there are only finitely many graphs with a
prescribed star complement for µ. The fundamental result is the following, known
as the Reconstruction Theorem and its converse.

Theorem 2.1. Let X be a star set for µ in the graph G. If G−X and G−X
have adjacency matrices AX and C respectively then G has an adjacency matrix of

the form
(

AX BT

B C

)
, where

(1) µI −AX = BT (µI − C)−1B.

Conversely, if (1) holds and AX has size k × k, then the null space of µI − A

consists of the vectors
(

x
(µI − C)−1Bx

)
, where x ∈ Rk.

If we denote the columns of B by bu (u ∈ X) and equate matrix entries in (1)
then we obtain the following.

Corollary 1. With the notation above, X is a star set for µ if and only if:

(2) bT
u (µI − C)−1bu = µ, for all u ∈ X

and

(3) bT
u (µI − C)−1bv ∈ {−1, 0}, for all distinct u, v ∈ X.

3. Exceptional graphs

It is shown in [8] that a graph with λmin = −2 is exceptional if and only if it has
an exceptional star complement for −2. By the Interlacing Theorem for eigenvalues
[12, Theorem 34.2.2], such a star complement has least eigenvalue greater than −2.
Now the connected graphs with λmin > −2 are given by the following theorem
of Doob and Cvetković [10]. The notation L(G; a1, . . . , an) for a generalized line
graph is explained in [3, Chapter 3].
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Theorem 3.1. If H is a connected graph with least eigenvalue greater than −2,
then one of the following holds:

(i) H = L(T ; 1, 0, . . . , 0) where T is a tree;
(ii) H = L(K) where K is a tree or a unicyclic graph with an odd cycle;
(iii) H is one of 20 graphs on 6 vertices representable in E6;
(iv) H is one of 110 graphs on 7 vertices representable in E7 (but not E6);
(v) H is one of 443 graphs on 8 vertices representable in E8 (but not E7).

This result was obtained independently of root systems, and since there are
only finitely many graphs with a prescribed star complement for −2, we have here
an alternative proof that there are only finitely many exceptional graphs. There
are 573 exceptional graphs with least eigenvalue greater than −2; moreover, if G is
a maximal exceptional graph, then a star set for −2 is maximal and, as noted in
[5], the corresponding star complement is one of the 443 exceptional graphs from
Theorem 3.1(v). Accordingly, the maximal exceptional graphs were determined by
taking each of these 443 graphs in turn as a star complement for −2, and finding
the maximal sets of vectors {bu : u ∈ X} that satisfy equations (2) and (3) in
Corollary 2.2 (cf. [11, Algorithm 2.4]). Details appear in [6]; the results were
announced in [5], where the star complements are labelled E001 to E443 and the
maximal exceptional graphs are labelled M001 to M473. None of the graphs E001,
. . ., E443 is a star complement common to all of M001, . . ., M473, although nine
are common to all but one of the maximal exceptional graphs, namely K1∇L(K8).
For one of these nine star complements (E440), a computer-free proof of this fact
is outlined in [4].

We observe that for an exceptional star complement common to the graphs of
type (b) and (c), we may take the graph H8 obtained from K7 by adding a vertex
of degree 5. This is the ‘simplest’ form for a candidate in that it has a divisor of
order 3 (equivalently an equitable partition into three parts). Examples of maximal
exceptional graphs constructed from H8 as a star complement for −2 are given in
[5].

To see that H8 is a star complement in each graph of type (c) it suffices to
inspect the representations of such graphs in E8 given in [9]. For graphs of type (b),
the observation follows from [5, Theorem 3.7]: a graph of type (b) has an induced
subgraph isomorphic to S(K1,7), where S(K1,7) denotes the graph obtained from
K1,7 by subdividing each edge.

Now we turn to non-exceptional star complements. Again, no non-exceptional
graph occurs as a star complement for −2 in every maximal exceptional graph. To
see this without recourse to a computer note first that the components of a non-
exceptional star complement are generalized line graphs of the types described in
Theorem 3.1(i)(ii). We can readily identify such induced subgraphs of K1∇L(K8),
and show that at least one does not occur in the smallest maximal exceptional
graph (M001) or K1∇C where C is a Chang graph (graphs M004, M005, M006).
However K8 is a subgraph of S(K1,7) and hence of each graph of type (b); and
it is also a subgraph of each graph of type (c), as we can check directly from [9].
Accordingly we have a computer-free proof of the following result, which shows
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that every maximal exceptional graph can be constructed from K8 in (at least) one
of two ways.

Theorem 3.2. If G is a maximal exceptional graph then either (1) G is the cone
over a graph switching-equivalent to L(K8), or (2) G has K8 as a star complement
for −2, or both.

It remains to investigate the construction of the maximal exceptional graphs
which arise in case (2) of Theorem 3.2. We let H = G − X ∼= K8 and apply
Corollary 2.2 with µ = −2 and C = J−I (where J is the all-1 matrix of size 8×8).
From equation (2), or by direct calculation, we find that the H-neighbourhoods
∆H(u) (u ∈ X) have size 3 or 6. Now equation (3) yields the following:

• if |∆H(u)| = |∆H(v)| = 3, then either
|∆H(u) ∩∆H(v)| = 2 and u ∼ v (‘u is adjacent to v’) or
|∆H(u) ∩∆H(v)| = 1 and u 6∼ v;

• if |∆H(u)| = 3 and |∆H(v)| = 6 then either
|∆H(u) ∩∆H(v)| = 3 and u ∼ v or
|∆H(u) ∩∆H(v)| = 2 and u 6∼ v;

• if |∆H(u)| = |∆H(v)| = 6 then either
|∆H(u) ∩∆H(v)| = 5 and u ∼ v or
|∆H(u) ∩∆H(v)| = 4 and u 6∼ v.

Since any two 6-subsets of an 8-set intersect in at least 4 elements, the necessary
and sufficient conditions on the family of H-neighbourhoods (of size 3 or 6) are (i)
any two sets of size 3 intersect, (ii) a set of size 3 intersects a set of size 6 in at
least 2 elements.

Now let F be a family of 3-subsets of {1, 2, . . . , 8}, and let F (2) be the family
of 2-sets which are contained in some 3-set of F . We say that F is an intersecting
family if U ∩ V 6= ∅ for all U, V ∈ F ; and such a family F is complete if there does
not exist an intersecting family of 3-sets F0 such that F ⊂ F0 and F (2) = F (2)

0 .
(For example, if F = {138, 157, 568} then F is not complete because we can take
F0 = F ∪ {158}.) The next result shows that a maximal exceptional graph with
K8 as a star complement for −2 is determined by a complete intersecting family of
3-subsets of {1, 2, . . . , 8}, and vice versa. Here we take V (H) = {1, 2, . . . , 8} and
write ij for the complement of {i, j} in V (H).

Theorem 3.3. Let G be a graph with K8 as a star complement for −2, say
H = G−X ∼= K8. Then G is a maximal exceptional graph if and only if the family
of H-neighbourhoods ∆H(u) (u ∈ X) has the form F3 ∪F6 where F3 is a complete
intersecting family of 3-sets and F6 = {ij : ij 6∈ F (2)

3 }.
Proof. First suppose that G is a maximal exceptional graph, and let F3 be

the family of H-neighbourhoods of size 3. From the remarks above we know that
F3 is an intersecting family. If ij /∈ F (2)

3 then the 6-set ij intersects each member
of F3 in at least 2 elements. Now the maximality of X ensures first that the
H-neighbourhoods include every such 6-set, and secondly that F3 is complete.
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Conversely, if the family of H-neighbourhoods has the form given then X, and
hence G, is maximal. Moreover G is exceptional because a graph obtained from
K8 by adding a vertex of degree 3 or 6 is itself exceptional. ¤

Note that if F3 = ∅ then F6 consists of all 28 6-sets. In this case G is the unique
maximal exceptional graph of order 36, denoted by M473 in [5]. It is straightforward
to show that if we switch G with respect to V (H) then we obtain L(K9). The
remaining examples given here provide an independent means of constructing the
six maximal exceptional graphs of type (c).

Examples

(i) For M001 (of order 22), we may take F3 to consist of lines in the projective
plane PG(3, 2) whose points are 1, 2, . . . , 7; and then F6 consists of all 6-subsets of
{1, 2, . . . , 7}.
(ii) For M002 (of order 28), we may take
F3 = {567, 568, 578, 678, 156, 178, 257, 268, 358, 367}; and then
F6 = {12, 13, 14, 23, 24, 34, 45, 46, 47, 48}.
(iii) For M417 (of order 29), we may take F3 = {128, 148, 157, 158, 358, 568}.
(iv) For M428 (of order 29), we may take F3 = {128, 138, 148, 157, 158, 568}.
(v) For M437 (of order 30), we may take F3 = {128, 138, 157, 158, 568}.
(vi) For M462 (of order 31), we may take F3 = {138, 157, 158, 568}.

M. Lepović (personal communication) has shown by computer that exactly
363 maximal graphs have K8 as a star complement for −2; in particular, there
are exactly 320 maximal exceptional graphs which satisfy both condition (1) and
condition (2) in Theorem 3.2.
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maximal exceptional graphs, Technical Report CSM-160, Department of Computing Science
and Mathematics, University of Stirling, 2001.
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[10] M. Doob and D. Cvetković, On spectral characterizations and embedding of graphs, Linear
Alg. Appl. 27 (1979), 17–26.

[11] M.N. Ellingham, Basic subgraphs and graph spectra, Australasian J. Combinatorics 8 (1993),
247–265.

[12] V. V. Prasolov, Problems and Theorems in Linear Algebra, American Math. Soc., Providence,
RI, 1994.

Mathematics and Statistics Group (Received 18 11 2003)
Department of Computing Science and Mathematics
University of Stirling
Scotland, FK9 4LA
p.rowlinson@stirling.ac.uk


