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QUASICONFORMAL HARMONIC FUNCTIONS
BETWEEN CONVEX DOMAINS

David Kalaj

Abstract. We generalize Martio’s paper [14]. Indeed the problem studied
in this paper is under which conditions on a homeomorphism f between the
unit circle S1 := {z : |z| = 1} and a fix convex Jordan curve γ the harmonic
extension of f is a quasiconformal mapping. In addition, we give some results
for some classes of harmonic diffeomorphisms. Further, we give some results
concerning harmonic quasiconformal mappings (which follow by the results
obtained in [10]). Finally, we give some examples which explain that the classes
defined in [14] are not big enough to enclose all harmonic quasiconformal
mappings of the disc onto itself.

1. Introduction and notation

A complex valued function w = u + iv, defined in a domain Ω ⊂ C, is called
a harmonic function if u and v are real valued harmonic functions. If Ω is simply-
connected, then there exist analytic functions g and h defined on Ω such that w has
the representation w = g+h. If w is a harmonic univalent function, then by Lewy’s
theorem, see [9], w has a non-vanishing Jacobian and consequently, according to
the inverse mapping theorem, w is a diffeomorphism.

Let w be a harmonic diffeomorphism. We lose no generality by assuming that
w is a sense preserving harmonic diffeomorphism. The function a(z) = h′(z)/g′(z)
is called the dilatation of the harmonic function w. Observe that a is an analytic
function satisfying the inequality |a(z)| < 1. If there exists k < 1 such that |a(z)| <
k on Ω, then we say that w is a quasiconformal function. We denote by QCH the
family of harmonic quasiconformal functions. Let

P (r, x− ϕ) =
1− r2

2π(1− 2r cos(x− ϕ) + r2)

denote the Poisson kernel. Then every bounded harmonic function w defined on
the unit disc D := {z : |z| < 1} has the following representation
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(1.1) w(z) = P [g](z) =
∫ 2π

0

P (r, x− ϕ)g(eix) dx,

where z = reiϕ and g is a bounded integrable function defined on the unit circle
S1.

The problem studied in this paper is: under which conditions on g the
function w is quasiconformal.

Throughout this paper, we denote by Ω a convex Jordan domain containing 0
and by γ the boundary of Ω.

Proposition 1.1 (Choquet–Rado–Kneser). Let γ be a convex Jordan curve in
C. Let g be a homeomorphism from the unit circle S1 onto γ. Then the function
w(z) = P [g](z) is a harmonic diffeomorphism of the unit disc D onto the Jordan
domain Ω.

If γ is a convex Jordan curve and if g is a weak homeomorphism from the unit
circle into γ, (i.e., g is a pointwise limit of a sequence of homeomorphisms from S1

onto γ), such that conv(g(S1)) = Ω, then by the Choquet’s theorem and by well
known property of normal families, w = P [g] is a harmonic diffeomorphism. In
addition, if we assume that w(0) = 0, then we have

(1.2) D(w)(z) > 1
16

r2
γ .

(See [6, Theorem 2.5]). Here D(w) = |∂w|2 + |∂̄w|2, rγ = dist(γ, 0). Let ϕ →
r(ϕ) exp(iϕ) be the polar parametrization of curve γ. We know that γ is differen-
tiable outside of a set of most countably many points at which γ has both left and
right derivative. Then, for every ϕ for which the function r is differentiable, we
have:

(1.3) r(ϕ) sin αϕ > r(ϕγ) = dist(γ, 0),

where ϕγ ∈ [0, 2π) and αϕ is the angle between the tangent tϕ of the curve γ at
ζ = r(ϕ) exp(iϕ) and ζ. Clearly

(1.4) cot(αϕ) =
r′(ϕ)
r(ϕ)

.

We refer to [6] for more details.

2. On some classes of harmonic diffeomorphisms

In this section, we will define four classes of absolutely continuous functions.
We do so in order to verify whether a given harmonic diffeomorphism is a quasi-
conformal function.

Let γ be a Jordan curve on the complex plane C. Let F (x) = ρ(x)eif(x). Let
g : S1 → γ be the function defined by the formula g(eix) = F (x) = ρ(x)eif(x).
If we suppose that F is absolutely continuous on the set [0, 2π], then F ′(x) =
(ρ′(x) + iρ(x)f ′(x))eif(x) exists almost everywhere. Hence we have |F ′(x)|2 =
ρ′2(x) + ρ2(x)f ′2(x). Without loss of generality, we will identify g and F .
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Definition 2.1. Let g be an injective absolutely continuous function from the
unit circle S1 onto the Jordan curve γ. Let k, p,M be positive real numbers.

A) g is said to belong to the class Dk if |F ′(x)| > k for almost every x ∈
[0, 2π].

B) g is said to belong to the class Dp if |F ′(x)| 6 p for almost every x ∈ [0, 2π].
Let ω be the function defined by

(2.1) ω(r) := sup{|F ′(x)− F ′(y)| : 0 6 x, y 6 2π, |x− y| 6 r, F ′(x), F ′(y) exist}
where r ∈ [0, 2π].

C) g is said to belong to the class D(M) if
∫ 2π

0

ω(x)
x

dx 6 M .

D) g is said to belong to the class D′(M) if

sup
ϕ

∫ π

0

|F ′(ϕ + x)− F ′(ϕ− x)|
x

dx 6 M.

In Section 3 we show that: D(M) is a proper subset of D′(M). We use the
notation Dp

k(M) for the intersection of the classes Dk, Dp and D(M). Similarly,
we will introduce notation for the intersection of the others classes. We observe
that such notation has been introduced in [10], where only the case when γ is the
unit circle, has been considered.

Lemma 2.2. If F ∈ D(M), then the function F is differentiable at every point
x ∈ [0, 2π] and its derivative F ′ is a continuous function on [0, 2π].

Proof. Let A = {x : F ′(x) exists}. For every x, y ∈ A we have
∫ 2π

|x−y|

|F ′(x)− F ′(y)|
t

dt <

∫ 2π

0

ω(x)
x

dx 6 M.

It follows that |F ′(x) − F ′(y)|(log 2π − log |x − y|) < M for x, y ∈ A. Thus we
obtain

(2.2) |F ′(x)− F ′(y)| < M

log 2π − log |x− y|
for x, y ∈ A. By the last relation the function F ′ is a uniformly continuous function
on A. Indeed log |x− y| tends to ∞ as x → y. Since A = [0, 2π], it follows that F ′

has a continuous extension F ′∗ on [0, 2π]. Since µ([0, 2π] r A) = 0, it follows that
F (x) − F (0) =

∫ x

0
F ′∗(t) dt. Consequently, F is differentiable for every x ∈ [0, 2π]

and F ′ = F ′∗. ¤
Lemma 2.3. The classes Dp

k(M) and the classes Dp are compact families of
continuous functions.

Proof. The normality of the families Dp
k(M) and Dp is obvious. Let F =

limn→∞ Fn, Fn ∈ Dp. Since |Fn(x)−Fn(y)| 6 p|x−y|, then |F (x)−F (y)| 6 p|x−y|
for every x, y ∈ [0, 2π]. It follows that F is an absolutely continuous function, and
consequently F ∈ Dp. Hence Dp is compact family.

By setting y = π in (2.2), we obtain |F ′n(x)− F ′n(π)| 6 M/ log 2. On the other
hand the function G′n(x) = F ′n(x)−F ′n(π) satisfies the inequality (2.2). Hence there
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exists a convergent subsequence {G′nk
} of {G′n}. Let G′0(x) = limk→∞G′nk

(x).
Then∫ π

0

G′0(x) dx = lim
k→∞

∫ π

0

G′nk
(x) dx = lim

k→∞
(Fnk

(π)− Fnk
(0)− πF ′nk

(π)).

Therefore,

π lim
k→∞

F ′nk
(π) = F (π)− F (0)−

∫ π

0

G′0(x) dx.

It follows that the sequence F ′nk
is convergent and F ′(x) = limk→∞ F ′nk

(x). The
function F ′ satisfies (2.2). Hence F ′ is continuous.

Furthermore, let ωF (r) = max|x−y|6r |F ′(x)− F ′(y)|. Then we have
∫ 2π

0

ωF (r)
r

dr =
∫ 2π

0

max|x−y|6r |F ′(x)− F ′(y)|
r

dr =
∫ 2π

0

|F ′(xr)− F ′(yr)|
r

dr

6 limn→∞

∫ 2π

0

|F ′n(xr)− F ′n(yr)|
r

dr 6 M.

Hence F ∈ Dp
k(M), and the proof is complete. ¤

The following theorem gives some additional conclusions in the case of the unit
disc. Let D =

⋃
p,k,M Dp

k(M) and let ◦ denote the composition of functions. Then
the following theorem holds.

Theorem 2.4. (D, ◦) is a group.

The proof of Theorem 2.4 is easy and it is omitted. In the following, w always
denotes the harmonic mapping in (1.1), with boundary values given by F . We are
going to analyze the harmonic extensions of the functions defined above.

Theorem 2.5. If F ∈ Dp(M), then

(2.3) D(w)(z) 6 1
2

(
M2

π2
+ p2

)
, for every z ∈ D.

Proof. By the Poisson formula (1.1), and by integrating by parts we see that,

(2.4) ∂ϕw(reiϕ) =
∫ 2π

0

F ′(x)P (r, ϕ− x) dx,

and that

∂rw(reiϕ) =
−2

1− r2

∫ 2π

0

F ′(x) sin(x− ϕ)P (r, ϕ− x) dx

=
−2

1− r2

∫ π

0

F ′(ϕ + x) sin xP (r, x) dx

− −2
1− r2

∫ π

0

F ′(ϕ− x) sin xP (r, x) dx

=
−2

1− r2

∫ π

0

(F ′(ϕ + x)− F ′(ϕ− x)) sin xP (r, x) dx,

(2.5)
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for every z = reiϕ ∈ D. Since t < tan t for 0 < t < π/2, we have

sin xP (r, x)
1− r2

=
1
2π

sin x

1− 2r cos x + r2
=

1
2π

2 sin(x/2) cos(x/2)
(1− r)2 + 4r sin(x/2)2

<
1

2πr

1
2 tan(x/2)

<
1

2πrx
.

for 0 < r < 1 and 0 < x < π. Hence (2.5) and Definition 2.1 (C) imply that

|∂rw(reiϕ)| 6 2
1− r2

∫ π

0

|F ′(ϕ + x)− F ′(ϕ− x)| sinxP (r, x) dx

6 1
πr

∫ π

0

ω(2x)
x

dx =
1
πr

∫ 2π

0

ω(x)
x

dx 6 M

πr
.

(2.6)

Here the function ω is defined by (2.1). By (2.4) and by Definition 2.1 (B), we
obtain

(2.7) |∂ϕw(z)| 6
∫ 2π

0

|F ′(x)|P (r, ϕ− x) dx 6 p

∫ 2π

0

P (r, ϕ− x) dx = p.

Since ∂w and ∂̄w are analytic functions on D it follows that D(w) = |∂w|2+|∂̄w|2 is
a subharmonic function on D. Then by the maximum principle there exists zr ∈ D
such that |zr| = r and

(2.8) max
|z|6r

D(w)(z) = D(w)(zr),

for every r ∈ (0, 1). Since

D(w)(z) =
1
2

(
|∂rw(z)|2 +

1
r2
|∂ϕw(z)|2

)

for every z = reiϕ ∈ D, (2.6), (2.7) and (2.8) imply that

max
|z|6r

D(z) 6 1
2r2

(
M2

π2
+ p2

)
, 0 < r < 1.

This yields the estimation (2.3), which ends the proof. ¤

In fact, instead of the inequality (C) we may use in (2.6) the inequality (D)
from Definition (2.1). Such a modification of the above proof leads to.

Theorem 2.6. If F ∈ D′p(M) then the inequality (2.3) holds for every z ∈ D.

In the following theorem, we shall give some estimates for the Jacobian of a
harmonic diffeomorphism.

Theorem 2.7. Let w = P [F ] be a harmonic function between the unit disk and
the convex Jordan domain Ω, such that F ∈ Dp

k(M), and w(0) = 0. Then

lim
z→eiϕ

Jw(z) > krγ

2
for all eiϕ ∈ S1.
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Proof. Following the proof of Theorem 2.5, it follows that the partial deriva-
tives of the function w have continuous extensions on boundary (see also [7]).
Hence, the following relations hold

ur(eiϕ) = lim
z→eiϕ

ur(z), vr(eiϕ) = lim
z→eiϕ

vr(z).

From (2.4) it follows that

lim
z→eiϕ

uϕ(z) = Re
∂

∂ϕ

(
ρ(ϕ)eif(ϕ)

)
= ρ′(ϕ) cos f(ϕ)− ρ(ϕ)f ′(ϕ) sin f(ϕ)

lim
z→eiϕ

vϕ(z) = Im
∂

∂ϕ

(
ρ(ϕ)eif(ϕ)

)
= ρ′(ϕ) sin f(ϕ) + ρ(ϕ)f ′(ϕ) cos f(ϕ).

Observe that u(eiϕ) = ρ(ϕ) cos f(ϕ) and v(eiϕ) = ρ(ϕ) sin f(ϕ). Thus we have:

lim
z→eiϕ

Jw(reiϕ) = lim
r→1

1
r
(urvϕ − uϕvr)

= lim
r→1

(
u(reiϕ)− u(eiϕ)

1− r

)
(ρ′(ϕ) sin f(ϕ) + ρ(ϕ)f ′(ϕ) cos f(ϕ))

− lim
r→1

(
v(reiϕ)− v(eiϕ)

1− r

)
(ρ′(ϕ) cos f(ϕ)− ρ(ϕ)f ′(ϕ) sin f(ϕ))

=
∫ 2π

0

K(x, ϕ)
P (r, ϕ− x)

1− r
dx,

where

K(x, ϕ) = ρ2(ϕ)f ′(ϕ)− ∂

∂ϕ
(ρ(ϕ)ρ(x) sin(f(ϕ)− f(x))).

Let ζ = ρ(ϕ)eif(ϕ) and let y = ρ(x)eif(x). Let nζ be the outer normal of the curve
γ at ζ. Since γ is convex and f is injective, it follows that K(x, ϕ) = 〈ζ − y,nζ〉 > 0
(see [6] for more details). On the other hand,

P (r, ϕ− x)
1− r

=
1 + r

2π(1 + r2 − 2r cos(ϕ− x))
> 1

4π

for 0 < r < 1 and x, ϕ ∈ [0, 2π]. Thus, we have:

lim
r→1

∫ 2π

0

K(x, ϕ)
P (r, ϕ− x)

1− r
dx

>
∫ 2π

0

ρ2(ϕ)f ′(ϕ) dx−
∫ 2π

0

ρ′(ϕ)ρ(x) sin(f(ϕ)− f(x)) dx

−
∫ 2π

0

ρ(ϕ)ρ(x)f ′(ϕ) cos(f(ϕ)− f(x)) dx =
1
4π

2πρ2(ϕ)f ′(ϕ) =
ρ2(ϕ)f ′(ϕ)

2
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because w(0) = 0. Since ρ2(ϕ)f ′2(ϕ) + ρ′2(ϕ) > k2 and ρ′(ϕ)/f ′(ϕ) = r′(f(ϕ)),
inequality (1.4) implies that:

f ′2(ϕ)
[
ρ2(ϕ) + r′2(f(ϕ))

]
= f ′2(ϕ)

[
ρ2(ϕ) + ρ2(ϕ)cot2αf(ϕ)

]

=
f ′2(ϕ)ρ2(ϕ)
sin2 αf(ϕ)

> k2,
(2.9)

where αf(ϕ) is the angle between the tangent and the radius vector at the point
F (ϕ) ∈ γ. By (1.3) it follows that

ρ2(ϕ)f ′(ϕ)
2

> krγ

2
,

because f ′(ϕ) > 0. The proof of the theorem is thus complete. ¤

We note that the assumption w(0) = 0 is not essential. If w(0) 6= 0 then we can
consider the function w1 = w − w(0). Indeed, we have assumed that F ∈ Dp

k(M).
This condition guarantees the existence of the radial limits of partial derivatives of
w. The following question arises. What are the necessary and sufficient conditions
for the existence of the above limits? The following theorem is a generalization of
the previous theorem and it gives the answer on this question.

Theorem 2.8. Let w = P [F ] be a harmonic function between the unit disk and
the convex Jordan domain Ω, such that F ∈ Dk, and w(0) = 0. Then the following
relation holds

(2.10) lim
r→1

Jw(reiϕ) > krγ

2

for almost every eiϕ ∈ S1, where the limit exists almost everywhere.

Proof. We follow the argument of the proof of the previous theorem. We
need to establish the existence of the radial limits of the functions ∂rw and ∂ϕw.
Observe that

w(z) = h(z) + g(z) =
1
2π

∫ 2π

0

eix

eix − z
F (x) dx +

1
2π

∫ 2π

0

z

eix − z
F (x) dx.

Thus it follows that

zh′(z) =
z

2π

∫ 2π

0

eix

(eix − z)2
F (x) dx =

1
2πi

∫ 2π

0

z

eix − z
F ′(x) dx

=
1

2πi

∫ 2π

0

eix

eix − z
F ′(x) dx.

(2.11)

By inequality Re( eix

eix−z ) > 0, by Theorem 2.2 of [6] (see also [8]), we conclude that
the radial limits of the function zh′(z) exists almost everywhere. Similarly, the
radial limits of the function zg′(z) exist almost everywhere. Hence, there the radial
limits of the function ∂rw exist almost everywhere. Observe also that F ′ ∈ L1(S1).
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Then we have limr→1 ∂ϕw(reiϕ) = F ′(ϕ) for almost every eiϕ ∈ S1. By following
the proof of Theorem 2.7, we can prove that

lim
r→1

Jw(reiϕ) > krγ

2
for almost every ϕ ∈ [0, 2π]. ¤

Corollary 2.9. Under the assumptions of Theorem 2.8, we have Jw(z) > krγ

2 ,
for every z ∈ D.

Proof. Because of the inequalities |∂̄w| 6 |∂w| and (1.2), it follows that the

analytic functions w1(z) =
(

∂̄w(z)
∂w(z)

)2

and w2(z) = krγ

2(∂w(z))2 are bounded. Hence

w1(z) = P [w1(eiϕ)](z) and w2(z) = P [w2(eiϕ)](z). Let the real function f be
defined by f(z) = |w1(z)|+ |w2(z)|. Then we have

(2.12) f(z) 6 P [|w1(eiϕ)|+ |w2(eiϕ)|](z).

By following the proof of the previous theorem we obtain that the functions ∂w
and ∂̄w have radial limits in almost every point of the unit circle. Let

∂w(eiϕ) := lim
r→1

∂w(reiϕ) and ∂̄w(eiϕ) := lim
r→1

∂̄w(reiϕ).

The functions ∂w and ∂̄w are defined almost everywhere. Hence the inequality
(2.10) may be written as

f(eiϕ) :=

∣∣∣∣∣
(

∂̄w(eiϕ)
∂w(eiϕ)

)2
∣∣∣∣∣ +

∣∣∣∣
krγ

2(∂w(eiϕ))2

∣∣∣∣ 6 1

almost everywhere. By applying the inequality (2.12) we obtain

f(z) 6 ess sup|z|=1 f(z) 6 1.

Hence
Jw(z) = |∂w(z)|2 − |∂̄w(z)|2 > krγ

2
.

¤

Assume that ϕ → r(ϕ) is the polar parametrization of a smooth Jordan curve
γ, (0 6 ϕ < 2π). Then the curvature of γ at r(ϕ)eiϕ is given by

kγ(ϕ) =
|r2(ϕ) + 2r′2(ϕ)− r′′(ϕ)r(ϕ)|

(r2(ϕ) + r′2(ϕ))
3
2

.

Assume that kγ is a bounded function. Then we conclude that |r′′| is bounded
by a constant M0. Note that, the condition ”γ is a smooth Jordan curve” does
not implies that |r′′| is bounded. Assume that F (x) = ρ(x)eif(x) is an arbitrary
parametrization of the curve γ. Then the function r(x) = (ρ ◦ f−1)(x) is the polar
parametrization of γ and it is differentiable by assumption. Let us suppose that F
is differentiable function. Then ρ′(x) = r′(f(x))f ′(x). Hence

(2.13)
∣∣∣∣
ρ′(x)
f ′(x)

− ρ′(y)
f ′(y)

∣∣∣∣ = |r′(f(x))− r′(f(y))| 6 M0|f(x)− f(y)|.
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The equality (2.13) will be used in the proof of the following theorem.

Theorem 2.10. Let γ be a smooth Jordan curve with bounded curvature. Let
F ∈ Dp. Then there exists a constant C = C(p) such that Jw(z) 6 C.

Proof. By applying the equalities (2.4) and (2.5), we have

Jw(z) =
1
r
(urvϕ − uϕvr)

=
2

r(1− r2)

∫ 2π

0

∫ 2π

0

α(x, y) · γ(x− ϕ, y − ϕ) dx dy

+
2

r(1− r2)

∫ 2π

0

∫ 2π

0

β(x, y)γ(x− ϕ, y − ϕ) dx dy = I + J,

where α, β and γ are functions defined by

α(x, y) = [ρ′(x)ρ′(y) + f ′(x)f ′(y)ρ(x)ρ(y)] · sin(f(x)− f(y)),

β(x, y) = [f ′(x)ρ(x)ρ′(y)− ρ′(x)f ′(y)ρ(y)] · cos(f(x)− f(y)),

γ(x, y) = sin x · P (r, x)P (r, y),

which are periodic with respect of x and y. By exploiting the Cauchy-Schwartz’s
inequality, we obtain

(2.14) α(x, y) 6 p2| sin(f(x)− f(y))|.
By the membership of F in Dp, it follows that

(2.15) |f ′(x)| 6 p

rγ
and |ρ′(x)| 6 p.

On the other hand, we may write

β(x, y) = [f ′(x)ρ′(y)(ρ(x)− ρ(0))− f ′(y)ρ′(x)(ρ(y)− ρ(0))] cos(f(x)− f(y))

+ ρ(0)f ′(x)f ′(y)
(

ρ′(x)
f ′(x)

− ρ′(y)
f ′(y)

)
cos(f(x)− f(y)).

The above equality together with (2.13) and (2.15), yields

(2.16) |β(x, y)| 6 p3(RγM0 + 1/rγ)(x + y)

where Rγ := maxζ∈γ |ζ|. By setting t = 1 − r, for 0 6 x 6 π and π/4 6 r 6 1 we
obtain:

(2.17) P (r, x) =
1
2π

t(2− t)
t2 + 4(1− t) sin2 x

2

6 t

πt2 + x2
6 t

t2 + x2
.

From (2.15) we deduce

(2.18) | sin(f(x)− f(y))| 6 p

rγ
|x− y|.
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By exploiting (2.14), (2.17) and (2.18), we obtain:

|I| = 2
r(1− r2)

∣∣∣∣
∫ π

0

∫ π

0

[
(α(ϕ + x, ϕ + y)− α(ϕ− x, ϕ + y))

− (α(ϕ + x, ϕ− y)− α(ϕ− x, ϕ− y))
]
γ(x, y) dx dy

∣∣∣∣.

6 8p3

rγr(1 + r)
sup

06t61

∫ π

0

∫ π

0

tx|x− y|
(t2 + x2)(t2 + y2)

dx dy.

(2.19)

On the other hand

J =
2

r(1− r2)

∫ π

0

∫ π

0

[
(β(ϕ + x, ϕ + y)− β(ϕ− x, ϕ + y))

− (β(ϕ + x, ϕ− y)− β(ϕ− x, ϕ− y))
]
γ(x, y) dx dy.(2.20)

The equality (2.20) together with (2.16) yields the inequality:

|J | 6 8p3(rγRγM0 + 1)
rγr(1− r2)

∫ π

0

∫ π

0

x(x + y)P (r, x)P (r, y) dx dy.

By (2.17) it follows that

(2.21) |J | 6 8p3(rγRγM0 + 1)
rγr(1 + r)

sup
06t61

∫ π

0

∫ π

0

(x + y)tx
(t2 + x2)(t2 + y2)

dx dy,

where π/4 6 r 6 1. Furthermore
∫ π

0

∫ π

0

(x + y)tx
(t2 + x2)(t2 + y2)

dx dy =
∫ π

0

∫ π

0

tx2 + txy

(t2 + x2)(t2 + y2)
dx dy

= π

[
arctan

π

t
+

t

4

(
log

π2 + t2

t2

)2
]

6 sup
t

π

[
arctan

π

t
+

t

4

(
log

π2 + t2

t2

)2
]

= C0.

Since |∂w| > |Jw|, using the first part of (2.11) we easy obtain that

Jw 6 Rγ

(1− π/4)2
= C1 on |z| 6 π/4.

Hence, by (2.19) and (2.21) it follows that

Jw(z) 6 max
{
C1,

[
32p3(RγM0 + 2/rγ)/(π2 + π)

] · C0

}
= C(p), z ∈ D.

Thus, the proof of the theorem is complete. ¤

The author doesn’t know whether Theorem 2.10 holds for an arbitrary smooth
Jordan curve γ.

Corollary 2.11. Let F ∈ Dp
k be a function from the unit circle onto a smooth

convex Jordan curve γ with bounded curvature. Next, let w = P [F ]. Then, there
exist positive constants C1 and C2 such that for every measurable set D the following
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inequality hold: C1µ(D) 6 µ(w(D)) 6 C2µ(D), where µ is the Lebesgue two-
dimensional measure. Moreover the constants C1 and C2 do not depend on w, they
depend only on k and p respectively and on γ.

Proof. ¿From Theorem 2.9 and Theorem 2.10 it follows that, there exist
constants C1 and C2 such that C1 6 Jw(z) 6 C2 for every z. By the chain rule, we
obtain the desired conclusion. ¤

3. Harmonic quasiconformal mappings

In this section, we apply the results of the previous section, and the results
obtained in [6], in order to show some interesting properties of harmonic quasicon-
formal mappings between the unit disc and a convex Jordan domain. Especially,
we will prove that the Jacobian of a harmonic quasiconformal mapping is a pos-
itive function bounded bellow by a positive constant. In addition, we will give
some examples of harmonic quasiconformal and non-quasiconformal extension of
quasi-symmetric functions. Namely, as it is shown by Partyca and Sakan [11], the
harmonic extension of a quasi-symmetric function is not necessarily quasiconformal
mapping. Theorem 3.2 gives a sufficient condition for a quasi-symmetric function
to generate a quasiconformal mapping. We consider also another problem. Namely,
we show that although quasiconformal harmonic function of the unit disk onto itself
is not necessarily continuously differentiable on the boundary (see example 3.13), it
cannot have point of discontinuity of the first type (Theorem 3.11). Moreover the
following proposition for quasiconformal harmonic mappings holds and its proof is
similar with the proof of the conformal case, and which is due to M. Pavlović and
M. Mateljević – unpublished result.

Proposition 3.1. A quasiconformal harmonic mapping between the unit disc
and a Jordan domain with the rectifiable boundary has absolutely continuous bound-
ary values.

The Proposition 3.1 does not hold for quasiconformal mappings, see [2]. The
following theorem gives some equivalent conditions for quasiconformality.

Theorem 3.2. Let w : D→ Ω be a harmonic diffeomorphism between the unit
disc D and the convex Jordan domain Ω such that w = P [F ] is the Poisson integral
of an absolutely continuous function F (ϕ) = ρ(ϕ)eif(ϕ) from [0, 2π] onto ∂Ω. Then
the following conditions are equivalent:

(i) w ∈ QCH and there exists a positive constant p such that the inequality
|F ′(x)| 6 p holds almost everywhere;

(ii) w ∈ QCH and D(w) is a bounded function;
(iii) D(w) is a bounded function and and there exists a positive constant k such

that the inequality k 6 |F ′(x)| holds almost everywhere.

We note that the assumption that F is an absolutely continuous function im-
plies that F is differentiable almost everywhere.
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Proof. We first assume that (iii) holds, and we prove that w is a quasicon-
formal function. Since F ∈ Dk, Corollary 2.9 implies that Jw(z) > krγ/2 for every
z ∈ D. Hence ∣∣∣∣

∂̄w(z)
∂w(z)

∣∣∣∣ 6 1− krγ

2|∂w(z)|
almost everywhere. By assumption |∂w(z)| 6 M , and by the previous inequality,
it follows that ∣∣∣∣

∂̄w(z)
∂w(z)

∣∣∣∣ 6 1− krγ

2M
= k0.

Hence w is quasiconformal. Thus we prove that (iii) ⇒ (ii). We now assume that
(ii) holds. We need to prove that there exist a constant k such that k 6 |F ′(x)|
holds almost everywhere on the interval [0, 2π]. We argue by contradiction. Let
ess inf |F ′(x)| = 0. Since

∂ϕw(z) = i(z∂w(z)− z∂̄w(z)) = P [F ′](z)

it follows that ess inf |z∂w − z∂̄w| = 0. By [7, Corollary 2.7], we have

D(w)(z) > 1
4(1 + 2k + k2)

ρ2 = M.

Hence

ess sup
|∂w|+ |∂̄w|
|∂w| − |∂̄w| = ∞,

in contradiction with the membership of w in QCH. Thus (iii) holds. It remains
to prove that (i) ⇔ (ii). Assume that (i) holds. We prove that the functions ∂ϕw
and ∂rw are bounded. Since F ′ is a bounded function, it follows immediately that
the function ∂ϕw is bounded. Next, since w is quasiconformal it follows that

|∂̄w|
|∂w| =

∣∣∣∣∣
e−iϕ(∂rw − i

∂ϕw
r )

eiϕ(∂rw + i
∂ϕw

r )

∣∣∣∣∣ 6 k0

where k0 is the constant of quasiconformality of w. Since ∂ϕw is bounded it follows
immediately that ∂rw is also bounded. Indeed, if ∂rw were to be unbounded we
would have k0 = 1, in contradiction with the membership of w in QCH.

Assume now that w ∈ QCH and that D(w) is a bounded function. Since

D(w) = |∂w|2 + |∂̄w|2 =
|∂rw|2

2
+
|∂ϕw|2

2r2
and ∂ϕw = P [F ′],

one obtains that the function ∂ϕw is bounded function and consequently F ′ is
bounded. Thus we have proved implication (ii) ⇒ (i), and the proof of the theorem
is complete. ¤

Corollary 3.3. Let F ∈ Dp(M). Then the function w = P [F ] is quasicon-
formal between the unit disk D and the convex Jordan domain Ω if and only if
F ∈ Dk for some positive constant k. In this case the quasiconformality constant
K = K(M, p, k) depends only on (M,p, k) i.e., K does not depend on the function
w.



QUASICONFORMAL HARMONIC FUNCTIONS BETWEEN CONVEX DOMAINS 15

Proof. In order to apply the previous theorem, we observe that the member-
ship F in Dp(M) and Theorem 2.5 guarantee that the function D(w) is bounded.

¤

The following statement is a generalization of the previous one. The proof
follows from Theorem 3.2 and Theorem 2.6.

Corollary 3.4. Let F ∈ D′p(M). Then w = P [F ] is a quasiconformal func-
tion between the unit disk and the convex Jordan domain Ω if and only if F ∈ Dp for
some positive constant p. Moreover the quasiconformal constant K = K(M,p, k)
depends only on (M, p, k). K does not depend on function w.

We estimate the quasiconformality constant. By Corollary 2.9, Theorem 2.5
and Theorem 2.6, we conclude that

K(z) =
|∂w|+ |∂̄w|
|∂w| − |∂̄w| =

(|∂w|+ |∂̄w|)2
|∂w|2 − |∂̄w|2 6 2D(w)(z)

Jw(z)
6 2

M2 + π2p2

π2krγ
= K.

It would be interesting to know the best value of K.

Theorem 3.5. If w is a k-quasiconformal harmonic function between the unit
disk and the convex Jordan domain Ω, then there exists a positive constant M such
that |Jw(z)| > M .

Proof. By [7, Corollary 2.7] we have

|∂w(z)|2 > 1
4(1 + k)2

r2
γ .

Since w is k-quasiconformal we have:

Jw(z) = |∂w|2 − |∂̄w|2 > (1− k2)|∂w|2 > 1− k2

4(1 + k)2
r2
γ = M.

We note that the constant M does not depend on function w. It depends only
on the quasiconformality constant of w and on the convex curve γ. ¤

Corollary 3.6. If w is a k-quasiconformal function between the unit disk and
the convex Jordan domain Ω, then the function D(w−1) is bounded. In particular
w−1 is a Lipschitz function.

Proof. By Theorem 3.5 it follows that Jw(z) > M . On the other hand we
have Jw−1(w(z)) · Jw(z) = 1 and thus Jw−1 6 1/M . Since w−1 is k-quasiconformal
we have:
D(w−1) = |∂(w−1)|2 + |∂̄(w−1)|2 6 (1 + k2)|∂(w−1)|2

6 (1 + k2)
(1− k2)

(|∂(w−1)|2 − |∂̄(w−1)|2) =
(1 + k2)
(1− k2)

Jw−1 6 1
M

(1 + k2)
(1− k2)

= C2.

It follows that

|w−1(z)− w−1(z′)| 6 sup
ζ∈D

||(w−1)′(ζ)|| · |z − z′| 6 C|z − z′|,

which concludes the proof. ¤
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Lemma 3.7. If g ∈ L1(S1) and if ess inf|g(eiϕ)| = 0 then lim inf
z→∂D

|P [g](z)| = 0.

Proof. It is well known that, if g ∈ L1(S1) then P [g](reix) → g(eix) as r → 1
for almost every x, (see for example [1]). Let ε > 0. Then µ{ϕ : |g(eiϕ| < ε} > 0.
Hence, there exists x ∈ {ϕ : |g(eiϕ)| < ε} such that P [g](reix) → g(eix) as r → 1.
Consequently

lim inf
z→∂D

|P [g](z)| < ε.

Since ε is an arbitrary positive number, we obtain the desired conclusion. ¤

Corollary 3.8. If w = P [F ] ∈ QCH then k = ess inf |F ′(ϕ)| > 0.

Proof. Let q be a quasiconformality constant. Then by [7, Corollary2.7] we
obtain

|∂w| > 1
2(1 + q)

rγ = M.

On the other hand

|P [F ′](z)| > |z|(|∂w(z)| − |∂̄w(z)|) > |z|(1− q)M.

Hence
lim inf
z→∂D

|P [F ](z)| > (1− q)M > 0.

By applying the previous lemma we obtain ess inf|F ′(ϕ)| > 0. Thus the proof is
complete. ¤

Corollary 3.9. If F ∈ QCH and if F ′(ϕ0) exists, then

|F ′(ϕ0)| > ess inf|F ′(ϕ)| = k > 0.

Proof. Since F is absolutely continuous, then the equality F ′(ϕ) = (ρ(ϕ)f ′(ϕ)
+iρ′(ϕ))eif(ϕ) hold almost everywhere. The equality ρ′(ϕ) = r′(f(ϕ))f ′(ϕ) and the
equality (1.4) imply that ρ′(ϕ) = ρ(ϕ)f ′(ϕ) cot αf(ϕ). Let ε(ϕ) = sign(cot αf(ϕ)).
Then from the inequality (2.9) we obtain

(3.1) ρ(ϕ)f ′(ϕ) > k| sin αf(ϕ)| and ε(ϕ)ρ′(ϕ) > k| cosαf(ϕ)|
for almost every ϕ ∈ [0, 2π]. On the other hand

(3.2)
F (ϕ)− F (ϕ0)

ϕ− ϕ0
=

∫ ϕ

ϕ0
F ′(t) dt

ϕ− ϕ0
=

∫ ϕ

ϕ0
(ρ(ϕ)f ′(ϕ) + iρ′(ϕ))eif(ϕ)dϕ

ϕ− ϕ0
.

By letting ϕ → ϕ0 in (3.2), by exploiting the equality eif(ϕ) = eif(ϕ0) + o(ϕ− ϕ0),
by using inequalities (3.1), and by the constancy of ε when ϕ is close enough to ϕ0,
we obtain

|F ′(ϕ0)| > inf
ϕ

√
k2 cos2 αf(ϕ) + k2 sin2 αf(ϕ) = k. ¤

Example 3.10. Let γ be a convex smooth Jordan curve with bounded cur-
vature and let ϕ → ρ(ϕ) be the polar parametrization of γ. Then the function
w = P [ρ(ϕ)eiϕ] is quasiconformal.
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In order to prove such statement we observe that |F ′(ϕ)| = (ρ′2(ϕ)+ρ2(ϕ))1/2.
Since ρ′′ is bounded, it follows that the function ϕ → ρ′(ϕ) is Lipschitz’s. Hence
F (ϕ) = ρ(ϕ)eiϕ ∈ Dp

k(M) for some M , k and p. Thus we have prove the statement
of (3.10). In the specific case in which the target space is the ellipse E(a, b), the
function ρ has the explicit form ρ(ϕ) = ab(b2 cos2 ϕ + a2 sin2 ϕ)−1/2.

The following theorem gives necessary conditions for quasiconformal extension
of some homeomorphic functions.

Theorem 3.11. If w(z) = P [F ](z) is a quasiconformal mapping between the
unit disc and a convex domain, or more generally between the unit disk and a Jordan
domain with rectifiable boundary, then the function F ′ exists almost everywhere and
has no point of discontinuity of the first type.

Proof. We first note that F ′ exists by virtue of Proposition 3.1. To prove the
statement we argue by contradiction. Let

(3.3) lim
y↓ϕ

F ′(y) = A and lim
y↑ϕ

F ′(y) = B

for some ϕ ∈ [0, 2π]. Without loose of generality we my assume that

(3.4) Re(A−B) > |A−B|/2 > 0.

By (3.3) it follows that there exists ε > 0 such that 0 < x < ε implies

(3.5) |F ′(ϕ + x)| < C and Re(F ′(ϕ + x)− F ′(ϕ− x)) > |Re(A−B)|
3

,

where C = |A|+ |B|+ 1. Then by (2.4), we obtain

|∂ϕw(reiϕ)| 6
∣∣∣∣
∫

|x−ϕ|6ε

F ′(x)P (r, x− ϕ) dx

∣∣∣∣ +
∣∣∣∣
∫

|x−ϕ|>ε

F ′(x)P (r, x− ϕ) dx

∣∣∣∣

6 C

∣∣∣∣
∫

|x−ϕ|6ε

P (r, x− ϕ) dx

∣∣∣∣ + Kε

∣∣∣∣
∫

|x−ϕ|>ε

|F ′(x)| dx

∣∣∣∣

6 C + Kε

∫ 2π

0

|F ′(x)|dx = C + LKε.

Here L denotes the finite length of γ, and Kε denotes the maximum of the function
x → P (r, x− ϕ) on the set |x− ϕ| > ε. It follows that

(3.6) lim
z→eiϕ

|∂ϕw(z)| 6 C + LKε.

By (2.5), (3.5) and (3.4) we obtain:

|∂rw(reiϕ)| = 2
∣∣∣∣
∫ π

0

(F ′(ϕ + x)− F ′(ϕ− x))
sin x

1 + r2 − 2r cos x

dx

2π

∣∣∣∣

= 2
∣∣∣∣
∫ ε

0

(F ′(ϕ + x)− F ′(ϕ− x))
sinx

1 + r2 − 2r cosx

dx

2π

+
∫ π

ε

(F ′(ϕ + x)− F ′(ϕ− x))
sin x

1 + r2 − 2r cosx

dx

2π

∣∣∣∣

> |A−B|
3

∫ ε

0

sin x

1 + r2 − 2r cos x

dx

2π
−M,
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where M is a constant depending on ε and on the length of the curve γ. Thus we
obtain lim

r→1
|∂rw(reiϕ)| = +∞. Then inequality (3.6) implies that

lim sup
r→1

|∂̄w(reiϕ)|
|∂w(reiϕ)| = lim

r→1

∣∣∣∣∣
e−iϕ

(
r∂rw(reiϕ)− i∂ϕw(reiϕ)

)

eiϕ (r∂rw(reiϕ) + i∂ϕw(reiϕ))

∣∣∣∣∣ = 1.

Thus we obtain that w is not quasiconformal, a contradiction. ¤

Corollary 3.12. The polar parametrization of a nonsmooth convex curve does
not generate a quasiconformal function.

Example 3.13. Let f be the realvalued function defined on the set [−π, π] by
the equality

f(ϕ) = a

(
b log π · ϕ−

∫ ϕ

0

log |x| dx

)
,

where b > 1 and a is a positive constant such that f(π) − f(−π) = 2π, or equiv-
alently, such that a(2 + (b − 2) log π) = 2. For example we could take a = 1
and b = 2. We extend such function periodically to the real line R by setting
f(x+2π) = f(x)+2π. Thus we have a homeomorphism of the real line onto itself.
Then the function F (ϕ) = eif(ϕ) belogn to ∈ D′

k(M) for some k,M . However F
does not belong to Dp for any p. Moreover, the function |∂rw(z)| is bounded. Thus
w is not a quasiconformal mapping.

Proof. We note that f 6∈ C1. Indeed f ′ is discontinuous 0. Moreover
limϕ→0 f ′(ϕ) = ∞. Hence F /∈ Dp ∪ D(M) for all p and M . It is easy to see
that F ∈ Dk for some k. We now prove that F ∈ D′(M) for some M . Obviously
f ′(x) = a log πb/|x| if −π 6 x 6 π. Hence,

I :=
∫ π

0

|f ′(ϕ + x)− f ′(ϕ− x)|
x

dx = a

∫ π

0

∣∣ log
∣∣ϕ+x
ϕ−x

∣∣∣∣
x

dx.

Let ϕ > 0. By setting u = ϕ+x
ϕ−x we obtain x = ϕu−1

u+1 and dx = 2ϕ
(u+1)2 . For x1 = 0,

x2 = ϕ − 0, x3 = ϕ + 0 and x4 = π we have u1 = 1, u2 = +∞, u3 = −∞ and
u4 = ϕ+π

ϕ−π , respectively. We note that u4 < −1 for 0 < ϕ < π. Hence we have

I = a

∫ u4

−∞

log |u|
u2 − 1

du + a

∫ +∞

1

log |u|
u2 − 1

du 6 2a

∫ +∞

1

log |u|
u2 − 1

du

6 2a

∫ 2

1

|u| − 1
|u|2 − 1

du + 2a

∫ ∞

2

√
u

u2 − 1
du 6 2a

(
log

3
2

+ 2
√

2
)

= M.

(3.7)

The same inequality holds for ϕ < 0. By following the proof of Theorem 2.5, by
exploiting the inequality (D) instead of the inequality (C) from Definition 2.1, we
obtain

|∂rw(reiϕ)| 6 a

πr

(
2 log

3
2

+ 4
√

2
)

.

It follows that ∂rw is bounded on the unit disk D. The function ∂ϕw(z) is un-
bounded and consequently the function w is not quasiconformal. ¤
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The following example is important. It shows that, there exist harmonic q.c.
mappings of the unit disk onto itself whose boundary values are not differentiable,
a behaviour which differs from the case of conformal mappings. It shows also that,
the class D′p(M) is larger than the class Dp(M).

Example 3.14. Let

f(ϕ) = a

(
ϕ + b

∫ ϕ

0

− sin log |x| dx

)
, ϕ ∈ [−π, π],

where 0 < a and 0 < b < 1 have been chose so that

f(π)− f(−π) = a

(
2π + b

∫ π

−π

− sin log |x| dx

)
= 2π.

We extend f periodically on the whole real line as in the previous example. Then
the function w(z) = P [eif(ϕ)](z) is a quasiconformal mapping of the unit disc onto
itself. Moreover F (x) = eif(x) ∈ D′p(M) for some p,M but it doesn’t belong
Dp(M) for any p,M .

Proof. According to Corollary 3.3, it suffices to prove that F (ϕ) = eif(ϕ) ∈
D′p

k(M) for some p, k,M . We have

I =
∫ π

0

|f ′(ϕ + x)− f ′(ϕ− x)|
x

dx = ab

∫ π

0

| sin(log |ϕ + x|)− sin(log |ϕ− x|)|
x

dx

for every ϕ. Hence

I 6 ab

∫ π

0

∣∣ log
∣∣ϕ+x
ϕ−x

∣∣∣∣
x

dx.

By exploiting (3.7) we obtain that F ∈ D′(M) for M = 2ab(log 3
2 + 2

√
2). Since

f ′(x) = a(1− b sin log |x|), we immediately obtain that F ∈ Dp
k, where p = a(1 + b)

and k = a(1− b). ¤

Martio [10] gives an example of a C1 function F such that F ∈ Dp
k, but for

which w = P [F ] is not a quasiconformal mapping. The following example shows
that there exist C1 functions that belong to D′(M)rD(M) for some M .

Example 3.15. Let

f(x) = a

(
x + b

∫ x

0

sin
(

1
c log π − log |x|

)
dx

)
,

where x ∈ [−π, π] and a, b, c are positive constants satisfying conditions f(π) −
f(−π) = 2π, b < 1 and 2 6 c. Then w = P [eif(x)] ∈ QCH. Moreover F (x) =
eif(x) ∈ D′p

k(M), for some p, k and M , and F ∈ C1, but F /∈ D(M) for all M .

The following example shows that w = P [F ] ∈ QCH does not imply F ∈ Dp

for any p.

Example 3.16. [1] Let Pn be a regular n-polygon. Then the function

w(z) =
∫ z

0

(1− zn)−2/ndz
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is a conformal mapping of the unit disc onto the polygon Pn. However w′(z) =
(1− zn)−2/n is an unbounded function.

Remark 3.17. It is an open question, whether a harmonic quasiconformal
mapping of the unit disc onto itself, or more generally, a harmonic quasiconformal
mapping onto a convex Jordan domain with smooth boundary, has a bounded first
derivative.

Note that for conformal mappings the answer is positive.
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