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MOBIUS TRANSFORMATIONS
AND MULTIPLICATIVE REPRESENTATIONS
FOR SPHERICAL POTENTIALS

F. G. Avkhadiev

ABSTRACT. For the unit spheres S» C R"t! and S27~1 C R?" = C” we
prove the following identities for two classical potentials
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where z € R™*! (|z| # 0 and |z| # 1), 2 € C" (|z] < 1), Ty, and ®,,. are
explicit involutions of S™ and S?*~! respectively. Some applications of these
formulas are also considered.
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1. Introduction

The aim of this paper is to present a new approach to study boundary behavior
of classical potentials using Md&bius transformations in two and several dimensions.

We consider two spherical potentials in the spaces R**! and C" for n > 1.
The first one is the Riesz potential

M Paoef) = [

S

of the sphere S™ = {y € R"*! : |y| = 1} in R"™! for |z| # 1, and the second is the
complex potential

@) Qo) = [ F(©)

o1 |1 = (z, Q)" Fe
of the sphere S*"~! = {¢ € C™ : |¢| = 1} in C" for |z| < 1. In (1) and (2) do,
and do¢ denote the differential elements of surface area of the spheres S™ C R"*!
and S?"~! C R?", respectively, and (z,() = 21(; + 22(y + - + 2,(,, is the scalar
product in C™.
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It is very well known that the classical methods use some special additive
representations of (1) and (2) to study their boundary behavior (see, for instance,
[1], [3], [5], [6]). We will give new formulas to find the singularities of spherical
potentials in the case, when « is a complex number such that Rea > 0.

Namely, for (1) and (2) we obtain multiplicative representations which explic-
itly give the principal singularities of these potentials near the spheres S™ and
521 respectively. Moreover, we apply the multiplicative representations to find
sharp estimates for the functions

|1_|x|2|ﬁpn,a(x>f) and |1_|Z|2|BQn,a(z)F)

when 8 > Rea and the densities f and F' belong to L? with ¢ > 1. We also show
that the multiplicative representations may be used to prove Fatou type theorems.

The paper is organized as follows. In Section 2 the Riesz potential P, , is
considered. In Section 3 we study the complex potential (2) in some details. It is
clear that P o(z, f) = Q1,a(2, F) for f = F and ¢ := (21, 22), z := (z1 + iz2), but
Qn,a(z, F) does not reduce to Pyp_1,4(z, f) for n > 2.

2. Riesz spherical potentials

We intend to transform integral (1) by a change of variables using Md&bius
transformations. Consider first the trivial case n = 0. We can take S° = {—1,1}

e FED )
-1 1
Py = R 0
0, (1’,f) |CU+1|D‘+|.’L'—1|O" T € \S>
for any function f : S® — C. If T, : S® — S° is involute, i.e., To(1) = —1,
To(—1) = 1, then the following identity
|z = 1*f(=1) + |z + 1[* f(1) 1
P = = P — T
0,a(z, f) =27 T oz, f oTp)

is valid in R ~. S°. Surprisingly, this elementary formula has a direct extension to
the case n > 1.

For n > 1 and every fixed x € R"™1\ S, |z| # 0, we will consider the following
Mébius transformations of R™*1

(2 =Dy — =)

o4 ” p, } , lf |$| > 17

3 T = 5

(3) e () z (el =Dy —a/lzP) o <|z| <1
[2f? ly = a/laPP

For fixed z the transformation 7}, , is a conformal automorphism of the unit ball
Byi1 = {y € R"™! : |y| < 1} (see [1]) and the restriction T}, | S™ presents the
standard inversion of S about the sphere S?1 = {y € 5™ : [y—z| = /|1 — |z]?|}.

THEOREM 1. Suppose thatn > 1 and f € L'(S™). For any a € C and for all
r € R S™) |z| £ 0, the following identity is valid

() B 1 f(Th:(y)) >
) /s o — e 7 = T ape /s =y
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PROOF. Let z € R""1\S", |z| # 0. To simplify computations it is convenient
to use a new orthonormed basis (e, es,...,e,11) obtained by a rotation of R™*1
about the origine and such that z = |z|e;.

Suppose that

n+1 n+1
y = Z Yrek and u="Ty,(y) = Z uker.
k=1 k=1

Straightforward computations using (3) give

2z = (L4 |2]P)n

5 uy =177 1, =
( ) 1 1,| |(y1) 1+|1’|2 —2|1’|y1
and
11— |z?| 1—uf
6 wp=—-_ b 2<k<n+1,
© T+ [aP — 2laln ™ = | 142"

in both cases: |z] > 1 or 0 < |z| < 1. To deduce the second equalities for uy in (6)
we used the following consequence of (5):

(1= |z[*)? 2
7 1—uf= 1—yi).
( ) 1 (1 4 |CU|2 . 2|$|y1)2( yl)
Moreover, equality (5) implies that y; = T |4|(u1), hence
(1—zf?)? (
1+ |z]? — 2|z|ur)?

Using (5) and (6) we also obtain that v = T}, 5 (y) € S™ for any y € S™ and T, 5 | S™
is an involution of S™.
From (7) and (8) it follows that

(L4 |2 = 2lzly) (1 + 2]* - 2lalur) = (1 - [2]*)?

1—ul).

(8) ]-_yl:(

which is equivalent to the equality
(9) |z —ul |z —y| = 1 - |z|

for any y € S™ and u = T}, »(v).
Thus,

f(u) _ 1 nta
(10) /n mdau = W /Sn F(Toe())|z = y[" I (y)doy,

where I(y) = do,/do, (v = T,.(y)) is the Jacobian of the map T, ,|S™. To
compute I(y) we consider a diffeomorphism K : B,,+1 — B, 1 defined by

(K |S™)(&) = (T S™)() for £e€8™

and
n+1

v:K(f):kaek for |¢] <1,
k=1
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where

1— 2
(11) v =T (&), vkz,/l—z;& for 2<k<n+1.
- 61

For any £ € S™ and v = K () one has

1 vy 1P vy,
I(y)=1 det [ =— 1 det ([ =— )
() gl—r>rgl; 1— v ¢ (agj )1<j,k<n+1 55131; 1— o2 ¢ (afj )lsj,k<n+1
lgl<1 l€l<1

Since

Ovy 1—v? Qv 11—}

gun _ _17vi Ok for k2

o6~ 1-& o, \1i-g
and 9

Vg .
— =0 for £>1 and j >k,
0¢;
we have L4/
e A
I(y)=1 .
)= fm 7~ [l \1-¢&
[€1<1
From (11) it follows that
1—v?
1—|v)? = La—1g?).
o = g (L= )
Using this and the formula (8) for v = T, »(y) = K(y) € S™ we obtain
1= |z

12 I = S”.

Formulas (10) and (12) imply (4). Thus, the proof of Theorem 1 is complete. O

COROLLARY 1.1. Let F € L1(S™), ¢ > 1. If 3 =Rea +n/q > 0 then for any
(13) sup
Il £llq=1

fired z € R S™
do, 1/t
- </s Iw—yI"‘“> ’
wheret = (¢ —1)/qg <1 and

= ([ o,

PRrROOF. According to Hélder’s inequality
(14) sup |Poa(@, f)l = Plgi(x, 1),
I

[ LokPPw),

| —yfnte Y

n,B3t

l[g=1
Applying Theorem 1 we obtain
1
(15) Pppi(z,1) = an,—ﬁt(w, 1).

Equalities (14) and (15) imply (13). O
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By virtue of well-known properties of Riesz potentials the integral P, _g¢(x,1)
depends on |z| only and has three critical points that are |z| = 0, || = 1 and
|z] = co. Compare P, _p:(0,1), P, _5:(1,1) and P, _s:(c0,1) one may compute
its maximum and minimum for 0 < |z| < 1 or 1 < |z| < co. In particular, if n > 2,
0<n—pFt<n—1,then P, _5:(0,1) > max{P, _p:(1,1), P, _p:(00,1)}.

Consequently, (13) implies the sharp estimate

(16) L= PP, DI < o3Il Ve € RIS ST,

h 20" the sut £ 5™ in R™. Equal 16
n — 3 “t 7 n 3 n . .t M
where o T+ 1/2) is “the surface area” o in quality in (16)
occurs for |z| = 0 and f(y) = const.
Using classical methods for Poisson’s integrals (see, for instance, [1]) one may
prove the following Fatou’s theorem for P, o(z, f) in the case Rea > 0 and f €

L'(S™) : for almost all £ € S™
[(a/2)

7F((a+n)/2)f(£,)

(17) lim |- |oP*Pala, f) = 20772
z—E€
le—€|<M(1—]|z|)
where M is a positive constant.
In the next Corollary 1.2 we examine (17) for a particular case when (17) is a
simple consequence of Theorem 1 and a property of T}, ;.

COROLLARY 1.2. If Rea > 0, f € L*>(S™) and f is continuons at the point
& e S”, then

m |1 — [2?|° _gagn/z_P(@/2)
il—%'l ||| Pn,a(maf) 2% F((a+n)/2)f(€)
PRrROOF. According to Theorem 1 we have to prove that
: f(Tna(y)) doy ['(a/2)
1 — g, = =
e fo e im0 [ = e v ©
which is equivalent to
Az, &) = f(Tna(y) = £(E) doy, -0 asz—¢&, |z #L

Sn |z —y|n—e

Since Holder’s inequality on can write

e, 91 < ([ 17T0ate - @)

where C' is a constant.
From (3) it follows that
lim T, .(y) =&, Vy € S" ~{¢}
r—E
||#1
Consequently, f(Th.(y)) — f(&) as ¢ — &, |¢| # 1 for any y € S™ \ {&} and
[foTn.— fO|l = 0asz— & || #1 by Lebesgue’s theorem on the majorized
convergence. This completes the proof of Corollary 1.2. O
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The function P; o (r,1) is used in many problems related to the spaces of func-
tions analytic in the unit disk. We add to known results (see [2], [4]) the following
assertion. We will need the beta function

B(} g) _ Vl(a/2)
272 F((a+1)/2)
COROLLARY 1.3. If0<r<1,a>0 and a # 1 then

2r /2” de 2°B(1/2,/2)
(T—r2)a = J, |1 reif|i+a (1—12)

Equality in the left-hand side inequality occurs if and only if r = 0. The right-hand

side inequality is sharp asymptotically as r — 1 — 0.

ProoF. By Theorem 1

/2“ df 1 /2“ df
0 |1 _ rei9|1+a - (1 _ 7“2)0‘ 0 |1 _ r6i9|1—a'

According to Hardy’s theorem P; _,(., 1) is an increasing function in [0, 1) if @ # 1.
Consequently, for any r € (0,1), a >0 and a # 1

(1=r)*P; o (r,1) > Py,_4(0,1) = 2,
(1—=73)%P; 4 (r,1) < lign 0(1 — 2Py o(r,1) = Pi_o(1,1) = 2°B(1/2,/2).
r—1—

Two last formulas complete the proof of Corollary 1.3. a

3. The potential of $?"~! in C"

Let B be the unit ball {¢ € C™ : [¢| < 1}, 0B = §*"1. For fixed z € B\ {0}
we consider the biholomorphic map ®,, , of B onto B defined as follows (see [5]):

z2=p=(Q) = V1= |22(C = p:=(9))
1- (C,Z)

(I)n,Z(O = ) |C| <1,

where

p-(¢) = @(@z).

It is known (see [5]) that .
(i) @, . is an involution, i.e., ®, (P, .({)) = ¢ for any ¢ € B;
(ii) ®@,,, satisfies the conditions
P,z (2) =0, P,z (2/]2]) = —2/l|,
®,.(¢)es™ ! and &,.(()#(¢ forany (e S* 1
(iii) @, |S?n~1: §2n=1 5 §2n=1 ig a diffeomorphism;
(iv) there is the identity

_ (=P - (Gw))
L= ®@n2(Q) 8z (W) = A== 0= o))

For Qn,a(z,F) we have the following analog of Theorem 1. Note that the
assertion of Theorem 2 is known in the case @ = n (see [5, Chapter 1]).
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THEOREM 2. Suppose that « € C, F € L'(S?"~!). For any z € B \. {0} the
following identity is valid:

F(C)dUC _ 1 F(q)n,z(o)dg(
aw 1= (0l ~ = P)n [ T (0P

where S?>"~1 = 0B = {( € C": |(| = 1}.
PRrROOF. Let z € B\ {0}. Taking w = &, ,(¢), ¢ € S?"~!, we have
/ Flw)dow  _ / F(®n,:(O))I(¢)do¢
S S

a1 1= (z,w)["F 7 Jgonr 1= (2, 8,2 (O) 7o
From the properties (i), (ii) and (iv) we have ¢ = @, ;(w) and
(1 —[z%) (1 = (¢ w))
1- ’U},C = ) C,’LU 1.

W= ey O
Consequently, for any ¢ € $?" ! and w = &, .(¢)
(20) 1= (zw)]- 1= (2,0l =1~ |2
According to Theorem 3.3.8 in [5] the Jacobian
o doy, o (1— |Z|2)n

(19)

21 1) = %w _ U=lzl)”
ey R P [ NS

From (19), (20) and (21) we have (18) immediately. The proof of Theorem 2 is
complete. O

In [5, Proposition 1.4.10], for —TH_TQ ¢ N it is proved that

 owal) Tkt (4 0)/2)
(22) Qo) = Ty ay2) 2 T+ DTG ) T
and that
(23) Qnalz, 1)~ (1—12)*)" for a>0.

It is to note that

/ d 27"
O2pn—1 = Or = ——
2 ! §2n—1 ¢ F(TL)

is “the surface area” of S?"~! in R?", and in [5] the normalized measure
do(¢) = do¢/oan-1

is considered. Hence, Qn o(2,1)/02n—1 is I.(z) from [5, Chapter 1], with ¢ = a.
Using Theorem 2 and the series (22) we get a refined version of (23).

COROLLARY 2.1. Ifa >0, 2 € B,, and F € L>(5?"~') then

/ F(Q)do¢ 2" (a) £ lloo
san-1 1= (z,Q)Ire | = T2((n+ @)/2) (1= |2

where ||F||oo = sup{|F(¢)| : ¢ € §>"~'}. If F(¢) = const. # 0 then the inequality
is asymptotically sharp as |z| - 1 —0.

(24)
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Proor. Using Theorem 2 and the series (22) one has
(25) o |@n.alz, F)I(1 = [211)* = Qn,—allz],1)

o=l n—a n—a
_ — . 2
—UQn—lF( 2 9 2 ,’fL,|Z| )7

where F(a,b;c;|z|?) is the hypergeometric function.
Since ¢ — a — b = a > 0, we have by Gauss’ formula

P(c)T'(c—a—10)
T(c—a)l(c-b)
Taking ¢ =n, a =b = (n — a)/2 and letting |z| = 1 — 0 we obtain
27" (@)
(26) @Qn,—a(l,1) = Pt a)/2)
(see another proof of (26) in [5, Theorem 4.2.7]).
The equalities (25), (26) and the following consequence of (22)

Qn,—a(|z|: 1) < lim Qn,—a(|z|: 1) = Qn,—a(la 1)
|z|]—1—0

F(a,b;¢;1) =

imply (24) and the asymptotic equality
. 27T ()
1 1—|z?)® )= ———"—.
|z1511( 1217 @2, 1) I2((n+a)/2)
These complete the proof of Corollary 2.1.
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