MÖBIUS TRANSFORMATIONS AND MULTIPLICATIVE REPRESENTATIONS FOR SPHERICAL POTENTIALS

F.G. Avkhadiev

ABSTRACT. For the unit spheres $S^n \subset \mathbf{R}^{n+1}$ and $S^{2n-1} \subset \mathbf{R}^{2n} = \mathbf{C}^n$ we prove the following identities for two classical potentials

$$\int_{S^n} \frac{f(y)}{|x-y|^{n+\alpha}} d\sigma_y = \frac{1}{|1-|x|^2|^{\alpha}} \int_{S^n} \frac{f(T_{n,x}(y))}{|x-y|^{n-\alpha}} d\sigma_y,$$

$$\int_{S^{2n-1}} \frac{F(\zeta) d\sigma_{\zeta}}{|1-(z,\zeta)|^{n+\alpha}} = \frac{1}{(1-|z|^2)^{\alpha}} \int_{S^{2n-1}} \frac{F(\Phi_{n,z}(\zeta)) d\sigma_{\zeta}}{|1-(z,\zeta)|^{n-\alpha}}$$

 $\int_{S^{2n-1}} \frac{F(\zeta) d\sigma_{\zeta}}{|1-(z,\zeta)|^{n+\alpha}} = \frac{1}{(1-|z|^2)^{\alpha}} \int_{S^{2n-1}} \frac{F(\Phi_{n,z}(\zeta)) d\sigma_{\zeta}}{|1-(z,\zeta)|^{n-\alpha}},$ where $x \in \mathbf{R}^{n+1}$ $(|x| \neq 0 \text{ and } |x| \neq 1), z \in \mathbf{C}^n$ $(|z| < 1), T_{n,x}$ and $\Phi_{n,z}$ are explicit involutions of S^n and S^{2n-1} respectively. Some applications of these formulas are also considered.

1. Introduction

The aim of this paper is to present a new approach to study boundary behavior of classical potentials using Möbius transformations in two and several dimensions.

We consider two spherical potentials in the spaces \mathbf{R}^{n+1} and \mathbf{C}^n for $n \geq 1$. The first one is the Riesz potential

(1)
$$P_{n,\alpha}(x,f) = \int_{S^n} \frac{f(y)}{|x-y|^{n+\alpha}} d\sigma_y$$

of the sphere $S^n=\{y\in {\bf R}^{n+1}:|y|=1\}$ in ${\bf R}^{n+1}$ for $|x|\neq 1,$ and the second is the complex potential

(2)
$$Q_{n,\alpha}(z,F) = \int_{S^{2n-1}} \frac{F(\zeta)}{|1 - (z,\zeta)|^{n+\alpha}} d\sigma_{\zeta}$$

of the sphere $S^{2n-1}=\{\zeta\in \mathbf{C}^n: |\zeta|=1\}$ in \mathbf{C}^n for |z|<1. In (1) and (2) $d\sigma_y$ and $d\sigma_\zeta$ denote the differential elements of surface area of the spheres $S^n\subset \mathbf{R}^{n+1}$ and $S^{2n-1}\subset \mathbf{R}^{2n}$, respectively, and $(z,\zeta)=z_1\overline{\zeta}_1+z_2\overline{\zeta}_2+\cdots+z_n\overline{\zeta}_n$ is the scalar product in \mathbf{C}^n .

²⁰⁰⁰ Mathematics Subject Classification: Primary 31B25; Secondary 30C65.

This research was supported by a grant of the Deutsche Forschungsgemeinschaft and by Russian Fund of Basic Research (Grant 02-01-00168).

It is very well known that the classical methods use some special additive representations of (1) and (2) to study their boundary behavior (see, for instance, [1], [3], [5], [6]). We will give new formulas to find the singularities of spherical potentials in the case, when α is a complex number such that $\operatorname{Re} \alpha > 0$.

Namely, for (1) and (2) we obtain multiplicative representations which explicitly give the principal singularities of these potentials near the spheres S^n and S^{2n-1} respectively. Moreover, we apply the multiplicative representations to find sharp estimates for the functions

$$|1 - |x|^2|^{\beta} P_{n,\alpha}(x,f)$$
 and $|1 - |z|^2|^{\beta} Q_{n,\alpha}(z,F)$

when $\beta \geqslant \operatorname{Re} \alpha$ and the densities f and F belong to L^q with q > 1. We also show that the multiplicative representations may be used to prove Fatou type theorems.

The paper is organized as follows. In Section 2 the Riesz potential $P_{n,\alpha}$ is considered. In Section 3 we study the complex potential (2) in some details. It is clear that $P_{1,\alpha}(x,f) \equiv Q_{1,\alpha}(z,F)$ for f=F and $x:=(x_1,x_2), z:=(x_1+ix_2)$, but $Q_{n,\alpha}(z,F)$ does not reduce to $P_{2n-1,\alpha}(x,f)$ for $n\geqslant 2$.

2. Riesz spherical potentials

We intend to transform integral (1) by a change of variables using Möbius transformations. Consider first the trivial case n=0. We can take $S^0=\{-1,1\}$ and

$$P_{0,\alpha}(x,f) := \frac{f(-1)}{|x+1|^{\alpha}} + \frac{f(1)}{|x-1|^{\alpha}}, \quad x \in \mathbf{R} \setminus S^0,$$

for any function $f: S^0 \to \mathbb{C}$. If $T_0: S^0 \to S^0$ is involute, i.e., $T_0(1) = -1$, $T_0(-1) = 1$, then the following identity

$$P_{0,\alpha}(x,f) = \frac{|x-1|^{\alpha} f(-1) + |x+1|^{\alpha} f(1)}{|1-x^2|^{\alpha}} = \frac{1}{|1-x^2|^{\alpha}} P_{0,-\alpha}(x,f \circ T_0)$$

is valid in $\mathbf{R} \setminus S^0$. Surprisingly, this elementary formula has a direct extension to the case $n \ge 1$.

For $n \geqslant 1$ and every fixed $x \in \mathbf{R}^{n+1} \setminus S^n$, $|x| \neq 0$, we will consider the following Möbius transformations of \mathbf{R}^{n+1}

(3)
$$T_{n,x}(y) = \begin{cases} x + \frac{(|x|^2 - 1)(y - x)}{|y - x|^2}, & \text{if } |x| > 1, \\ \frac{x}{|x|^2} + \frac{(|x|^{-2} - 1)(y - x/|x|^2)}{|y - x/|x|^2|^2}, & \text{if } 0 < |x| < 1. \end{cases}$$

For fixed x the transformation $T_{n,x}$ is a conformal automorphism of the unit ball $B_{n+1} := \{y \in \mathbf{R}^{n+1} : |y| \leq 1\}$ (see [1]) and the restriction $T_{n,x} \mid S^n$ presents the standard inversion of S^n about the sphere $S_x^{n-1} = \{y \in S^n : |y-x| = \sqrt{|1-|x|^2|}\}$.

THEOREM 1. Suppose that $n \ge 1$ and $f \in L^1(S^n)$. For any $\alpha \in \mathbb{C}$ and for all $x \in \mathbb{R}^{n+1} \setminus S^n$, $|x| \ne 0$, the following identity is valid

(4)
$$\int_{S^n} \frac{f(y)}{|x-y|^{n+\alpha}} d\sigma_y = \frac{1}{|1-|x|^2|^{\alpha}} \int_{S^n} \frac{f(T_{n,x}(y))}{|x-y|^{n-\alpha}} d\sigma_y$$

PROOF. Let $x \in \mathbf{R}^{n+1} \setminus S^n$, $|x| \neq 0$. To simplify computations it is convenient to use a new orthonormed basis $(e_1, e_2, \dots, e_{n+1})$ obtained by a rotation of \mathbf{R}^{n+1} about the origine and such that $x = |x|e_1$.

Suppose that

$$y = \sum_{k=1}^{n+1} y_k e_k$$
 and $u = T_{n,x}(y) = \sum_{k=1}^{n+1} u_k e_k$.

Straightforward computations using (3) give

(5)
$$u_1 = T_{1,|x|}(y_1) := \frac{2|x| - (1+|x|^2)y_1}{1+|x|^2 - 2|x|y_1}$$

and

(6)
$$u_k = \frac{|1 - |x|^2|}{1 + |x|^2 - 2|x|y_1} y_k = \sqrt{\frac{1 - u_1^2}{1 - y_1^2}} y_k, \quad 2 \leqslant k \leqslant n + 1,$$

in both cases: |x| > 1 or 0 < |x| < 1. To deduce the second equalities for u_k in (6) we used the following consequence of (5):

(7)
$$1 - u_1^2 = \frac{(1 - |x|^2)^2}{(1 + |x|^2 - 2|x|y_1)^2} (1 - y_1^2).$$

Moreover, equality (5) implies that $y_1 = T_{1,|x|}(u_1)$, hence

(8)
$$1 - y_1^2 = \frac{(1 - |x|^2)^2}{(1 + |x|^2 - 2|x|u_1)^2} (1 - u_1^2).$$

Using (5) and (6) we also obtain that $u = T_{n,x}(y) \in S^n$ for any $y \in S^n$ and $T_{n,x} \mid S^n$ is an involution of S^n .

From (7) and (8) it follows that

$$(1+|x|^2-2|x|y_1)(1+|x|^2-2|x|u_1)=(1-|x|^2)^2$$

which is equivalent to the equality

$$(9) |x - u| \cdot |x - y| = |1 - |x|^2$$

for any $y \in S^n$ and $u = T_{n,x}(y)$.

Thus,

(10)
$$\int_{S^n} \frac{f(u)}{|x-u|^{n+\alpha}} d\sigma_u = \frac{1}{|1-|x|^2|^{n+\alpha}} \int_{S^n} f(T_{n,x}(y)) |x-y|^{n+\alpha} I(y) d\sigma_y,$$

where $I(y) = d\sigma_u/d\sigma_y$ $(u = T_{n,x}(y))$ is the Jacobian of the map $T_{n,x} | S^n$. To compute I(y) we consider a diffeomorphism $K: B_{n+1} \to B_{n+1}$ defined by

$$(K \mid S^n)(\xi) = (T_{n,x} \mid S^n)(\xi)$$
 for $\xi \in S^n$

and

$$v = K(\xi) = \sum_{k=1}^{n+1} v_k e_k$$
 for $|\xi| < 1$,

where

(11)
$$v_1 = T_{1,|x|}(\xi_1), \quad v_k = \sqrt{\frac{1 - v_1^2}{1 - \xi_1^2}} \xi_k \quad \text{for} \quad 2 \leqslant k \leqslant n + 1.$$

For any $\xi \in S^n$ and $v = K(\xi)$ one has

$$I(y) = \lim_{\substack{\xi \to y \\ |\xi| < 1}} \frac{1 - |\xi|}{1 - |v|} \left| \det \left(\frac{\partial v_k}{\partial \xi_j} \right)_{1 \leqslant j, k \leqslant n+1} \right| \lim_{\substack{\xi \to y \\ |\xi| < 1}} \frac{1 - |\xi|^2}{1 - |v|^2} \left| \det \left(\frac{\partial v_k}{\partial \xi_j} \right)_{1 \leqslant j, k \leqslant n+1} \right|.$$

Since

$$\frac{\partial v_1}{\partial \xi_1} = -\frac{1 - v_1^2}{1 - \xi_1^2}, \quad \frac{\partial v_k}{\partial \xi_k} = \sqrt{\frac{1 - v_1^2}{1 - \xi_1^2}} \quad \text{for} \quad k \geqslant 2$$

and

$$\frac{\partial v_k}{\partial \xi_i} = 0$$
 for $k \geqslant 1$ and $j > k$,

we have

$$I(y) = \lim_{\substack{\xi \to y \\ |\xi| < 1}} \frac{1 - |\xi|^2}{1 - |v|^2} \left(\frac{1 - v_1^2}{1 - \xi_1^2} \right)^{1 + n/2}.$$

From (11) it follows that

$$1 - |v|^2 = \frac{1 - v_1^2}{1 - \xi_1^2} (1 - |\xi|^2).$$

Using this and the formula (8) for $v = T_{n,x}(y) = K(y) \in S^n$ we obtain

(12)
$$I(y) = \frac{|1 - |x|^2|^n}{|x - y|^{2n}}, \quad y \in S^n.$$

Formulas (10) and (12) imply (4). Thus, the proof of Theorem 1 is complete. \Box

Corollary 1.1. Let $F \in L^q(S^n)$, q > 1. If $\beta = \operatorname{Re} \alpha + n/q > 0$ then for any fixed $x \in \mathbf{R}^{n+1} \setminus S^n$

(13)
$$\sup_{\|f\|_q = 1} \left| \int_{S^n} \frac{|1 - |x|^2|^{\beta} f(y)}{|x - y|^{n + \alpha}} d\sigma_y \right| = \left(\int_{S^n} \frac{d\sigma_y}{|x - y|^{n - \beta t}} \right)^{1/t},$$

where t = (q-1)/q < 1 and

$$||f||_q = \left(\int_{S^n} |f(y)|^q d\sigma_y\right)^{1/q}.$$

PROOF. According to Hölder's inequality

(14)
$$\sup_{\|f\|_q=1} |P_{n,\alpha}(x,f)| = P_{n,\beta t}^{1/t}(x,1).$$

Applying Theorem 1 we obtain

(15)
$$P_{n,\beta t}(x,1) = \frac{1}{|1 - |x|^2 |^{\beta t}} P_{n,-\beta t}(x,1).$$

Equalities (14) and (15) imply (13).

By virtue of well-known properties of Riesz potentials the integral $P_{n,-\beta t}(x,1)$ depends on |x| only and has three critical points that are $|x|=0,\ |x|=1$ and $|x|=\infty$. Compare $P_{n,-\beta t}(0,1),\ P_{n,-\beta t}(1,1)$ and $P_{n,-\beta t}(\infty,1)$ one may compute its maximum and minimum for $0\leqslant |x|\leqslant 1$ or $1\leqslant |x|\leqslant \infty$. In particular, if $n\geqslant 2$, $0\leqslant n-\beta t\leqslant n-1$, then $P_{n,-\beta t}(0,1)\geqslant \max\{P_{n,-\beta t}(1,1),P_{n,-\beta t}(\infty,1)\}$.

Consequently, (13) implies the sharp estimate

(16)
$$|1 - |x|^2 |^{\beta} |P_{n,\alpha}(x,f)| \leqslant \sigma_n^{1/t} ||f||_q, \quad \forall x \in \mathbf{R}^{n+1} \setminus S^n,$$

where $\sigma_n = \frac{2\pi^{(n+1)/2}}{\Gamma((n+1)/2)}$ is "the surface area" of S^n in \mathbf{R}^{n+1} . Equality in (16) occurs for |x| = 0 and $f(y) \equiv \text{const.}$

Using classical methods for Poisson's integrals (see, for instance, [1]) one may prove the following Fatou's theorem for $P_{n,\alpha}(x,f)$ in the case $\operatorname{Re} \alpha > 0$ and $f \in L^1(S^n)$: for almost all $\xi \in S^n$

(17)
$$\lim_{\substack{x \to \xi \\ |x-\xi| < M(1-|x|)}} |1-|x|^2|^{\alpha} P_{n,\alpha}(x,f) = 2^{\alpha} \pi^{n/2} \frac{\Gamma(\alpha/2)}{\Gamma((\alpha+n)/2)} f(\xi,)$$

where M is a positive constant.

In the next Corollary 1.2 we examine (17) for a particular case when (17) is a simple consequence of Theorem 1 and a property of $T_{n,x}$.

COROLLARY 1.2. If $\operatorname{Re} \alpha > 0$, $f \in L^{\infty}(S^n)$ and f is continuous at the point $\xi \in S^n$, then

$$\lim_{\substack{x \to \xi \\ |x| \neq 1}} |1 - |x|^2|^{\alpha} P_{n,\alpha}(x, f) = 2^{\alpha} \pi^{n/2} \frac{\Gamma(\alpha/2)}{\Gamma((\alpha + n)/2)} f(\xi).$$

PROOF. According to Theorem 1 we have to prove that

$$\lim_{\substack{x\to\xi\\|x|\neq 1}} \int_{S^n} \frac{f(T_{n,x}(y))}{|x-y|^{n-\alpha}} d\sigma_y = f(\xi) \int_{S^n} \frac{d\sigma_y}{|\xi-y|^{n-\alpha}} = \frac{\Gamma(\alpha/2)}{\Gamma((\alpha+n)/2)} f(\xi),$$

which is equivalent to

$$A(x,\xi) = \int_{S^n} \frac{f(T_{n,x}(y)) - f(\xi)}{|x - y|^{n - \alpha}} d\sigma_y \to 0 \quad \text{as } x \to \xi, \ |x| \neq 1.$$

Since Hölder's inequality on can write

$$|A(x,\xi)| \leqslant C \left(\int_{S^n} |f(T_{n,x}(y)) - f(\xi)|^q d\sigma_y \right)^{1/q},$$

where C is a constant.

From (3) it follows that

$$\lim_{\substack{x \to \xi \\ |x| \neq 1}} T_{n,x}(y) = \xi, \quad \forall y \in S^n \setminus \{\xi\}.$$

Consequently, $f(T_{n,x}(y)) \to f(\xi)$ as $x \to \xi$, $|x| \neq 1$ for any $y \in S^n \setminus \{\xi\}$ and $||f \circ T_{n,x} - f(\xi)|| \to 0$ as $x \to \xi$, $|x| \neq 1$ by Lebesgue's theorem on the majorized convergence. This completes the proof of Corollary 1.2.

The function $P_{1,\alpha}(r,1)$ is used in many problems related to the spaces of functions analytic in the unit disk. We add to known results (see [2], [4]) the following assertion. We will need the beta function

$$B\left(\frac{1}{2}, \frac{\alpha}{2}\right) = \frac{\sqrt{\pi}\Gamma(\alpha/2)}{\Gamma((\alpha+1)/2)}.$$

Corollary 1.3. If $0 \le r < 1$, $\alpha > 0$ and $\alpha \ne 1$ then

$$\frac{2\pi}{(1-r^2)^{\alpha}} \leqslant \int_0^{2\pi} \frac{d\theta}{|1-re^{i\theta}|^{1+\alpha}} < \frac{2^{\alpha}B(1/2,\alpha/2)}{(1-r^2)^{\alpha}}.$$

Equality in the left-hand side inequality occurs if and only if r = 0. The right-hand side inequality is sharp asymptotically as $r \to 1-0$.

PROOF. By Theorem 1

$$\int_0^{2\pi} \frac{d\theta}{|1 - re^{i\theta}|^{1+\alpha}} = \frac{1}{(1 - r^2)^{\alpha}} \int_0^{2\pi} \frac{d\theta}{|1 - re^{i\theta}|^{1-\alpha}}.$$

According to Hardy's theorem $P_{1,-\alpha}(.,1)$ is an increasing function in [0,1) if $\alpha \neq 1$. Consequently, for any $r \in (0,1)$, $\alpha > 0$ and $\alpha \neq 1$

$$(1 - r^2)^{\alpha} P_{1,\alpha}(r,1) > P_{1,-\alpha}(0,1) = 2\pi,$$

$$(1 - r^2)^{\alpha} P_{1,\alpha}(r,1) < \lim_{r \to 1-0} (1 - r^2)^{\alpha} P_{1,\alpha}(r,1) = P_{1,-\alpha}(1,1) = 2^{\alpha} B(1/2,\alpha/2).$$

Two last formulas complete the proof of Corollary 1.3.

3. The potential of S^{2n-1} in \mathbb{C}^n

Let B be the unit ball $\{\zeta \in \mathbb{C}^n : |\zeta| < 1\}, \partial B = S^{2n-1}$. For fixed $z \in B \setminus \{0\}$ we consider the biholomorphic map $\Phi_{n,z}$ of B onto B defined as follows (see [5]):

$$\Phi_{n,z}(\zeta) = \frac{z - p_z(\zeta) - \sqrt{1 - |z|^2}(\zeta - p_z(\zeta))}{1 - (\zeta, z)}, \ |\zeta| \leqslant 1,$$

where

$$p_z(\zeta) = \frac{z}{|z|^2}(\zeta, z).$$

It is known (see [5]) that

- (i) $\Phi_{n,z}$ is an involution, i.e., $\Phi_{n,z}(\Phi_{n,z}(\zeta)) = \zeta$ for any $\zeta \in \overline{B}$;
- (ii) $\Phi_{n,z}$ satisfies the conditions

$$\Phi_{n,z}(z) = 0, \Phi_{n,z}(z/|z|) = -z/|z|,$$

$$\begin{split} &\Phi_{n,z}(\zeta)\in S^{2n-1}\quad\text{and}\quad \Phi_{n,z}(\zeta)\neq\zeta\quad\text{for any}\quad \zeta\in S^{2n-1};\\ \text{(iii)}\ &\Phi_{n,z}\,|\,S^{2n-1}:\,S^{2n-1}\to S^{2n-1}\text{ is a diffeomorphism;} \end{split}$$

- (iv) there is the identity

$$1 - (\Phi_{n,z}(\zeta), \Phi_{n,z}(w)) = \frac{(1 - |z|^2)(1 - (\zeta, w))}{(1 - (\zeta, z))(1 - (z, w))}.$$

For $Q_{n,\alpha}(z,F)$ we have the following analog of Theorem 1. Note that the assertion of Theorem 2 is known in the case $\alpha = n$ (see [5, Chapter 1]).

THEOREM 2. Suppose that $\alpha \in \mathbb{C}$, $F \in L^1(S^{2n-1})$. For any $z \in B \setminus \{0\}$ the following identity is valid:

(18)
$$\int_{S^{2n-1}} \frac{F(\zeta)d\sigma_{\zeta}}{|1 - (z,\zeta)|^{n+\alpha}} = \frac{1}{(1 - |z|^2)^{\alpha}} \int_{S^{2n-1}} \frac{F(\Phi_{n,z}(\zeta))d\sigma_{\zeta}}{|1 - (z,\zeta)|^{n-\alpha}},$$

where $S^{2n-1} = \partial B = \{ \zeta \in \mathbf{C}^n : |\zeta| = 1 \}$.

PROOF. Let $z \in B \setminus \{0\}$. Taking $w = \Phi_{n,z}(\zeta), \zeta \in S^{2n-1}$, we have

(19)
$$\int_{S^{2n-1}} \frac{F(w)d\sigma_w}{|1 - (z, w)|^{n+\alpha}} = \int_{S^{2n-1}} \frac{F(\Phi_{n,z}(\zeta))I(\zeta)d\sigma_\zeta}{|1 - (z, \Phi_{n,z}(\zeta))|^{n+\alpha}}.$$

From the properties (i), (ii) and (iv) we have $\zeta = \Phi_{n,z}(w)$ and

$$1 - (w, \zeta) = \frac{(1 - |z|^2)(1 - (\zeta, w))}{(1 - (\zeta, z))(1 - (z, w))}, \quad (\zeta, w) \neq 1.$$

Consequently, for any $\zeta \in S^{2n-1}$ and $w = \Phi_{n,z}(\zeta)$

(20)
$$|1 - (z, w)| \cdot |1 - (z, \zeta)| = 1 - |z|^2$$

According to Theorem 3.3.8 in [5] the Jacobian

(21)
$$I(\zeta) = \frac{d\sigma_w}{d\sigma_{\zeta}} = \frac{(1 - |z|^2)^n}{|1 - (z, \zeta)|^{2n}}.$$

From (19), (20) and (21) we have (18) immediately. The proof of Theorem 2 is complete. \Box

In [5, Proposition 1.4.10], for $-\frac{n+\alpha}{2} \notin \mathbf{N}$ it is proved that

(22)
$$Q_{n,\alpha}(z,1) = \frac{\sigma_{2n-1}\Gamma(n)}{\Gamma^2((n+\alpha)/2)} \sum_{k=0}^{\infty} \frac{\Gamma^2(k+(n+\alpha)/2)}{\Gamma(k+1)\Gamma(k+n)} |z|^{2k}$$

and that

(23)
$$Q_{n,\alpha}(z,1) \approx (1 - |z|^2)^{-\alpha} \text{ for } \alpha > 0.$$

It is to note that

$$\sigma_{2n-1} = \int_{S^{2n-1}} d\sigma_{\zeta} = \frac{2\pi^n}{\Gamma(n)}$$

is "the surface area" of S^{2n-1} in \mathbb{R}^{2n} , and in [5] the normalized measure

$$d\sigma(\zeta) = d\sigma_{\zeta}/\sigma_{2n-1}$$

is considered. Hence, $Q_{n,\alpha}(z,1)/\sigma_{2n-1}$ is $I_c(z)$ from [5, Chapter 1], with $c=\alpha$. Using Theorem 2 and the series (22) we get a refined version of (23).

COROLLARY 2.1. If $\alpha > 0$, $z \in B_n$ and $F \in L^{\infty}(S^{2n-1})$ then

(24)
$$\left| \int_{S^{2n-1}} \frac{F(\zeta) d\sigma_{\zeta}}{|1 - (z, \zeta)|^{n+\alpha}} \right| \leqslant \frac{2\pi^n \Gamma(\alpha)}{\Gamma^2((n+\alpha)/2)} \frac{||F||_{\infty}}{(1 - |z|^2)^{\alpha}},$$

where $||F||_{\infty} = \sup\{|F(\zeta)| : \zeta \in S^{2n-1}\}$. If $F(\zeta) = \text{const.} \neq 0$ then the inequality is asymptotically sharp as $|z| \to 1 - 0$.

PROOF. Using Theorem 2 and the series (22) one has

(25)
$$\sup_{\|F\|_{\infty}=1} |Q_{n,\alpha}(z,F)| (1-|z|^2)^{\alpha} = Q_{n,-\alpha}(|z|,1) \\ = \sigma_{2n-1} F\left(\frac{n-\alpha}{2}, \frac{n-\alpha}{2}; n, |z|^2\right),$$

where $F(a, b; c; |z|^2)$ is the hypergeometric function.

Since $c - a - b = \alpha > 0$, we have by Gauss' formula

$$F(a, b; c; 1) = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)}.$$

Taking c = n, $a = b = (n - \alpha)/2$ and letting $|z| \to 1 - 0$ we obtain

(26)
$$Q_{n,-\alpha}(1,1) = \frac{2\pi^n \Gamma(\alpha)}{\Gamma^2((n+\alpha)/2)}$$

(see another proof of (26) in [5, Theorem 4.2.7]).

The equalities (25), (26) and the following consequence of (22)

$$Q_{n,-\alpha}(|z|,1) \leqslant \lim_{|z| \to 1-0} Q_{n,-\alpha}(|z|,1) = Q_{n,-\alpha}(1,1)$$

imply (24) and the asymptotic equality

$$\lim_{|z| \to 1} (1 - |z|^2)^{\alpha} Q_{n,\alpha}(z,1) = \frac{2\pi^n \Gamma(\alpha)}{\Gamma^2((n+\alpha)/2)}.$$

These complete the proof of Corollary 2.1.

References

- [1] L.V. Ahlfors, Möbius Transformations in Several Dimensions, University of Minnesota, 1981.
- [2] P.L. Duren, Theory of H^p Spaces, Academic Press, New York, San Francisco, London, 1970.
- [3] S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Academic Press, 1984.
- [4] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, Heidelberg, New York, 1992.
- W. Rudin, Function Theory in the Unit Ball of Cⁿ, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [6] E. M. Stein, Singular Integrals and Differentiability Properties of Funtions, Princeton Univ. Press, Princeton, New York, 1970.

Kazan State University

420008, Kazan

Russia

Farit.Avhadiev@ksu.ru

(Received 16 10 2003)