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THE COMPUTATION OF CAPACITY
OF PLANAR CONDENSERS
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ABSTRACT. We describe a new adaptive finite element method for the nu-
merical computation of the capacity of planar (possibly multiply-connected)
condensers. We compare this method with other numerical methods and we
give several examples that illustrate its effectiveness.

1. Introduction

The capacity of condensers has been studied because of its physical importance
and its close relation with the theory of conformal and quasiconformal mapping.
The analytic computation of capacity is possible only for very few types of con-
densers and for this reason several methods have been developed for the numerical
computation of capacity. In this paper we give a brief description of such a method,
an adaptive finite element method (AFEM in brief), which was recently devised
by one of the authors (Samuelsson). We then give examples of computations of
several condenser capacities and we compare the results with those obtained by
other methods.

It turns out that AFEM has many advantages: it gives results both for bounded
and unbounded condensers, both for ring domains (doubly-connected) and for
multiply-connected condensers, both for polygonal and curved boundaries. The
capacity of a great variaty of condensers can be computed by one and the same
computer program based on AFEM. The results are very accurate and the programs
run reasonably fast.

In Section 2 we recall the main properties of the capacity of planar condensers.
Section 3 contains a brief review of numerical methods applied to the computation
of capacities. A description of AFEM and of the corresponding software appears
in Section 4. Finally, in Section 5, we consider several examples of condensers and
compute their capacities. Some of these capacities have been computed earlier and
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the results agree with those given by AFEM. We also compute capacities of some
condensers not previously investigated in the literature as far as we know.

2. Definition and main properties of capacity

Let E and F' be two disjoint compact sets in the extended complex plane C,, .
We assume that each of £ and F' is the union of a finite number of nondegenerate
disjoint continua, and that the open set R = Co, \ (E'U F) is connected. Without
any loss of generality, we also assume that co ¢ E. The domain R is a condenser.
The complementary compact sets £ and F' are the plates of the condenser. The
capacity of R is defined by

(2.1) cap R = inf // |Vul|? dz dy,
“ R

where the infimum is taken over all nonnegative, piecewise differentiable functions
u with compact support in R U E such that v« = 1 on E. It is well-known that
under the assumptions we made above, R is regular for the Dirichlet problem and
the harmonic function on R with boundary values 1 on E and 0 on F' is the unique
function that minimizes the integral in (2.1). This function is called the potential
function of the condenser.

Capacity is a conformal invariant: Suppose that f maps R conformally onto R'.
Let E and F correspond to E' and F" respectively (in the sense of the boundary
correspondence under conformal mapping). Then cap R = cap R’. This property
can be used for the analytic computation of capacity provided that the capacity of
some ‘canonical’ condensers is known and the corresponding conformal mappings
can be constructed. Unfortunately such an analytic computation can be made only
for very few doubly-connected condensers; see [IvTr]. If E is fixed and F' is a circle
centered at 0 with radius ¢ > 0, then cap R depends analytically on ¢ [EM].

If both E and F are connected (and hence R is doubly-connected), R is called
a ring domain. A ring domain R can be mapped conformally onto the annulus
{z:1 < |z| < eM}, where M = Mod R is the conformal modulus of the ring domain
R, defined by Mod R = 27/ cap R. There are several equivalent definitions of the
capacity of ring domains in terms of Green’s function, extremal length, or various
‘energy integrals’. The reader is referred to [Tsu, pp. 94-100], [Ahl pp. 65-70],
[Bag], [Weil], [Gail], [BaFl] for more details and further references. Only some
of these definitions provide equivalent characterizations of the capacity of general
condensers. The theory of capacity extends in various (not equivalent) ways to
higher dimensions but we will not consider such extensions in this paper.

3. Review of some numerical methods

The paper [Gai2] of Gaier includes a review of the various methods applied
to the computation of the capacity of planar ring domains. We are not aware of
any condenser of connectivity n > 2 (with nondegenerate boundary components),
whose capacity has been analytically or numerically computed. The book [IvTr]
contains several examples of conformal mappings of doubly-connected regions and
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a great number of references. For the numerical conformal mapping of multiply-
connected domains we refer to [Gail, ch. 5] and [May]. In Section 5 we present
several examples of multiply-connected condensers whose capacities are computed
by AFEM.

The finite element method was first applied to the computation of capacity by
Opfer [Opf]. Several numerical experiments are reported by Weisel [Wei2]. An-
other numerical method is based on the Gauss—Thompson principle which implies
a formula for the capacity involving Green’s function. Numerical computations
are given in [Weil]. In the work of Bagby [Bag] the capacity of a condenser is
proven to be equal to its discrete module, a quantity that generalizes the transfi-
nite diameter of compact sets. Numerical experiments based on discrete module
appear in [Men]. Papamichael and his collaborators [PaKo], [PPSS], [PaWa]
have developed an orthonormalization technique for the approximation of the con-
formal mapping of doubly-connected domains. This technique gives, in particular,
approximations of capacity. A great number of numerical computations is reported
in the above papers. The above numerical methods have some limitations in their
applicability, limitations related to the geometry of the ring domains considered.

In addition to the orthonormalization method mentioned above, some other
methods have been developed recently for the numerical computation of conformal
mapping. The paper [Del] contains a survey and comparison of these methods
(mainly for simply-connected domains). We also refer to [DePf] which contains
results for doubly-connected domains and references to earlier works of B. Fornberg
and R. Wegmann. An overview of the development of numerical conformal mapping
during the past fifty years can be obtained from the following books and proceedings
of conferences: [Bec], [Gail], [Tre], [PaSa], [PRS].

The capacity of a polygonal ring domain can be also computed by the Schwarz—
Christoffel transformation which provides a semi-explicit formula for the conformal
mapping of the domain to an annulus (see [Hen]). This formula contains unknown
parameters; the problem of their numerical computation is the parameter problem
for the Schwarz—Christoffel transformation. For simply-connected domains this
subject has been brought to a very satisfactory form by Trefethen and others, (see
[Hen], [TrDr]). It seems that for doubly-connected polygonal domains the only
related works are those of Daeppen [Dae] and Hu [Hu]. Hu’s method has been
tested successfully in several computations, (see [Hu], [BeVu]). It is partially
based on the wise choice of certain points on the complementary sets E, F of the
ring domain.

Another numerical-analytic method that can be used for the computation of
capacity is the multipole method. The potential function is written as a linear
combination of explicit basic functions (multipoles) with unknown coefficients. The
coefficients are then computed numerically. The multipoles constitute a complete,
minimal system in a certain Hardy-type space of functions. Their construction is
based on the theory of conformal mapping. This method has been developed by
Vlasov (see [Vla] and references therein) as a general method for numerical solution
of a wide class of boundary value problems. He has applied this approach to find
the potential function of condensers. This method has been tested in some of the
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examples of the present paper and in those cases the results agree with the results
reported here.

4. Description of AFEM

Let R be a condenser with plates E and F. We assume first that R is bounded
and that each of £ and F' is the union of rectilinear segments. So R is a bounded
polygonal condenser; (we will later comment on infinite and curved boundaries).

The adaptive algorithm. The algorithm of AFEM can be described as
follows:
Step 1: Generate an initial triangulation of R for the application of the finite
element method.
Step 2: Using the finite element method approximate the potential function u of R
by a function which is equal to a linear or quadratic polynomial on each triangle
of the triangulation.
Step 3: Use a posteriori inequalities to estimate the error of the approximation.
Step 4: Check the termination criteria. If they are met then stop. Otherwise create
a new triangulation by refining the triangles which give large contributions in the
error estimate and go to Step 2.

The initial triangulation of Step 1 as well as its later refinements must have
certain properties so that the a posteriori estimates work well. For example there
must be a lower bound for the smallest angle of the triangulation; in many examples
this bound is taken to be around 25°. The algorithm that constructs the successive
refinements of the triangulation has the property that the minimal angle of the
refined triangulations has a lower bound depending on the angles of the triangles
in the initial triangulation. This property is known as stability of the refinement
algorithm.

Regarding Step 4, the procedure is terminated when the error in the approx-
imation is small enough. One may add some other termination criteria related
to the number of triangles and the number of refinements to limit the amount of
memory usage.

The software. Samuelsson’s software consists of three parts. At first, a
short program generates the boundaries of the condenser. The user inserts the
coordinates of the vertices of R, indicates which vertices are joined with a segment
and provides a code for the boundary condition (Dirichlet or Neumann) at each
such segment.

The second part of the software is used for the generation of the initial grid.
Here triangle [Sch] is used. This is a grid generation program for two dimensions.

The third part contains the main program, an adaptive finite element solver.
The linear system of equations associated with the finite elements is solved by a
multigrid algorithm. This program may handle much more general problems, but
for efficiency a specialized version for the computation of condenser capacities has
been made.
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The output of the program includes pictures of the condenser, of the initial
triangulation, of the refined triangulations, and of contour plots of the potential
function. It also contains the approximating value of the capacity and error esti-
mates for the capacity.

Unbounded condensers. If R is an unbounded condenser, by applying a
suitable Mobius transformation if necessary, we may assume that co € F. We then
truncate R by a large square [—S,S]* = [=S,S] x [-S, 5] and use AFEM as in
the bounded case. The boundary value at the boundary of the square is set to
be of Dirichlet type with value 0. Because of this approximation an additional
error term appears which decreases as the size of the box increases. If co ¢ F it
is also possible to do computations without applying a Mobius transformation. In
this case homogeneous Neumann boundary conditions on the boundary of the large
square are used.

Curved boundaries. In the case of curved boundaries AFEM uses curved
elements. The equation of the curved boundary is inserted in a parametric form in
the first part of the software. In the refined triangulations the shape of the curved
boundaries is respected.

Symmetries. The program runs faster if one exploits the possible symme-
tries of the condenser. This can be done easily: homogeneous Neumann boundary
conditions are posed on the lines of symmetry.

Computational time. The computational time is 1-3 minutes to get 6-8 ac-
curate digits of the capacity. The numerical experiments have been performed with
Sun Ultral0 workstation and a PC with PentiumlII, 350 Mhz, with the workstation
being slightly faster. In the computations, approximately 200,000 nodal points
(with quadratic polynomials in the finite element method) have been used. The
required amount of memory for problems of this size is approximately 100 Mbytes.

5. Numerical examples

In the numerical examples of this section we present the error bound of the
computed capacity as given by an a posteriori error estimate implemented in the
solver. In the tables in this section the absolute error bound is presented in the
column Error. The exact value of the capacity then lies in the interval [cap —
error, cap + error], where cap and error are the presented approximate value of the
capacity and the presented error bound, respectively.

5.1. Ring domains treated by other methods. In this subsection we
present five examples of ring domains whose capacities have been computed nu-
merically by various methods.

ExaMPLE 1. Square in square. We compute here the capacity of the ring
domain with plates E = [—a,a] X [—a,a] and F = Co \ ((—1,1) x (=1,1)), 0 <
a<l.

Let c(a) denote the capacity of the condenser with plates E and F. In the
second column of Tables 1-5 we list the values of e where M is the conformal
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TABLE 1. Table for Example 1

| a exp(Mod) | cap | Error | Exact value
0.1 9.139106 2.8397774 oe-8 2.8397774191
0.2 4.5708597 4.1344870 oe-8 4.1344870242
0.5 1.8477090 10.2340926 9e-8 10.2340925694
0.7 1.35067994 20.9015817 2e-T 20.9015816794
0.8 1.20145281 34.2349152 2e-7 34.2349151988
0.9 1.088324350 74.2349152 2e-7 74.2349151988
0.99 1.00794236562 794.2349152 8e-8 794.2349151988
0.999 | 1.000786273508517 | 7994.234915199 | 2e-9 | 7994.2349151988
0.9999 | 1.000078548561383 | 79994.234915202 | 3e-9 | 79994.2349151988

F1GURE 1. The condenser, initial triangulation and level lines of
the potential function of Example 1 (a = 0.5).

modulus of the corresponding ring domain; the quantity e is often used in the lit-
erature instead of the capacity, see e.g. [PaKo] or [PaWa]. We used Mathematica
to compute the exact values of ¢(a) in the fifth column of Table 1; the computation
was based on the following formulae due to Bowman [Bow, pp. 99-104]:

N
s T a+1/’

cla) = —— k:(l_l')Q, I'=V1-2, 1=

p(k)’ I+
where
T K(V1-1?) . ! dz
H(T) - §W7 }C(T) - /0 (1 — 332)1/2(1 — 1“21‘2)1/2’ e (07 1)7

is the complete elliptic integral. The computation of the function p~' by Mathe-
matica is based in the following formula (see [Akh, p. 77]).

W) = A0) = g

where ) is the elliptic modular function, 5, ¥3 are the elliptic Theta functions and
7 = 2iy/m, y > 0. Note that the complete elliptic integrals and the elliptic Theta
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functions are built in Mathematica. An equivalent formula is
. ar 1 7r(1—t)) . _1(7r(1+t))
c(a) = (r—S)’ r=n (2(1+t) ST s /)
I
r+s
This example has been considered in [Weil] for a = 0.5. The computed value of

eM in [Weil] is 1.847698. In [PaKo] the authors compute ¢(a) for a = 0.2, 0.5, 0.8.
Their values agree with the exact values in 9 or 10 decimal places.

The computation of c¢(a) for a close to 1. When a > 0.9999, AFEM cannot
be applied directly because the number of triangles is very large already in the orig-
inal triangulation; recall that there is a lower bound (& 25°) for the minimal angle
of the triangles. To compute ¢(a) in this case, we apply the domain decomposition
method which was studied by Papamichael-Stylianopoulos and Gaier—Hayman; see
[Gai2], [PaSt] and references therein. The application of this method for Example
1 is described as follows:

First by symmetry, we decompose the condenser into eight congruent quadri-
laterals. Let G = [0,a] x [a,1]]U{z =2 +iy:a <z <1, ¢ <y <1} be one of
them. The module m(G) of G is defined by

m(@ = [[ v

where u is the harmonic function in G with mixed boundary conditions u = 1 on
{z+ia:0<z<a}l,u=0on{zr+i:0< 2z <1}, and du/On = 0 (normal
derivative) on the rest of the boundary. Then by symmetry
(5.1) c(a) = 8m(G).
To compute m(G), we decompose G into two quadrilaterals Gy, Gs:
G1:[0,1—k(1—a)]x[a,1], GQZG\Gl,

where k < 1/(1—a) is a positive integer to be determined below and with du/0n =0
at G1 N G5. The quadrilateral G is a rectangle and hence its module is

1
1—a
The module of G5 can be computed by AFEM, provided that k is small enough so
that AFEM does not use too many triangles.

(5.2) m(G1) =

G, G,

FiGURE 2. The decomposition G = G U G5 of the quadrilateral G.

Now the decomposition method [PaSt, Theorem 2.3 and Remark 2.4] (which
cites [GaHa, Theorem 5]) asserts that
0381 iy

(5.3) 0 < m(G) = [m(Gr) +m(G2)] < —; ;
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when
(5.4) k> 2.

From (5.3), (5.4) we see that we can choose, for example k = 10. With this choice
AFEM works, the approximation (5.3) is very good, and (5.4) holds.
Finally, by (5.1), (5.2) and (5.3), we have the approximation

(5.5) 0<c(a) — [m(G2) + S(Tla _ 10)} <5-107%,

for kK =10 and a > 0.9.

The error in this approximation comes essentially only from the approximation
of m(G3) by AFEM, because (5.3) shows that the approximation m(G) =~ m(G1) +
m(G2) is excellent.

The above discussion explains the impressive numerical coincidence in the last
four rows of Table 1: Let a take values close to 1 (a > 0.9), and let k£ = 10. By the
invariance of modules under scaling, m(G») does not depend on a. Moreover, by
(5.2), m(G1) is an integer when a takes the values 0.9,0.99,.... Hence c¢(a) is ap-
proximately the sum of an integer (that depends on @) and a constant (independent
of a).

TABLE 2. Table for Example 2

| a | exp(Mod) | cap | Error |
0.1 ] 8.4721312 | 2.9404895 | le-7
0.3 | 2.823966 | 6.0523354 | 6e-8
0.5 | 1.6915649 | 11.9530801 | le-7
0.7 | 1.1393578 | 48.1600237 | le-6

[\

N
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F1GURE 3. The condenser, the initial and an adaptively refined
triangulation of Example 2 (a = 0.5).

EXAMPLE 2. Square in disk. In this Example we consider the ring domain with
plates £ = [—a,a] x [~a,a] and F = {z:|2] > 1},0< a < 1/V/2.

This example has been considered in [Men], [Weil] for a = 0.5. Their values
of eM are 1.672934 and 1.69203, respectively.
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TABLE 3. Table for Example 3

| a | exp(Mod) | [PaKo] | cap | Error |
0.1 | 10.7876523 2.64182917 | T7e-8
0.2 | 5.3935358 | 5.39353525710616 | 3.72845236 | 6e-8
0.4 | 2.6967244 2.69672443123 6.33361439 | 4e-8
0.5 | 2.1572262 8.17247082 | 5e-8
0.8 | 1.3429904 | 1.3429903655992 | 21.30624642 | 3e-8
0.9 1.184091 37.18403286 | 5e-8
0.99 | 1.0404121 158.5985299 | 2e-7

FIGURE 4. The condenser of Example 3 (a = 0.5).

241

EXAMPLE 3. Disk in square. Here E = {z : |2| > a} and F = Co ~ ((—1,1) x
(-1,1)),0<a< 1.
This example has been considered in [Weil], [PaKo]. The values of eM in the
third column come from [PaKo].

EXAMPLE 4. Cross in square. Let Gop = {(z,y) : || < a, |y| < b} U{(z,y) :
lz] <b, ly] <a} and G. = {(z,y) : |z| <e¢, |y| < ¢}, where a < ¢ and b < c. We
compute the capacity of the ring domain R = G, \ Gg;.

TABLE 4. Table for Example 4

[ a | b ] c [exp(Mod)| [PaKo] | cap | Error |
0.5 1.2 1.5|1.3314734 | 1.331473449 | 21.9472192 | 9e-7
0.5] 1.0 1.5 1.5662892 | 1.566289179 | 14.0027989 | 4e-7
0.2]0.7]1.2| 1.981644 1.9816441 9.1869265 | 3e-7
0.1 0.8 1.1 1.747487 1.7474925 | 11.2565821 | Te-7
0.510.6|1.5] 2.3583812 7.3232695 | 2e-7
0.1]1.21.3| 1.311995 23.1386139 | 2e-6

The values of e in the fifth column come from [PaKo].
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FIGURE 5. The condenser of Example 4 (a = 0.5,b=1.2,¢ = 1.5).

EXAMPLE 5. Disk in reqular pentagon. Let F' be the unbounded complemen-
tary component of a regular pentagon centred at the origin and having short radius
(apothem) equal to unity. Let E = {z: |z| < a}. We compute the capacity of the
ring domain with plates £ and F'.

TABLE 5. Table for Example 5

| a | exp(Mod) | [PaWa] | cap | Error |
0.1 10.5246525 2.669469753 | 2e-9
0.4 2.631159439 6.494754531 | 2e-9

0.9 | 1.1626499972 | 1.162649997 | 41.692813032 | 2e-9
0.99 | 1.03331141431 | 1.033311414 | 191.74402525 | 2e-8
0.999 | 1.00939037579 | 1.009390376 | 672.2457359 | 2e-7

The values of eM in the third column come from [PaWa].

FIGURE 6. The condenser of Example 5 (a = 0.4).

5.2. Multiply-connected condensers. Here we present two examples of
triply-connected condensers. The next subsection contains some more such ex-
amples.
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TABLE 6. Table for Example 6

Case A Case B

| a | b]c] cap [Error] | a [ b |c|] cap [Error|
-0.91 0 | 2| 1.7086693 | 6e-7 -0.91 0 | 2|3.4537720 | 1le-6
-0.510.5|2|2.0953263 | Te-7 -0.510.5]2|2.9410234 | 9e-7
-0.9 10912 3.0676361 | 9e-7 -0.9109|2]5.1877511 | 3e-6

0 [09]|2]3.0332745 | 1le-6 0 [09|2]34537719| 2e-6
-0.5]0.5| 324125750 | 8e-7 -0.5]0.5| 3| 3.0486876 | le-6
-0.710.2 321318391 | 6e-7 -0.710.2|3|3.0172100 | 8e-7
0.5 | 08|31 28071236 | le-6 0.5 | 0.8]|3|23121085 | 6e-7

FIGURE 7. The condenser of Example 6.

EXAMPLE 6. Three slits on a line. Let Iy = [—¢,—1], I, = [a,b] and I3 = [1,],
where —1 < a < b < 1 < ¢. We consider two condensers bounded by Iy U, U I3. In
Case A the condenser has plates E = I; U, and F = I3. In Case B the condenser
has plates £ = I, and F = I; U I3. The condenser of Example 6 is unbounded
and oo is not on its plates. We truncate the condenser by a large square and use
homogeneous Neumann boundary conditions on the boundary of the square. The
size of the square is S = 1e9 except for the parameter values in Case B which give
a symmetric solution (rows 2, 3 and 5 of Table 7). For these parameter values we
use square of size S = 1e5.

EXAMPLE 7. Square with two equilateral triangles removed. In this example
F =Cx ~((—1,1) x (—1,1)) and E is the union of an equilateral triangle T" and
its reflection in the real axis. The vertices of T are the points (0,a), (b — a)/v/3,b)
and (—(b — a)/v/3,b), where 0 < a < b < 1.

5.3. Examples related to polarization and symmetrization. Polariza-
tion and Symmetrization are geometric transformations that reduce the capacity
of condensers. We illustrate this fact with the three following examples.

EXAMPLES 8,9,10. Square with two slits. Let FF = Cx ~ ((—1,1) x (—1,1)).
Inside the square [—1,1] x [—1,1] we consider the points: A = (-2/3,—1/4), B =
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TABLE 7. Table for Example 7

[a | b] cap | Error |
0.1 0.3 3.9324143 | 2e-7
0.2 04| 44119861 | 3e-7
0.2 0.7 | 9.4930811 | 4e-7
0.3 0.8 12.1180117 | 6e-7
0.3 0.9 21.6586487 | 9e-7

V
/N

FIGURE 8. The condenser of Example 7 (a = 0.2,b = 0.7).

(—2/3,3/4), C = (1/2,—1/3), D = (1/2,1/6), C = (1/2,1/3), D = (1/2,-1/6),
A, = (_2/37 _1/2)7 B, = (_2/37 1/2), Cs = (1/27 _1/4)7 D, = (1/2,1/4)

TABLE 8. Table for Examples 8,9 and 10

| Example | cap | Error |
8 8.7576166 | Se-T
9 8.7369062 | Te-7
10 8.4701600 | 5e-7

FIcURE 9. From left to right the condensers of Examples 8, 9 and 10.
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In Example 8 the condenser has plates F' and E = AB U CD. In Example 9
the condenser has plates F and E = AB U DC. In Example 10 the condenser has
plates F and E = A;B; U CsDs.

Note that the condenser Ry of Example 9 is the polarization (with respect to the
real axis) of the condenser Rg of Example 8. Also, the condenser R;o of Example
10 is the (Steiner) symmetrization of both Rs and Ry. According to polarization
and symmetrization theorems of Wolontis and Polya—Szeg6 (see [Wol]), we have

cap R1p < cap Ry < cap Rg.

5.4. Examples related to Teichmiiller’s modulus problem. Let z # 1
be a point in the plane with Rez > 1/2 and Imz > 0. O. Teichmiiller posed the
following extremal problem (see [Kuz, Ch. 5]): Find the minimal capacity p(z)
of all ring domains with complementary continua E, F such that 0,1 € E and
z,00 € F. G.V. Kuz'mina expressed the function p(z) in terms of elliptic integrals
of complex argument:

2 1
Im (z ) )

For the precise definition of the elliptic integrals K'(r) and K(r) for complex r we
refer to [Kuz].

The ring domain C \ ([-1,0] U [¢,00)), t > 0 is called Teichmiller’s ring. Its
capacity is denoted by 7(t) and can be computed in terms of elliptic integrals. We
refer to [AVV] for more information about Teichmiiller’s problem and ring.

TABLE 9. Table for Example 11

[t ] p(t) | cap | Error |
0.5 4 4.000000 | 2e-6
0.6 | 4.0170835643 | 4.020605 | 2e-6
0.7 | 4.0734693962 | 4.088615 | 2e-6
0.8 | 4.1906531335 | 4.229908 | 2e-6
0.9 | 4.4486294884 | 4.540293 | 2e-6
0.99 | 5.5458897502 | 5.836042 | 3e-6

ExaMpPLE 11. Semi-circle and half-line. In this example the condenser has
plates E = {z : [z = 1/2| = 1/2, Imz € 0} and F = {t + iy : y > 0}, where
t €[1/2,1). For t = 1/2 we have Mori’s ring which is extremal for Teichmiiller’s
problem (see [Kuz]).

In the second column of Table 9 we have values of p(t) computed using (5.6)
and the software of [AVV].

EXAMPLE 12. Segment and half-line. Here the plates of the condenser are
E=[-11,F={iy:y>1}.
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FIGURE 10. The condenser of Example 11 (a = 0.8).

FiGURE 11. The condenser of Example 12.

This condenser is conformally equivalent to Teichmiiller’s ring and therefore its
capacity can be computed in terms of elliptic integrals. Our computations led to

the conjecture
1
T ——— ) =2v2.
<2 + 2\/§>

We communicated this conjecture to M. K. Vamanamurthy who quickly proved it
analytically using identities for complete elliptic integrals. The computed value of
the capacity is 2.8284269 with error 7e — 7. (So the real error to 2v/2 is 2.25¢ — 7.)

EXAMPLE 13. Two semi-circles. Let 0 < a < 1 and 6 € [7/2,7]. Let E be the
semi-circle that lies in the upper half-plane and joins the points 1 and ae®. Let F
be the semi-circle that lies in the lower half-plane and joins —1 with ae*(™*?). We
compute the capacity of the ring domain with plates £ and F'.

The third column of Table 10 contains lower bounds of the capacity. These
bounds are obtained as follows: We first apply the Mébius transformation 7' that
maps —1 to 0, —ae? to 1, and 1 to co. Let z = T'(ae?). Then p(z), by its very
definition, is a lower bound for the capacity of the condenser with plates E and F'.
The numerical values of p(z) in the third column are obtained by using (5.6) and
the software of [AVV].
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TABLE 10. Table for Example 13, computed with box size 1e9.

| § |a|] LB | cap | Error |
w/2 | 0.2 | 2.4360353 | 2.5977547 | Te-7
27/3 1 0.2 | 2.8334104 | 2.9342954 | 8e-7
57/6 | 0.2 | 3.3531278 | 3.3915666 | 9e-7
s 0.2 | 4.0051910 | 4.0062608 | 2e-6
w/2 | 0.6 | 2.0529462 | 2.17444770 | 5e-7
27 /31 0.6 | 2.5835228 | 2.6711758 | 9e-7
57/6 | 0.6 | 3.3729826 | 3.4193335 | 2e-6
s 0.6 | 4.6494327 | 4.7808008 | 2e-6
)
U

FIGURE 12. The condenser of Example 13 (a = 0.6, § = 27/3).

lines of Example 14.

ATAYN

L NN
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Fi1GURE 13. The condenser, inital triangulation and equi-potential
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5.5. More examples. In this subsection we present some more computa-

tional results.

EXAMPLE 14. A cardioid type domain with a slit. Consider the disks: Dy =
{]z+0.5| < 0.5}, Dy = {|]z—0.5| < 0.5} and the half-disk D3 = {|z| < 1, Imz > 0}.
The cardioid-type domain is C' = Dy U Dy U D3. Let F be the complement of C'
and F be the slit from the point —0.1 — 0.5 to the point 0.1 —40.5. The computed
value of the capacity of the ring domain with plates E, F' is 2.4269776 with error

bound 2e — 7.
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VA /T

F1GURE 14. The condenser of Example 15.

FiGURE 15. The condenser of Example 16.

EXAMPLE 15. Irregular polygons. Here we consider the ring domain whose
plates are the polygonal lines E = ABCD, F = XY Z, where the vertices are:
A = (0,0), B=(1,-1),C = (2,1), D = (4,-2), X = (5,-1), Y = (6,0.5),
Z = (8,0). The computed value of the capacity is 2.6134742 with error bound
6e — 7.

EXAMPLE 16. Extremal distance. AFEM can compute the extremal distance
A(E, F,Q) [Ahl, ch. 4] between two compact sets E and F with respect to a closed
domain 2 that contains E and F'. Let A = 0.2+i0.3, B = 0.4+10.7, C = 0.8+1i0.2,
D=06+i0.8, E=AB, F =CD, and Q =[0,1] x [0,1]. Homogeneous Neumann
condition is used on the boundary of the unit square. The Dirichlet integral is
2.1988250 and its inverse is 0.45478835 with absolute error bound 8e — 8 for the
Dirichlet integral.

EXAMPLE 17. Bounded ring with polygonal boundary. The boundary of the
condenser consists of a closed polygonal line with vertices

{(1.0,0.1),(0.4,1.0),(-0.5,0.5), (—0.6,—0.5), (0.6, —0.7) }
and another one with vertices

{(1.7,0.1), (1.0, 1.5), (—0.5, 1.3), (—1.6,0.6), (—1.4, —0.9), (—0.3, —1.7), (1.2, —1.4) }.
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1.5¢

1,

F1cURE 16. Condenser with polygonal boundaries.

0.8 08¢
0.6/ 0.6t
0.4 04r
0.2 ; 0.2t
0 or
—0ot -0.2
-0.4f ; -0.4r
-0.6f E -0.6
-0.8" -0.8r
-1 -0.5 0 05 1 15

FiGURE 17. Regular n-gon in regular n-gon

The capacity obtained with AFEM is 9.5219.

ExaAMPLE 18. Regular n-gon in regular n-gon. The outer boundary consists
of the nth roots of unity whereas the inner boundary is obtained from the outer
boundary by scaling with a factor ¢ € (0,1). Example 1 is a particular case of this
general case when n = 4. Withn =3,¢ = 0.5 and n = 6, ¢t = 0.5 the capacities are
12.4412 and 9.3804, respectively.

We have explored the behavior of the capacity when n = 3,5,7,9 and t = 0.1 :
0.1:0.9. The results are summarized in the following table.

The results of this computation are summarized in the following figure. The
topmost curve corresponds to the case n = 3. The lowest curve labelled with dash-
dot markers is the curve f(t) = 2n/log(1/t), which represents the capacity of a
circular annulus with inner and outer radii ¢ and 1, respectively. It seems that for
a fixed ¢ € (0, 1) the capacites decrease toward f(t) as n increases to infinity. For
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TABLE 11. Table for Example 18

| t [cap (n=3) [ cap (n=5) | cap (n=7) | cap (n=9) | cap (annulus) |

0.1 3.0676 2.7807 2.7464 2.7370 2.7288
0.2 4.6201 4.0110 3.9404 3.9206 3.9040
0.3 6.4989 5.4106 5.2836 5.2482 5.2187
0.4 8.9768 7.1874 6.9697 6.9085 6.8572
0.5 | 12.4412 9.6266 9.2598 9.1541 9.0647
06| 17.6373 13.2634 12.6496 12.4636 12.3001
0.7 26.2975 19.3159 18.2712 17.9370 17.6160
0.8 43.6181 31.4211 29.5099 28.8559 28.1576
0.9 95.5796 67.7548 63.2096 61.6069 59.6351
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F1GURE 18. The capacity of Example 18 as a function of ¢ for
various values of n.

small values of the parameter ¢ we can easily verify this visual observation if we
use circular annuli to find upper and lower bounds for the capacity.
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