PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 73(87) (2003), 199-215

LOEWNER CHAINS AND
BIHOLOMORPHIC MAPPINGS IN C* AND
REFLEXIVE COMPLEX BANACH SPACES

Ian Graham, Gabriela Kohr, and
John A. Pfaltzgraff

ABSTRACT. This paper is a survey of very recent results about biholomorphic
mappings of the ball in C* and in reflexive complex Banach spaces. After re-
calling existence and regularity results in C", we present certain applications
including univalence criteria and quasiconformal extension results. We also
consider nonuniqueness phenomena for solutions of the Loewner differential
equation, and a geometric characterization of Loewner chains which satisfy a
growth condition in ¢ based on a generalization of the Carathéodory conver-
gence theorem. Finally we describe some properties of Loewner chains and
the Loewner equation on the unit ball of a reflexive complex Banach space.

1. Introduction

In this paper we survey some of the most recent advances in geometric function
theory of several variables that have emerged since the publication of the book [12]
earlier this year. In our presentation we shall describe results and their connections
to other work. We give examples that illustrate the work, and in some cases,
suggest questions for further research. One of the new results, Theorem 3.4, is
a generalization to C" for n > 1 of the Carathéodory kernel convergence theorem
that gives the geometric characterization of local uniform convergence of a sequence
of biholomorphic mappings of the unit ball in terms of convergence of the sequence
of image domains to their kernel (see [21]). Then this result is applied in Theorem
3.6 to give a geometric characterization of a large class of Loewner chains. Also
new are the results in Section 4 (see [16]) that generalize to dimension n > 1 the
fundamental work of Becker [3] on existence and uniqueness of univalent solutions
of the Loewner differential equation. Our work for n > 1 reveals a nonuniqueness
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of univalent solutions that comes from the fact that in contrast to C the group of
automorphisms of C” is much larger than the group of linear transformations. Our
survey ends with the very recent study of the Loewner theory in a complex reflexive
Banach space (see [19]).

The Loewner method has been applied with great success in the study of ex-
tremal problems for complex valued univalent functions on the unit disc. With
good reason, subordination chains, Loewner chains and the Loewner differential
equation in C" are the central theme of this paper. It is natural to try to extend to
higher dimensions those parts of the method that do not depend upon the Riemann
mapping theorem. One cannot expect to embed an arbitrary biholomorphic map-
ping of the unit ball in C" in a well-behaved Loewner chain, but for those mappings
which permit such an embedding there are many types of problems which should
be accessible.

Indeed, many aspects of the theory of Loewner chains and the Loewner differen-
tial equation in higher dimensions have now been studied, beginning with the work
of Pfaltzgraff in the 1970’s (see [23,24]). Pfaltzgraff formulated the generalization
to higher dimensions of the Loewner differential equation and subordination chains
and developed existence and uniqueness theorems for its solution on B, the unit ball
in C". His work also generalized to higher dimensions the one variable univalence
criteria and quasiconformal extension results of Becker [2-4]. Since then, a number
of authors have considered applications to characterizing subclasses of univalent
mappings, growth theorems, coefficient estimates and quasiconformal extensions
(see [10], [11], [12], [13-15], [17,18], [21], [25], [28]).

Within the last few years, the existence theory for the Loewner differential
equation in several variables has been improved as a consequence of the discovery
that the several variables analog of the Carathéodory class is compact [10]. Also,
regularity properties of arbitrary Loewner chains in several variables have been
studied (see [14,15]). Significant differences between the one variable and the several
variables Loewner theory have been discovered (see [10], [14]). A self-contained
account of Loewner theory in several variables may be found in the recent book by
Graham and Kohr [12].

In 1989, Poreda [28] began the study of the Loewner differential equation on
the unit ball of a complex Banach space. It has recently been shown by Hamada
and Kohr that Poreda’s regularity assumptions can be weakened when the Banach
space is reflexive [19]. The existence and regularity theory in this situation is now
basically the same as in finite dimensions. We discuss some of these results in the
last section of the paper.

2. Loewner chains on the unit ball in C*. Applications

In this section we shall present some results related to Loewner chains and the
Loewner differential equation in several complex variables. For a detailed discussion
of this material and additional references, the reader may consult the book [12].

2.1. The Loewner differential equation. Let C* denote the space of n
complex variables z = (z1,...,2,) with the Euclidean inner product (-,-) and the



LOEWNER CHAINS AND BIHOLOMORPHIC MAPPINGS 201

Euclidean norm ||z|| = (z,2)'/2. Let B, = {z € C" : ||2|]| < r} and let B = B;.
In the case of one variable, B, is denoted by U, and U; by U. The topological
closure of a subset A of C" is denoted by A. If Q C C" is an open set, let H () be
the set of holomorphic mappings from 2 into C*. H(Q) will be given the topology
of locally uniform convergence (or uniform convergence on compact subsets). Let
L(C™,C™) be the space of continuous linear operators from C" into C™ with the
standard operator norm. Let I be the identity in L(C",C").

If f € H(B), we say that f is normalized if f(0) = 0 and Df(0) = I. Also if
f € H(B), let D* f(2) be the k-th Fréchet derivative of f at z € B and let

D*f(z)(w*) = D¥f(2)(w,...,w), w€C".
k—times

We say that f € H(B) is locally biholomorphic if f has a local holomorphic
inverse at each z € B. This is equivalent to the condition that D f(z) is invertible
at each point in B. A biholomorphic mapping on B will also be called univalent.
Let S(B) be the subset of H(B) consisting of normalized biholomorphic mappings
on B. In the case of one variable, S(B) is denoted by S. Let S*(B) and K(B)
be the subsets of S(B) consisting respectively of normalized starlike and convex
mappings on B.

Recall that if f : B — C” is a locally biholomorphic mapping, then f is starlike
if and only if (see [30])

Re([Df(2)] ' f(2),z) >0, z¢€ B~ {0}.

On the other hand, according to [25, Definition 1], a normalized locally biholo-
morphic mapping f on B is close-to-starlike if there exists a mapping g € S*(B)
such that

Re([Df(2)] 'g(2),z) >0, =z€ B~ {0}.

Close-to-starlike mappings are biholomorphic on B as shown in [25].

If f,g € H(B), we say that f is subordinate to g, and write f < g, if there
is a Schwarz mapping v (i.e., v € H(B), v(0) =0, ||jv(2)|| < 1, z € B) such that
f(z) =g(v(2)) for z € B.

It is clear that if f < g then f(0) = ¢(0) and f(B) C g(B). Moreover, if g is
biholomorphic on B, then f < g if and only if f(0) =0 and f(B) C g(B).

DEFINITION 2.1. The mapping f : B x [0,00) — C" is called a Loewner chain
if the following conditions hold:

(i) f(-,t) is biholomorphic on B, f(0,t) = 0 and Df(0,t) = e'I, for each t > 0;

(i) f(-,s) < f(-,t) whenever 0 < s <t < oo.

The condition (ii) is equivalent to the fact that there is a unique biholomorphic
Schwarz mapping v = v(z, s,t), called the transition mapping associated to f(z,t),
such that

(2.1) f(z,8) = f(uv(z,5,1),t), z€DB, 0<s<t< o0

Note that Dv(0,s,t) = e*'I, 0 < s <t < 00, in view of the normalization of

f(z:1).
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From the equality (2.1) and the univalence of f(-,t), ¢ > 0, we deduce the
semigroup property of the transition mapping v(z, s, t), i.e.,

(2.2) v(z,s,u) =v(v(z,s,t),t,u), z€B,0<s<t<u<oo.

We next give simple examples of Loewner chains generated by starlike map-
pings.

ExXAMPLE 2.2. (i) Let f € S*(B) and f(z,t) = €' f(z) for 2 € Band t > 0. The
simple geometry of a starlike domain makes it easy to see that f(z,t) is a Loewner
chain [25].

(ii) For example, if f: B — C" is given by

fz) = <(1 _lel)2,..., i —ann)2>’ 2 €B,

then clearly f € S*(B) since each component f;(z;) = z;/(1 — z;)? is starlike,
j=1,...,n. Hence f(z,t) = e! f(z) is a Loewner chain.

(iii) Let n = 2 and B be the unit ball in C?. Assume |a| < 3v/3/2 and let
f(2) = (21 + a23,29) for z = (21,22) € B. Then f is starlike by [31, Example 3]
(see also [29, Example 5]). Consequently, f(z,t) = e’ f(z) is a Loewner chain.

(iv) Pfaltzgraff and Suffridge [25] proved that if f is close-to-starlike with re-
spect to g € S*(B) then

f(Z,t) = f(Z) + (et — 1)g(z) = etz + -

is a Loewner chain. We will return to this idea in Example 2.9. This result enables
one to deduce that for each 7, 0 < r < 1, the complement of f(B,) is the union of
the nonintersecting rays

L(t,z;r) = {f(z) + tg(z) : t >0, 2 fixed, ||2]| =7},

which generalizes one of the familiar one variable geometric characterizations of
close-to-starlike domains (cf. [25]).

If f: B x[0,00) - C" is a mapping which is holomorphic on B for fixed ¢
(not necessarily biholomorphic) and satisfies the second condition in Definition 2.1,
then we say that f(z,t) is a subordination chain. Thus f(z,t) is a Loewner chain
if and only if it is a subordination chain which is biholomorphic on B for fixed ¢
and satisfies the normalization f(0,t) = 0 and Df(0,t) = e'I for t > 0.

A fundamental role in the study of the Loewner differential equation in higher
dimensions (as well as in the study of certain classes of univalent mappings) is
played by the n-dimensional version of the Carathéodory set

M ={he H(B): h(0) =0, Dh(0) = I, Re(h(z),2) >0, z€ B~ {0}}.

It is well known that in the case of one variable this set is compact. Recently,
Graham, Hamada and Kohr [10] have established the same result in the case of
several complex variables. In fact, they proved that for each r € (0,1), there is
some M = M (r) < 4r/(1 —r)? such that ||h(2)]| < M(r) for ||z]| < r and h € M.
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The basic existence theorem for the Loewner differential equation on B is due
to Pfaltzgraff [23, Theorem 2.1]. In the original paper the author imposed a bound-
edness assumption on the mapping h(z,t). In view of the compactness of the set
M, this assumption is not needed. Thus Pfaltzgraff’s result can be simplified, as
follows:

THEOREM 2.3. Let h: B x [0,00) — C" satisfy the following assumptions:

(i) h(-yt) e M, t > 0;

(i7) h(z,-) is measurable on [0,00) for each z € B.

Then there is a unique locally absolutely continuous solution v(t) = v(z, s, t) of
the initial value problem

0
(2.3) 6—1; = —h(v,t), a.e. t>=s, v(s)=z.
The mapping v(z,s,t) = e5tz+... is a biholomorphic Schwarz mapping on B and
is Lipschitz continuous in t > s locally uniformly with respect to z € B.

As in one variable, the Schwarz mappings obtained by solving the initial value
problem in the above result can be used to construct Loewner chains. Indeed, we
have (see [28,Theorems 2 and 3]; see also [10] and [12])

THEOREM 2.4. Under the hypotheses of Theorem 2.3, the limit
. t _
(2.4) Tim e'o(z,5,8) = f(2,9)
exists locally uniformly on B for each s > 0, f(-,s) is biholomorphic on B, f(0,s) =
0 and Df(0,t) = €°I and f(z,s) = f(v(z,s,t),t), 2 € B, 0 < s <t < oo. Thus

f(z,t) is a Loewner chain. Furthermore f(z,-) is a locally Lipschitz continuous
function on [0, 00) locally uniformly with respect to z € B, and for a.e. t > 0,

of
ot

Moreover, {e~" f(z,t)}+>0 is a normal family on B.

(2.5) (z,t) = Df(z,t)h(z,t), V 2 € B.

The Loewner chain given by (2.4) may be called the canonical solution of the
Loewner differential equation (2.5).

An important question is to find conditions under which a solution of the equa-
tion (2.5) is a Loewner chain. It is sufficient to have {e~*f(z,t)}:>0 a normal family
on B. This result is due to Pfaltzgraff [23, Theorem 2.3]. Combining Pfaltzgraff’s
result with [28, Theorem 6], we deduce that in this case the mapping f(z,t) which
solves the differential equation (2.5) coincides with the mapping defined by (2.4).

THEOREM 2.5. Let f : Bx[0,00) — C" be such that f(-,t) € H(B), f(0,t) =0,
Df(0,t) = €' for each t >0, and f(z,-) is locally absolutely continuous on [0, 00)
locally wniformly with respect to z € B. Let h : B x [0,00) — C" satisfy the
assumptions (1) and (ii) of Theorem 2.3. Assume f(z,t) satisfies the differential
equation (2.5) for almost all t > 0 and for all z € B.

Further, assume there exists an increasing sequence {t;, }men such that t,, > 0,
tm — 00 and

lim e~ f(z,tp,) = F(2)

m— o0
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locally uniformly on B. Then f(z,t) is a Loewner chain and for each s > 0,
st _
tll>r206 ’U(Z, Sat) - f(Z, S)

locally uniformly on B, where v(t) = v(z, s,t) is the unique locally absolutely con-
tinuous solution of the initial value problem (2.3).

REMARK 2.6. Graham, Kohr and Kohr [14] proved that if f(z,t) is a Loewner
chain, then f(z,-) is a locally Lipschitz continuous function on [0, c0) locally uni-
formly with respect to z € B, and thus (0f/0t)(z,t) exists for almost all ¢ € [0, 00).
Moreover, an application of Vitali’s theorem in several variables yields that the null
set is independent of z and (0f/0t)(-,t) € H(B) for almost all ¢ > 0 (see [14] and

[12]).

Combining this result with [10, Theorem 1.10], we deduce that any Loewner
chain satisfies the Loewner differential equation (2.5) (cf. [14, Theorem 2.2]; see
also [12]).

THEOREM 2.7. Let f(z,t) be a Loewner chain. Then there is a mapping h =
h(z,t) such that h(-,t) € M for each t > 0, h(z, ") is measurable on [0, 00) for each
z € B, and for almost all t > 0,

%(z,t) = Df(z,t)h(z,t), ¥V z € B.
Moreover, if there exists a sequence {tm tmen such that t,, > 0, t,, — 00, and
(2.6) lim e ' f(z,t,) = F(2)
m— 00

locally uniformly on B, then f(z,s) = tlim elv(z,s,t) locally uniformly on B for
—00
s =0, where v(t) = v(z, s,t) is the unique solution of the initial value problem
0
6_1; = —h(v,t), a.e. t>s, v(s) =z,
for all z € B.
REMARK 2.8. In the case of one variable, the condition (2.6) is always satis-

fied, as a consequence of the growth theorem for the class S. However, in higher
dimensions (2.6) need not be satisfied, as shown in Example 3.7.

As an application of Theorem 2.5, we prove a particular case of [25, Theorem
1] concerning a characterization of close-to-starlike mappings by Loewner chains.
For the mappings of the special form considered in this example, one can give a
simpler proof of the characterization (see [12]).

EXAMPLE 2.9. Let ¢ and 1 be holomorphic functions from B into C such that
$(0) = (0) =1 and ¢(z) # 0, z € B~ {0}. Also let f,g € H(B) be given by
f(z) = 2z¢(2), g(2) = 2¢(2), z € B, and assume that f is locally biholomorphic on
B and close-to-starlike relative to g € S*(B). Then

F(z,) = f(2) + (' = 1)g(2), 2€B,1>0,

is a Loewner chain.
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PRrOOF. A short computation (see also [26]) yields that g is starlike if and only

D
Re {£(2)+ Do)
¥(2)
On the other hand, it is not difficult to see that the assumption that f be
close-to-starlike with respect to the mapping g is equivalent to

8(2) + D(2)z
Re{ =05

Taking into account the above inequalities, we obtain

Ref et PELE DO (1 _ oy U DUC)EY

if
}>0, 2 €B.

}>0, z € B.

¥(z) ¥(2)
for all z € B and t > 0. Now let h: B x [0,00) = C" be given by
LB+ DY)z g ¥(2) + DY)z
h(z,t) = zqe ) +(1-e™) ) } :
Then h(-,t) € M, t >0, h(z,-) is measurable on [0,00), z € B, and
aa—f( t) = DF(z,t)h(z,t), z€ B, t>0.

On the other hand, it is clear that tlim e tF(z,t) = g(z) locally uniformly on

— 00
B. Hence in view of Theorem 2.5 we conclude that F'(z,t) is a Loewner chain. O
2.2. Quasiconformal extension results. We now discuss some applications

of Theorem 2.5 in the study of univalence criteria and quasiconformal extension
results.

DEFINITION 2.10. Let G be a domain in C* and let f : G — C™ be a holomor-
phic mapping. We say that f is K-quasiregular, K > 1, if
IDf(2)|I" < K|det Df(2)], z€G.

In addition, f is called quasiregular if there is K > 1 such that f is K-quasiregular.
A quasiregular (K-quasiregular) biholomorphic mapping is also called quasi-
conformal (K -quasiconformal).

One of the important applications of Theorem 2.5 is the following univalence
condition and quasiconformal extension result due to Pfaltzgraff [23,24], which
generalizes to higher dimensions a well known one variable result due to Becker [2].

THEOREM 2.11. Let ¢ < 1 and f : B — C" be a normalized locally biholomor-
phic mapping such that

(2.7) A= llAP)NDF () D* f(2)(2, )| < e, z€B.

Then f is biholomorphic on B. In addition, if ¢ < 1 and f is quasireqular on B
then f extends to a quasiconformal homeomorphism of R2" onto itself.
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We note that the idea of the proof is to show that under the stated assumptions,
f(z,t) = flze™) + (€' —e™)Df(ze7")(2), z€B,t>0,

is a Loewner chain which can be extended continuously to B, and

f(2,0), z€B
””:{f(ﬁu%wm,z¢§

is the quasiconformal extension to R2" of the mapping f.

REMARK 2.12. The constant ¢ = 1 in Theorem 2.11 is sharp, i.e., f need not
be univalent if ¢ > 1. Let f: B — C" be given by f(2) = (fi(21),-.., fa(zs)) for
z=(#1,...,2n) € B, where f;(z;) is a normalized locally univalent function on U,
j=1,...,n. Then it is clear that f is a normalized locally biholomorphic mapping
on B. Assume f satisfies (2.7). Note that f is biholomorphic on B if and only if
each component f; is univalent on U for j = 1,...,n. On the other hand, a simple
computation yields for z = (21,0, ...,0) € B that
21 f1'(21)

fi(z1)

and if ¢ > 1 then f; is not necessarily univalent on U by a result of Becker and
Pommerenke [5]. This implies that the constant ¢ = 1 is sharp, as claimed.

(L= APNDF I D f(2)(2,)] = (1 = |]*)

)

Recently, Hamada and Kohr [18] obtained the following quasiconformal exten-
sion result for a Loewner chain f(z,t) under the assumption that f(-,0) is quasi-
conformal on B. Several applications of this result were obtained in [18]. See also
[12].

THEOREM 2.13. Let f(z,t) be a Loewner chain which satisfies the assumptions
of Theorem 2.5. Assume the following conditions hold:

(i) |IDf(z,t)] < %, z € B, t >0, where M(t) is a locally bounded
function with respect to t € [0,00) and a is a constant with 0 < a < 1;

(i1) there erists a constant ¢; > 0 such that ci||z]|*> < Re(h(z,t),z) for z €
B~ {0},t>0;

(i) there exists a constant ca > 0 such that ||h(z,t)]| < ¢2 for z € B and t > 0;

(iv) there is K > 1 such that f(-,t) is K-quasiconformal for each t > 0.

Then f(-,t) has a continuous extension to B (again denoted by f(-,t)) for each

t>0, and
f(270)7 ZEE
ﬂ@_{f(ﬁﬂ%wm,z¢§

is a quasiconformal homeomorphism of R?" onto itself.

Hamada and Kohr [18] gave the following example which shows that the con-
dition (ii) in Theorem 2.13 cannot be omitted.
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EXAMPLE 2.14. Let n = 2 and B be the unit ball in C?. Also let f : B — C?

be given by
f(z):(zl—l—az%,zz), Z:(zlsz)EBa

where a = 3/3/2. According to Example 2.2 (iii), f(z,t) = e!f(z) is a Loewner
chain which satisfies the assumptions of Theorem 2.5. Moreover, since Df(z,t) =
e!Df(z) and f is a polynomial, the condition (i) is satisfied. A simple computation
yields that h(z,t) = [Df(2)] 1 f(2) = (21 — az3, 23), and thus the condition (iii) is
satisfied. Since ||Df(z)|| is uniformly bounded in B, det Df(z) =1 and D f(z,t) =
e!Df(z), the condition (iv) is satisfied. Since (h(z,t),2) = ||z||> — aZ125 — 0 as
(21,22) = (1/v/3,+/2/3), the condition (i) is not satisfied. On the other hand, we
can show that the mapping

f(z,0), 2€B
F(z) = { f (ﬁ,log”,z”), 2¢B

is not, quasiconformal. Indeed, if z ¢ B then F(2) = (21 +az3/||z||, 22). By a direct
computation, we have det DF(z,y) = 0 for 2, = k/V/3, 20 = v/2k//3 with k > 1,
but ||[DF(z,y)|| # 0. This implies that F" is not quasiconformal.

We remark that Theorem 2.13 can be used to give another proof of Theorem
2.11, and also to prove the following simple sufficient condition for univalence and
quasiconformal extension to C* due to Brodskii [6] (see [18]).

THEOREM 2.15. Let ¢ € [0,1) and f : B — C" be a normalized holomorphic
mapping such that
IDf(z)—I| <c, z€B.
Then f is quasiconformal on B and extends to a quasiconformal homeomorphism
of R2™ onto itself.

In this case the idea of the proof is to show that if we let
flz,t) = f(ze ™)+ (' —eHz=€'z2+..., 2€B,t>0,

then f(z,t) is a Loewner chain which satisfies the assumptions of Theorem 2.13.
Other applications of Theorem 2.13 can be found in [18] (see also [12]).

3. Kernel convergence and Loewner chains

In this section we consider the relation between Loewner chains which satisfy
a growth condition in ¢ and kernel convergence. In the case of one variable, ker-
nel convergence was introduced and studied by Carathéodory [7]. He proved the
fundamental convergence theorem that has turned out to be an extremely impor-
tant tool in univalent function theory and the theory of conformal mappings, for
example, in the study of Loewner chains and the Loewner differential equation.
We note that Gehring [9] defined the notions of kernel convergence for domains in
R? and obtained an analogue of the Carathéodory kernel convergence theorem for
K-quasiconformal mappings in R?.

We begin this section with the following definitions (see [21]):
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DEFINITION 3.1. Let {Gi}ren be a sequence of domains in C* such that 0 €

Gi, k € N. If 0 is an interior point of (] Gy, we define the kernel G of {G\}ren
keN
to be the largest domain containing 0 with the property that if K is a compact

subset of G, then there is a positive integer ko such that K C Gy, for k > ko (in
other words, K is contained in all but finitely many of the sets G ). If 0 is not an
interior point of [ Gk, we define the kernel to be {0}.
keN
Let G be the set of all domains 2 in C* such that 0 € Q and each compact
set K of () is contained in all but finitely many of the sets Gy. Suppose that 0

is an interior point of (] Gji. An application of the Heine-Borel theorem shows
kEN
that if D = [J €, then D belongs to G, and it is clear that no larger domain can
Qeg
belong to G. This establishes the existence of the kernel of any sequence of domains

G1,...,Gk, ... such that 0 is an interior point of [\ G.
keN
DEFINITION 3.2. We say that {G\ }ren kernel converges to G, and write Gy, —
G, if each subsequence of {G}, }ren has the same kernel G.

It is not difficult to see that if {G}}ren is an increasing sequence of domains

in C", i.e., G C Gi41, k € N, such that 0 € G, k € N, then G = |J Gy, is the
kEN

kernel of {G}, }ren and {Gy }ren converges to G in the sense of kernel convergence.

Let S¢(B) be a compact subset of S(B). Then it is not difficult to deduce that

for each r € (0,1), there exist m = m(r) > 0 and M = M(r) > 0 such that
(3.1) m(r) < [If()I < M(r), lzll=r, VfeS(B).

REMARK 3.3. It is known that in the case of one variable the class S is compact.
However, in several variables, the class S(B) is not compact and for any positive
functions m(r) < M(r), r € (0,1), there exist mappings f in S(B) which do not
satisfy the above growth result. Thus S°(B) G S(B) in dimension n > 2 (see e.g.,
[10], [12]).

Indeed, if g is an arbitrary holomorphic function on the unit disc such that
9(0) = ¢'(0) = 0, then the mapping f given by

f(z1,22) = (21,22 + g(21)), (21,22) € B,
belongs to S(B).

The next result is an analogue of the Carathéodory kernel convergence theo-
rem on the convergence of conformal mappings of one variable, for biholomorphic
mappings which satisfy the growth result (3.1) (see [21]).

THEOREM 3.4. Let {fr}ren be a sequence of biholomorphic mappings on B
such that fi,(0) =0, Df(0) = aiI, where ar, > 0, k € N. Assume fi/ay, € S¢(B),
keN. Let G, = fr(B), k € N, and let G be the kernel of {Gp}ren. Then {fi}ren
converges locally uniformly on B to a mapping f if and only if G, - G #AC". In
the case of convergence, either f =0 and G = {0}, or else f is biholomorphic on
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B, f/a € S¢(B) where a = klim ay, and f(B) = G. In the latter case, f,;l — f1
e—s 00

locally uniformly on G.

Next, let 55/4(B) be the subset of S(B) consisting of all mappings in S(B)

which satisfy the 1/4-growth result. That is, f € S7,,(B) if and only if f € S(B)
2]l

12
L << s, s e B
(1 +1lz1))? (1 —1lz1))?
It is known that if f € S*(B) then f satisfies the above 1/4-growth result (see
[1])- In other words, 5*(B) C S7,,(B). Moreover, if f € K(B) then f satisfies the

following growth result (see [8]):
2]l

14|zl 1=z

Taking into account Theorem 3.4, Kohr [21] obtained the following connection

between kernel convergence and convergence on compact sets of mappings in S*(B)
and K (B) respectively.

and

z € B.

< FEI <

COROLLARY 3.5. Let {fi }ren be a sequence of mappings in S*(B) (respectively
in K(B)) and let Gy, = fr,(B). Also let G be the kernel of {Gi}ren. Then {fi}ren
converges locally uniformly on B to a mapping f if and only if G, - G # C".
Moreover, f € S*(B) (respectively f € K(B)), G = f(B), and f,,' — f~' locally
uniformly on G.

For each t > 0, let g:(2) = g(z,t) be a biholomorphic mapping of B onto a

domain G(t) such that g:(0) = 0, Dg:(0) = «(t)I, where a(t) > 0 and g:/a(t) €

1/4(B), t > 0. Also let ap = «(0). Further, assume that the family {G(%)}:0
satisfies the conditions

(3.2) G(s) GG(t), 0<s<t<oo
(33) G(tk) — G(to) if t, >t < 00, and G(tk) - C" if tp — oco.

The convergence in question is kernel convergence. Then we obtain the follow-
ing result (see [21]; compare with [27, Chapter 6]), which provides a geometric
characterization of certain Loewner chains.

THEOREM 3.6. (i) Let g+ and G(t) satisfy the conditions in the previous para-
graph.

(a) Then « is a strictly increasing function, continuous and a(t) — oo as
t — o0.

(b) If B(t) = log[a(t)/ao] then f(z,t) = ay'g(z,87'(t)) is a Loewner chain
and f(B,t) = oy 'G(B71(t)). Further, {e~'f(2,t)}s>0 is a normal family on B.

(i1) Conversely, let f(z,t) be a Loewner chain such that {e ' f(z,t)}i>0 is a
normal family on B. Also let G(t) = f(B,t), t > 0. Then the family {G(t)}+>0
satisfies the conditions (3.2) and (3.3).

In the case of one variable, if f(z,t) is a Loewner chain, then the function
e ' f(-,t) is in the class S, and thus satisfies the 1/4 growth result for each t > 0.
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This implies that {e~* f(2, ) }+>0 is a normal family on the unit disc U. However, in
higher dimensions such a result is no longer true, as shown in the following example
due to Graham, Hamada and Kohr [10].

ExaMmpPLE 3.7. First, we remark that if f(z,t) is a Loewner chain and @ :
C" — C" is an entire normalized biholomorphic mapping, not the identity, then
it is easy to see that (® o f)(z,t) is also a Loewner chain. Such a mapping ® can
be either an automorphism of C* or (when n > 2) a Fatou-Bieberbach map, i.e., a
biholomorphic mapping of C" onto a proper subset of C".

Now, let n = 2 and ®(z) = (21,22 + 2{), 2 = (21,22) € C*. Then & is a
normalized automorphism of C2. Also if

etz etz

t) = B, t>0,
f(Z, ) <(1_Zl)27(1_z2)2>7 ZE Y
then f(z,t) is a Loewner chain by Example 2.2 (ii), and thus

etz etzy e?tz2
) t)) = 1 B, t>0

is also a Loewner chain. However, since for each r € (0, 1),

1@ (f (r, 0)Il = ﬁ 1+ (1 i2r)4 > (1 _Tr)2’

the family {e~*®(f(z,t))}+>0 is not normal.

4. Solutions of the generalized Loewner differential equation

The main result of this section is a generalization of a one-variable theorem
of Becker (see [3, Satz2]). It is easy to see that the Loewner chain (® o f)(z,t) in
Example 3.7 satisfies the same partial differential equation as the Loewner chain
f(z,t) (see [10]). A natural question is the following: Let h(z,t) satisfy the as-
sumptions (i) and (ii) in Theorem 2.3. Then does any Loewner chain g(z,t) which
satisfies the partial differential equation

—(2,t) = Dg(z,t)h(z,t), ae. t 20, V z € B,

have the form g(z,t) = (® o f)(2,t), where f(z,t) is the canonical solution and ®
is a normalized univalent mapping from C" into C* 7 Actually, one can prove a
slightly more general result.

In studying the analogous question in one variable, it is useful to consider
solutions of the Loewner differential equation which, for fixed ¢, are holomorphic on
a punctured disc (rather than a disc) centered at 0. However, in higher dimensions
point singularities of holomorphic functions are removable, so we shall assume that
the solutions are holomorphic at 0 for fixed ¢. As in [3], we allow the radius of the
ball on which the solution is initially defined in z to vary with ¢; this is potentially
useful for applications (see [16]).
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THEOREM 4.1. Let h(z,t) satisfy the assumptions (i) and (ii) of Theorem 2.3
and let f(z,t) be given by (2.4). Also let g(z,t) be a mapping such that for each
t>0, g(-,t) € H(B,)) where r(t) € (0,1] and limsup e'r(t) = oco.

t

—00
Assume there exist two positive functions p and § on [0,00) such that p(t) < 1,
t > 0, and for each tog > 0 the following conditions hold:
(a) r(t) > p(to) for t € Esgt,) = [to — 6(to),to + 6(t0)] N [0,00) (thus g(-,t) is
holomorphic on B, for t € Esq,));
(b) g(z,-) is absolutely continuous on Esg,y for z € By, and for almost all
t € Ejto)
dg
E(Z,t) = Dg(z,t)h(z,t), zE€ By (to)-
Then g(z,t) extends to a subordination chain on B x [0,00), again denoted by
g(z,t), and there exists a mapping ® : C* — C" which is holomorphic such that

g(z,t) = (®o f)(z,t), z€B, t>0.

Moreover, g(z,t) is a univalent subordination chain if and only if ® is univalent,
i-e., an automorphism of C" or a Fatou-Bieberbach map.

We next present the following particular cases of Theorem 4.1 (see [16]; in the
case of one variable, see [3,4]):

COROLLARY 4.2. Letr € (0,1] and g = g(z,t) : B, x[0,00) = C" be a mapping
such that g(-,t) € H(B,), t > 0 and g(z, -) is locally absolutely continuous on [0, co)
locally uniformly with respect to z € B,. Let h = h(z,t) : B x [0,00) — C" satisfy
the assumptions (i) and (i1) of Theorem 2.3 and let f(z,t) be given by (2.4). Assume
that g(z,t) satisfies the Loewner differential equation

0]
a—g(z,t) = Dg(z,t)h(z,t) a.e. t >0, V z € B,.

Then g(z,t) can be extended to a subordination chain on B X [0,00), again
denoted by g(z,t), and there exists a holomorphic mapping ® of C* into C* such
that g(z,t) = (®of)(z,t) for z € B and 0 < t < co. Moreover, g(z,t) is a univalent
subordination chain if and only if ® is univalent, i.e., an automorphism of C* or

a Fatou-Bieberbach map.

COROLLARY 4.3. Let g(z,t) and h(z,t) satisfy the assumptions of Theorem 4.1.
Also let f(z,t) be given by (2.4) and let

1
ck(t) = 5D%9(0,8), >0, k>0.

Assume that

(4.1) liminf e ¥||cp(t)]| =0, Kk > 2.
t—00

Then g(z,t) = CO(O) + Cl(O)f(Z,t), z € By t>0.

REMARK 4.4. As we have seen in this section, in higher dimensions univalent
solutions of the generalized Loewner differential equation (2.5) need not be unique.
This is a basic difference between the Loewner theory in one and higher dimensions.
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For example, if f(z,t) is a Loewner chain which satisfies (2.5) and & : C* — C”
is a normalized biholomorphic mapping, not the identity, then g(z,t) = (®o f)(z,t)
is also a Loewner chain which satisfies (2.5).

5. Loewner chains and the Loewner differential equation
in reflexive complex Banach spaces

In this section we shall present some recent results related to Loewner chains
and the Loewner differential equation in reflexive complex Banach spaces. These
results generalize to reflexive complex Banach spaces the results presented in the
second section. To this end, let X be a complex Banach space with respect to a
norm || - ||. Let B, be the open ball centered at zero and of radius r, and let B be
the open unit ball in X. If A is a subset of X, let A denote its closure. We denote
by L(X,Y") the set of continuous linear operators from X into Y with the standard
operator norm. Let I be the identity in L(X,X). Let  be a domain in X and
f:Q — X be a mapping. We say that f is holomorphic if for each z € ) there is
a mapping Df(z) € L(X, X) such that

i WG+ = 1) = DI

=0.
h—0 ||

Let H() be the set of holomorphic mappings from Q into X. A mapping
f € H(Q) is called biholomorphic if f(2) is a domain, and the inverse f~! exists
and is holomorphic on f(€Q). A mapping f € H() is called locally biholomorphic if
each z € Q) has a neighbourhood V' such that f|y is biholomorphic. By the inverse
function theorem, f is locally biholomorphic if and only if Df(z) has a bounded
inverse at each z € Q. A holomorphic and injective mapping on ) will be called
univalent. (Such a mapping need not be biholomorphic.) A mapping f € H(B) is
called normalized if f(0) =0 and Df(0) = I.

For z € X \ {0}, we define T'(z) = {l, € L(X,C) : I.(z) = ||z]|, |ll:]| =1}. It
follows from the Hahn-Banach theorem that T'(z) # 0. Let

M ={f € H(B): fisnormalized, Re[l,(f(z))] >0, z € BN {0}, I, € T(2)}.

If f,g € H(B), we say that f is subordinate to g, and write f < g, if there
is a Schwarz mapping v (i.e., v € H(B), v(0) = 0, ||[v(2)|| < 1, z € B) such that
f(z) = g9(v(2)), = € B.

DEFINITION 5.1. A mapping f : B x [0,00) — X is called a Loewner chain if

(i) f(-,t) is univalent on B, f(0,t) =0, Df(0,t) = etI, t > 0;

(ii) f(z,8) < f(z,t),z€ B,0< s <t <o0.

As in the finite dimensional case, the latter condition is equivalent to the fact

that there is a Schwarz mapping v = v(z, s, t), called the transition mapping asso-
ciated to f(z,t), such that

(5.1) f(z,8) = f(v(z,s,t),t), z€B, 0<s<t<o0.

Moreover, since f(-,t) is univalent, the mapping v is uniquely determined by
(5.1), and furthermore it is univalent on B and satisfies the relations Dv(0, s,t) =
e tI and
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v(z,s,u) =v(v(z,s,t),t,u), z€B,0<s<t<u<o0.

Throughout this section we assume that X is a reflexive complex Banach space.
The following result is due to Hamada and Kohr [19].

THEOREM 5.2. Let h : B x [0,00) — X be a mapping which satisfies the
following conditions:

(i) h(-yt) € M fort > 0;

(%) h(z,-) is strongly measurable on [0,00) for each z € B.

Then for each s > 0 and z € B, the initial value problem

0
(5.2) 6—1; = —h(uv,t) a.e. t > s, v(s) = z,
has a unique solution v(t) = v(z,s,t) which is locally absolutely continuous in t
uniformly with respect to z € B,., r € (0,1). Moreover, for fivzed s and t, 0 < s < t,

v(+, 8,t) is a univalent Schwarz mapping such that Dv(0,s,t) = eS~'I.

We remark that Poreda [28] studied the notion of a Loewner chain and the
Loewner differential equation on the unit ball of a complex Banach space. He
obtained a version of [23, Theorem 2.1] in the context of complex Banach spaces
which are not necessarily reflexive. However, he assumed a stronger regularity
property on the mapping h(z,t) than the above, namely continuity on B X [0, 00).

The next result yields that the solution of the initial value problem (5.2) gen-
erates Loewner chains (see [19]; compare with [28, Theorem 4]).

THEOREM 5.3. Let h = h(z,t) be a mapping which satisfies the assumptions
(7) and (ii) in Theorem 5.2, and let v = v(z,s,t) be the solution of the initial value
problem (5.2). Then for each s > 0, the limit

St _
(5.3) Jimefv(z,s,1) = f(z,5)
exists uniformly on each ball B,., r € (0,1). Moreover, f(z,t) is a Loewner chain.

We now present a sufficient condition for a mapping to be a Loewner chain. In
the finite dimensional case, this may be compared with [23, Theorem 2.3]; compare
also with [28, Theorem 6] in the case of complex Banach spaces. We have (see [19])

THEOREM 5.4. Let f = f(z,t) : Bx[0,00) = X be a mapping such that f(-,t) €
H(B), f(0,t) = 0, Df(0,t) = eI, t > 0, f(z,-) is strongly locally absolutely
continuous on [0, 00) uniformly with respect to z € B, for r € (0,1). Suppose that
h: Bx0,00) is a mapping which satisfies the assumptions (i) and (ii) in Theorem
5.2 and

0
(5.4) 6_{(Z’t) = Df(z,t)h(z,t) a.e. t 20, V z € B.
Moreover, suppose there exist o € (0,1) and M = M(ro) > 0 such that
(5.5) 1F(z Ol < €M, lzll < 7o, £ 0.

Then f(z,t) is a Loewner chain.
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REMARK 5.5. (i) It is known that any Hilbert space is reflexive. Therefore, the
results presented in this section are true in the case of complex Hilbert spaces. Of
course, any finite dimensional complex Banach space is also reflexive. Moreover, if
p € (1,00) then the space £, of p-summable complex sequences is another example
of a reflexive complex Banach space for which the results in this section remain
true.

(ii) We do not know whether the above results remain true without assuming
X is a reflexive complex Banach space. The usefulness of the reflexivity condition
comes from the fact that any strongly absolutely continuous mapping g from an
interval £ C R into X has a strong derivative (dg/dt)(t) for almost all ¢ € E, and
furthermore this derivative is integrable on E and

t
d
o) - g(to) = [ Fnar, taek
to T

(see [22]). It would be interesting to see whether the results of this section remain
valid without the reflexivity assumption.

References

[1] R.W. Barnard, C.H. FitzGerald, S. Gong, The growth and 1/4-theorems for starlike mappings
in C", Pacif. J. Math., 150(1991), 13-22.

[2] J. Becker, Lownersche Differentialgleichung und quasikonform fortsetzbare schlichte Funk-
tionen, J. Reine Angew. Math., 255(1972), 23-43.

[3] J. Becker, Léwnersche differentialgleichung wund Schlichtheitskriterien, Math. Ann.,
202(1973), 321-335.

[4] J. Becker, Conformal mappings with quasiconformal extensions, Aspects of Contemporary
Complex Analysis, 37-77, Academic Press, London-New York, 1980.

[5] J. Becker, C. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math.,
354(1984), 79-94.

[6] A.A. Brodskii, Quasiconformal extension of biholomorphic mappings, in “Theory of Map-
pings and Approximation of Functions” (G. Suvorov, Ed.), 30-34, “Naukova Dumka”, Kiev,
1983 (in Russian).

[7] C. Carathéodory, Untersuchungeniber die konformen Abbildungen wvon festen wund
verdnderlichen Gebieten, Math. Ann. 72(1912), 107-144.

[8] C.H. FitzGerald, C. Thomas, Some bounds on convex mappings in several complezx variables,
Pacif. J. Math., 165(1994), 295-320.

[9] F.W. Gehring, The Carathéodory convergence theorem for quasiconformal mappings in space,
Ann. Acad. Sci. Fenn. Ser. A.I., 336(11)(1963), 3-21.

[10] I. Graham, H. Hamada, G. Kohr, Parametric representation of univalent mappings in several
complez variables, Canadian J. Math., 54(2002), 324-351.

[11] I. Graham, H. Hamada, G. Kohr, T. Suffridge, Eztension operators for locally univalent
mappings, Michigan Math. J., 50(2002), 37-55.

[12] I. Graham, G. Kohr, Geometric Function Theory in One and Higher Dimensions, Marcel
Dekker Inc., New York, 2003.

[13] I. Graham, G. Kohr, M. Kohr, Loewner chains and the Roper-Suffridge extension operator,
J. Math. Anal. Appl., 247(2000), 448-465.

[14] I. Graham, G. Kohr, M. Kohr, Loewner chains and parametric representation in several
complez variables, J. Math. Anal. Appl., 281(2003), 425-438.

[15] I. Graham, G. Kohr, M. Kohr, Basic properties of Loewner chains in several complex vari-
ables, Proceedings of a Conference on Geometric Function Theory in Several
Complex Variables held in Hefei, China, World Scientific, to appear.



(16]

[17]
(18]
[19]
20]
21]

(22]
23]

[24]
(25]
[26]

(27]
(28]

29]
30]

31]

LOEWNER CHAINS AND BIHOLOMORPHIC MAPPINGS 215

I. Graham, G. Kohr, J.A. Pfaltzgraff, The general solution of the Loewner differential equa-
tion on the unit ball in C*, Proceedings of the International Conference on Complex Analysis
and Dynamical Systems II, Contemporary Math., to appear.

H. Hamada, G. Kohr, The growth theorem and quasiconformal extension of strongly spirallike
mappings of type o, Complex Variables, 44(2001), 281-297.

H. Hamada, G. Kohr, Loewner chains and quasiconformal extension of holomorphic map-
pings, Ann. Polon. Math., 81(2003), 85-100.

H. Hamada, G. Kohr, Loewner chains and the Loewner differential equation in reflexive
complex Banach spaces, Rev. Roum. Math. Pures Appl., to appear.

G. Kohr, Using the method of Loewner chains to introduce some subclasses of biholomorphic
mappings in C*, Rev. Roum. Math. Pures Appl., 46(2001), 743-760.

G. Kohr, Kernel convergence and biholomorphic mappings in several complex variables, Int.
J. Math. Math. Sci., 67(2003), 4229-4239.

Y. Komura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19(1967), 493-507.
J. Pfaltzgraff, Subordination chains and univalence of holomorphic mappings in C*, Math.
Ann., 210(1974), 55-68.

J.A. Pfaltzgraff, Subordination chains and quasiconformal extension of holomorphic maps in
C™, Ann. Acad. Sci. Fenn, Ser. A, 1(1975), 13-25.

J.A. Pfaltzgraff, T.J. Suffridge, Close-to-starlike holomorphic functions of several variables,
Pacif. J. Math., 57(1975), 271-279.

J.A. Pfaltzgraff, T.J. Suffridge, An extension theorem and linear invariant families generated
by starlike maps, Ann. Univ. Mariae Curie Sklodowska, Sect.A, 53(1999), 193-207.

C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Gottingen, 1975.

T. Poreda, On the univalent subordination chains of holomorphic mappings in Banach spaces,
Commentationes Math., 128(1989), 295-304.

K. Roper, T.J. Suffridge, Convezity properties of holomorphic mappings in C*, Trans. Amer.
Math. Soc., 351(1999), 1803-1833.

T.J. Suffridge, Starlike and convex maps in Banach spaces, Pacif. J. Math., 46(1973), 575-
589.

T.J. Suffridge, Starlikeness, convezity and other geometric properties of holomorphic maps
in higher dimensions, Lecture Notes in Math., 599, 146-159, Springer-Verlag, New York,
1976.

Department of Mathematics
University of Toronto
Toronto, Ontario M5S 3G3
Canada
graham@math.toronto.edu

Faculty of Mathematics and Computer Science
Babeg-Bolyai University

1 M. Kogélniceanu Str.

3400 Cluj-Napoca

Romania

gkohr@math.ubbcluj.ro

Department of Mathematics

CB 3250, University of North Carolina
Chapel Hill, NC 27599-3250

USA

jap@math.unc.edu



