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DIRICHLET’S PRINCIPLE, DISTORTION
AND RELATED PROBLEMS
FOR HARMONIC MAPPINGS

Miodrag Mateljevié

ABSTRACT. We give a short review of some known and new results related to
harmonic maps. In particular, we generalize classical Dirichlet’s principle, area
theorem, theorems of uniqueness of harmonic maps, Bloch theorem, estimates
for the modulus of the derivatives of harmonic univalent mappings, etc. We use
different tools: Dirichlet’s principle, minimizing sequences, different versions
of Reich—Strebel inequality, area theorem, etc. Also, comprehensive outlines
of proofs for most of new results are given.

0. Introduction

The main purpose of this paper is to give a short review of some results related
to harmonic maps, communicated by the author and the other members of the
Seminar, at the University of Belgrade, during several last years. Recall in this
paper we give a review of known and new results in direction suggested by the
abstract, which reflects author personal research interest. We have attempted to
partially compensate this by extensive bibliography covering generalizations and
other important directions. Comprehensive outlines of proofs for most of new
results are given but a few new results are only announced.

The paper consists of 3 sections. Shortly, in Section 1, we outlined the proofs
of some properties of harmonic maps concerning connections between: Dirichlet’s
principle, the area theorem, extremal metrics and modulus, different versions of
Reich—Strebel inequality, etc. Sections 1 has subsections A (items A1-A4), B (items
B1-B4), C (items C1-C4) and D (items D1-D5).

In subsection A we consider basic properties: the Euler-Lagrange equation for
the energy functional, properties of harmonic maps related to natural parameter,
uniqueness property and the symmetry property.

The subsection B is devoted to Dirichlet’s principle, different generalization
of the area theorem, extremal metrics and modules and related problems. In B1,
proof of Dirichlet’s principle is given. Generalizations of the area theorem and
connections with Lehto—Kiihnau theorem and Dirichlet’s principle, are presented
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in B2. In particular, we discuss some generalizations of the area theorem, which
has independent interest, obtained by the author several years ago (which are yet
not published). The item B3, is devoted to extremal metrics and modulus. We
give a proof of a Beurling result, which is a modification of the proof in [Ah1].
Also, we outline a new proof of the Beurling result, using minimizing sequences.
Our approach is influenced by Courant’s book (see [C]) and Gehring’s work in R?
space (see [Gel] and [Ge2]). Concerning further generalizations in this direction we
refer the interested reader to the literatures (see B3) suggested in [As]. In B4, we
state a formula for the energy density which explains connection between Dirichlet
principle for harmonic maps (in general sense) and via the Main Inequality with
Grotzsch principle (an integral version of this formula appears in [ReS2], see also
[We], [M3] and [Sh]). We expect further applications of the Main Inequality in this
direction.

In C, using a new version of Reich—Strebel inequality, an outline of proof of the
uniqueness property of harmonic mappings are given, which includes non-negative
curved target (see [MM 3]). In this subsection, we also shortly discuss the global
uniqueness theorem of Al’ber, Hartman, Jiger—Kaul and Coron—Helein theorem
which roughly states that any smooth harmonic diffeomorphism between (M, h)
and (N, g) is minimizing in its homotopy class.

In D, a short presentation related to Schoen conjecture and extremal quasicon-
formal mappings is given.

In Section 2, the content of author paper [M6] is presented. We sketch a proof
of the result which roughly states that the maximal dilatation of a proper harmonic
mapping of the unit disc onto a convex domain is bounded from bellow by a positive
constant and which is a generalization of Heinz theorem [H] and some recent results
(see [Kal] and [Ka2].

In Section 3, the content of author’s paper [M5] is presented. Using a version of
Bloch theorem (see Lemma 3.1) we give a short proof of a Dyakonov’s theorem. Also
we show that Lemma 3.1 holds for quasiregular harmonic functions (see Theorem
3.1).

Recall the most part of the paper consists of the lectures communicated by
the author and the other members of the Seminar, at the University of Belgrade
during several last years. The author also talked extensively about this subject in a
number of places. During the last several years there has been important progress
in characterizing the condition under which unique extremality occurs. We refer
the interested reader to the recent excellent survey of Reich [Re9].

1. Dirichlet’s principle, uniqueness of harmonic maps
and related problems

A. Some basic properties.
Al. Let M and N be two Riemann surfaces with local conformal metrics

0(2)|dz|* and p(z)|dw|* and let f : M — N. It is convenient for us to use notation
in local coordinates df = (0f)dz+ (0f)dz and p = 0f, ¢ = 0f. The energy integral
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of fis
E(f,p) = /Me(f)adxdy,

where e(f) is the energy density defined by

— (pl? + 1722 L@)
e(£)(2) = (I? + 1) 227
A critical point of the energy functional is called harmonic mapping. The Euler—
Lagrange equation for the energy functional is:

(A1) f2z+ (9(log p)) o fpg = 0.

Thus harmonic maps arise from a geometric variational problem and as far as
we know, one can not study solutions of this equation, using classical theory of
elliptic equations. In this paper we will give an outline of the proofs of some
properties of harmonic maps, using different tools: Dirichlet’s principle, minimizing
sequences, different versions of Reich—Strebel inequality, etc. For general properties
of harmonic maps we refer the interested reader to Eells and Lemaire [EL1], [EL2],
Jost [J], Schoen [Sc], Schoen and Yau [SY] and further references there. In order
to explain our ideas and results it is convenient to suppose that M and N are the
domains in C. Let A denote the unit disc. If f : M — N is harmonic map then
@ = po fpq is a holomorphic function. For the sake of the reader, we will sketch
a proof of this result in the case when M = A and N is a domain in C, with the
metric p(w)|dw|. Let A be a complex valued function of class C* with compact
support in A and let ®.(z) = z 4+ e\(z). Then,

EAE
1+e,’

If f is a stationary point of the energy integral, using an expression (see [ReS2])
for E(f o ®-1, p) — E(f, p), we conclude that

//A ON(2)p(2) d dy = 0.

Since ¢ is integrable function on A, it follows that ¢ is an analytic function on A,
by Weyl’s lemma.
Now, we will state some simple, but useful, properties of harmonic maps.

v. = Belt[®.] =

A2. Properties of harmonic maps related to natural parameter. Again, we
suppose, as at the beginning, that f is harmonic mapping between Riemann surfaces
M and N. Then ¢(z)dz? is a holomorphic quadratic differential on M, where
@ = po fpd in a local coordinate. Let P be a regular point for ¢(z) dz? on M and
let ¢ be a natural parameter centered at P. If we compute p and ¢ with respect to
natural parameter then we have important formula

(A2) pofpi=1

Now, easy computation gives:

(Ifel> = 1fl* — i2Re fe fr)

| =

pq=
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Combining this formula with (A2), we find that f; and f, are orthogonal (if we
consider them as vectors). Also, we can show that Jacobian J = |p|> — |¢|* = 0 if
and only if f, =0.

A3. Using Aronszajn’s generalization of Carleman’s result we can prove the
following uniqueness property:

THEOREM S. If f is a harmonic mapping of an open connected set D C M and
f =0 on an open subset of D, then f =0 throughout D.

General version of this result, which is concerned with the case when M and NV
are Riemannian manifolds, is known as Sampson’s Unique Continuation Theorem
(see [Sa] and [EL2]).

A4. The symmetry property. We have the following theorem.

THEOREM RP (The reflection principle). Suppose L is a segment of the real
axis, QF is a region in H = {z : Imz > 0}, and every t € L is the center of
an open disc By such that HT N By lies in Q. Let Q= be the reflection of Q% :
Q" ={z:2€QF}. Suppose u is harmonic in QT and lim,,_,oo u(z,) = 0 for every
sequence {z,} in QT which converges to a point on L. Then there is a function U,
harmonic in @ = QT U LU Q™ such that U = u in QF. This function U satisfies
the relation U(z) = —=U(z), z € .

ProOOF. We extend u to Q by defining U(z) = 0, for z € L, and U(z) = —-U(2),
forz€ Q™. O

ExaMPLE 1. It is not difficult to verify that function f(z) = 2z + icosy is
harmonic mapping from C' into C' with respect to the corresponding metric. This
function is periodic with respect to y. The next result shows that this periodicity
is typical.

THEOREM M1. Suppose that f : C — C is a harmonic mapping, given w.r.t.
natural parameter and that Jacobian of f equals zero on the real axis. Then f(z) =

f(2).

The proof of this result is based on Theorem S.
B. Dirichlet’s principle, area theorem and related problems

B1. If the metric density p = 1 on N then the equation (1) reduces to f.z = 0.
In this case we say that f is a harmonic function and write D[f] instead of E(f,1)
for the energy integral.

Recall that A denote the unit disc. Also we will use the notation D[¢,9] =
J A (22 + dytby) da dy. The following lemma is crucial in the proof of Dirichlet’s
principle.

LEMMA DP. Suppose that

(a) u and h are continuous on A and h =0 on A
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(b) w is harmonic on A and h has the continuous partial derivatives of the
first order on A
(¢) u and h have the finite Dirichlet’s integral on A.

Then Dlu,h] = 0.
First we will state the Dirichlet’s principle for harmonic function.

THEOREM DP (Dirichlet’s principle). Suppose that

(a) g is continuous function on A.

(b) g has the first partial derivatives which are continuous on A

(c) the energy integral of g is finite.
If u is continuous on A, harmonic on A and if u = g on the boundary of A, then
D(g) > D(u), where the inequality equals if and only if u =g on A.

Proor. If h = g — u, then Lemma DP shows that,
Dlg] = D[u] + 2D[u, h] + D[h] = D[u] + D[h] > DJu],
unless D[h] = 0, i.e., h has the constant value zero. O

Now, we are going to discuss some results related to Dirichlet’s principle. In an
unpublished manuscript [M1] we gave a proof of Theorem M2 (see bellow) based
on Dirichlet’s principle. Before we state this result we need some definitions and
we will state the area theorem and a result of Lehto—Kiihnau, which motivated us.

B2. An area theorem of Lehto—Kiihnau type for harmonic maps. First, we are
going to prove the area theorem, which is an important tool in theory of univalent
functions.

THEOREM A (The area theorem). Let w = f(z) = z + Uy a—Z +--- be
z z
an univalent analytic function on E = {z : |z| > 1} and let G = C \ f(E) be the

omitted set. Then
7r<1 - Z k|ak|2> = area(Qq).
k=1

Proor. Let K, be the circle |z] = p > 1, with the positive orientation, and
set

Ip:Ip(f):%/K fdf-

If f =u+iv and if 7, denotes the image curve of K,, we have

Ip:/ udv
g

P

and by elementary calculus this represent the area enclosed by v,. Hence I, > 0.
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Direct calculation gives

. [ee] [ee]
I, = 3/ (2 +y a—’,j) (1 - Zkakz_k_1>dz
2 Jxk, =1 k=1
= 1/ <z+ i%) (z— ikakz_k>d0
2 Jxk, =1 k=1
= {pz - Z k|ak|2p2k] .
k=1
(o0}
Thus Y k|ag|>p~2* < p?, and theorem follows for p — 1. O
k=1

Let us consider conformal mapping h which belongs to class ¥, i.e., h is
univalent in E = {z : |z| > 1} and has a power series expansion of the form
h(z) = z+ Y .-, apz"" in E. If h has a quasiconformal extension to the plane
with complex dilatation u, satisfying the inequality ||p|lco = k < 1, we say that h
belongs to the subclass ¥y of ¥. Lehto (see [L1] and [L2]) and Kiihnau (see [K])
established the area theorem for ¥j.

THEOREM LK (Lehto-Kiihnau). Let h € $. Then Y nla,|*> < k*. The
estimate is sharp. n=1

If we denote by P the area of the omitted set of h(E), then Theorem LK states
that P > w(1 — k?). Before we state the Theorem M2, which is a generalization
of Theorem LK to univalent harmonic mappings, we need some definitions. Let
Y’ be the set of all harmonic, orientation-preserving, univalent mappings h(z) =
2+ f(2) +g(2)+ Alog|z| on E, where f(2) = 3.°0  apz~" and g(z) = .00 bpz ™"
are analytic on E and A € C. Let X} denote the set of all homeomorphisms h of
C' onto itself such that

(a) the restriction of h on E belongs to ¥’ and

(b) the restriction of h on the unit disk U = {z : |2| < 1} is a quasiconformal
mapping with complex dilatation p satisfying |||l < k < 1.

The Area theorem can be established for ¥j. Recall, that P denote the area
of the omitted set of h(E). Also, it is convenient to use notations 7 = 377 | n|a,|?
and s =1+ 2Reby + 1, where [ = >°°7 | n|b,|?.

The following result was proved by the author about 15 years ago, but it has
not, been published yet.

THEOREM M2. Let h € X).. Then
(a) P>n(l—k%)s.
The equality holds in (a) if and only if
h(z) = z4cz7 ' +¢eg(z) + g(2) + Alog|z|,

where g(z) = > bpz™™ is analytic on E; and |c| =k, A € C.
n=1
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After writing the final version of this paper the author was kindly informed by
Professor R. Kiithnau that he and the others proved several results of this type.

PROOF OF THEOREM M2. In order to prove the inequality (a) we need two
lemmas. Let

ap = //|3h|2da: dy and f3, = // |Oh|?dx dy, where U.{z: |z| <1}
U, U-

Also, we will write « and [ respectively, instead of «; and f;.

LEMMA 1.1. If h € ¥}, then « is finite and P > (1 — k?)a.

PROOF. Since h has locally integrable L?-derivatives, using that |0h| < k|Oh],
we obtain P, = a, — 3, > (1 — k?)a, for 0 < r < 1. This gives Lemma 1.1
when r approaches 1. If h = u + iv, then it is convenient to use notation |Vh|> =
|Vul|? + |Vv]?. Now, the desired result follows by integration over U. O

For h € ¥} and z € U, let p(z) = f(1/2) and 9(z) = g(1/2). Thus ¢ and 1 are

continuous function on U and ¢(2) = Y oo ; anz™, ¢(z) =3 o0 byz™ for z € U.

In order to apply Dirichlet’s principle, let us consider the function H defined
by H(z) = z+@(2) +¢(z), z € U. It is easy to check that H(z) = h(z) for z € 9U.

LEMMA 1.2. Dirichlet’s integral of H over U is finite and

DlH] = // VH d dy = 27(s + 7)
U

PROOF. Since a = 1D[h] + 1P we conclude that Dirichlet’s integral D[h] of
h is finite and therefore, using Dirichlet’s principle that Dirichlet’s integral of H is
finite. Using

Hy(2) =1+ ¢'(2) +4'(2), Hy(z) =i—i¢'(2) + i)' (2),
for 2 € U, we obtain [VH|?> = 2(|1 +¢'(2)|> + |¢'(2)[?)- O
PROOF OF THE INEQUALITY (a). Using Dirichlet’s principle, we conclude that
(1.1) a+p2n(s+71).
On the other hand the area of the omitted set is

. T (-
P = Rhﬁnlar Z/hdh =m(s—71),
YR

where g is the curve defined by z = Re?, 0 < 6 < 2. Since P = a— 3, we obtain
(1.2) a—pFB=mx(s—1).

It follows from (1.1) and (1.2) that @ > ws. This inequality together with Lemma
1.1 gives the inequality (a). O
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THE EQUALITY IN THEOREM M2. If equality holds in (1.1), using Dirichlet’s
principle we conclude that A = H on U. An inspection of the proof of Lemma 1.1
gives k|1 + ¢'(z)| = |¢'(2)|, z € U. Next application of the maximum principle
shows that h has the form given by the part (b) of Theorem M2. O

Since P = w(s — 7) the next result follows immediately from Theorem M2.

COROLLARY M1. Ifh € ¥, then T < k?s.
Using Dirichlet’s principle as above we can give further generalization of this
result. Suppose that

a) h is continuous function on U and k quasiregular, 0 < k < 1, on U.
b) the curve v defined by w = h(e??),0 < 6 < 2, is of bounded variation.
C) h(eiH) ~ EOO ane—mo + EZO:[) Bnein9

n=1

THEOREM M3. With notation and hypothesis just stated we have

o0 [ee]
A= Zn|an|2 < k’B, where B= Zn|Bn|2.
n=1

n=1

Finally we state a generalization of the area theorem to analytic functions.

THEOREM Al. Letw = f(z) = Az+ “ +--+ a_z +--- be an analytic function
z z
on E={z:|z| > 1} and let G = C\ f(E) be the omitted set. Then

(B1) 71'<|>\|2 - Z k|ak|2> < area(@).
k=1

Equality holds if and only if f is a univalent function on E.

PROOF. Let K, be the circle |z| = p with positive orientation and let v, be the
curve defined by the equation w = f,(e®) = f(pe'), 0 < t < 27. For given w # 0o
let n(w) be the number of roots of f(z) = w in |z| > p. Assume that f # w on K,
and A # 0. Since f has a pole of order 1 at oo, we have f(z) # w in |z| > r for a
large r and consequently, by the argument principle,

1 f'(z)
(52) ww) =g [ gt =1 X,
where x = x(7,,w) is the winding number (or index) of the curve 7, with respect
to the point w. By the analytic Green’s theorem (see, for example [Po]), the area

1 1
(B3) I,=— [ wdw= —// X (Yo, w) du dv.
Yp ™ R2

= i

Let G, be the set omitted by f on E, = {|z| > p}. By (B2) w € G, if and only
if x(7,,w) = 1. Also, it follows from (B2) that x(v,,w) is an integer less than or
equal to zero if w ¢ G,. This together with (B3) gives

(B4) I, < area(G)).
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Direct calculation as in the proof of area theorem gives (B1). For the case of
equality see [M].

We announce the following generalization of Theorems A, Al (see Theorem
M4 below). A proof of Theorem M4 can be based on Theorem Al and Wirtinger’s
inequality among the other things.

THEOREM M4. Let w = f(2) = Az + %+---+a—z +-- andw = g(z) =

z z
,uz-i—b;l +---+Z—Z + -+ be analytic functions on E = {z:|z| > 1}, H = (f,g) and
let G be a surface such that G U H(E) be the simple connected set. Then

(85) (W2 ? = 3 Kaaf? + ) ) < area).
k=1

The reader can consider when the equality holds in (B5).

A version of the Area theorem can be established for harmonic non-univalent
functions. We announce the following generalization of Theorems A, A1l (see The-
orem M5 below). One can use properties of index as in the proof of Theorem Al,
among the other things, to give a proof of Theorem M5. Suppose

(a) h(z) = 2+ f(2)+g(z) on E, where f(z) = 3. apz " and g(z) = 3. bpz™"
are analytic on F and n=1 n=1
(b) J, >0on E

Let P denote the area of the omitted set of h(E). Also, it is convenient to use
notations 7 =Y >~ nla,|? and s =1+ 2Reb; +1, where | =Y >7  n|b,[*.

THEOREM MS5. Suppose the above conditions and notations. Then
P>n(s—r1).

B3. Extremal metrics and modulus. In this item we are going to give
a proof of a Beurling result, which is a modification of the proof in [Ahl]. Also,
we outline a new proof of the Beurling result, using minimizing sequences. Our
approach is influenced by Courant’s book (see [C]) and Gehring’s work in R? space
(see [Gel] and [Ge2]). Some generalizations of Gehring’s results are presented in
[AMS].

In unpublished work Beurling has given the following elegant and useful crite-
rion. Before we state Beurling result we need a few definitions. Let 2 be a region
in the plane, I' be family of curves and let p(z) > 0 be Borel measurable function
defined in the z-plane. We say that p is admissible for T, if for every rectifiable
veTl, fv pldz| exists and co > fv pldz| > 1. In these circumstances every rectifiable
arc v has a well defined p-length L(vy, p) = fv pldz|, which may be infinite, and the
open set (2 has a p-area A= A4, = A(p, Q).

The modulus of T';, M = Mq(T'), with respect to (2, is defined as inf A(€2, p)
for admissible p. The extremal length of T" in Q is defined as the reciprocal of the
modulus. The extremal length is denoted by A = Aq(T).
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THEOREM B1 (Beurling’s theorem). The metric py is extremal for T' if T
contains a subfamily Ty with the following properties:

(a) [, poldz| =1, for all v € To;
(b) for real-valued h in Q the conditions fwh|dz| > 0 for all v € Ty imply

Let © be an open set and let E;, Ey be two sets in the closure of 2. Take I to
be the set of connected arcs in Q which join E; and E». The extremal length \(T)
is called the extremal distance of E; and E» in 2, and we denote it by do(E;, E»).

EXAMPLE 1. The extremal distance between vertical sides of a rectangle R =
{z=z+iy:a<z<bc<y<dlisA=(b—a)/(d—-c).

PRrOOF. Let A, = [a+iy, b+iy] and [y is the family of curves {A, : ¢ < y < d}.
If we take pg = 1, then Beurling’s criterion is satisfied and py = 1 is extremal metric.

EXAMPLE 2. Let A be the ring A = A(ry,r2) = {z:r1 < |z] <re}. UTis
the family of arcs, which join circles K,, = {z: |z| =r} and K,, = {2z : |z| = r2},
then

1 T2
B6 L(T) = —In—.
(B6) ()= 5 1o

PrROOF. Let A" = AN (ri,m) and R={w:Inr; <u<lnry, 0 <v < 27},

Since exp maps conformally R onto A’ using the Example 1 we get (B6).

Now, we state a result of Beurling, which express the Dirichlet’s integral by
means of extremal distance (see [Ahl]).

THEOREM B2 (Beurling’s theorem). Let Q be a region in the compler plane
bounded by a finite number of analytic Jordan curves, let Ey and Ey be disjoint and
consist of finite number of closed arcs or curves in the boundary of 2. Then the
extremal distance do(Eo, E1) is the reciprocal of the Dirichlet integral

D(u) = //Q(u2 +ul) de dy,

where u satisfies:

(i) w is bounded and harmonic in
(ii) u has a continuous extension to QU ESUEY, and uw =0 on Ey and u =1
on Ei, where Ej,E} are the relative interiors of Ey, Ey1 as subsets of 012,
respectively.
(iii) the normal derivative Ou/On exists and vanishes on Cy (C denotes the
full boundary of 2, Cy = C \ (Eg U Ey)).

The proof of this theorem in [Ah1] is based on two important ingredients:
1) existence of solution of a mixed Dirichlet—-Neuman problem (we denote it by )
2) decomposition of a domain on rings and quadrilateral subdomains using, in fact,
the orthogonal and vertical trajectories of quadratic differential defined by w.

For the theory of trajectories of holomorphic quadratic differentials see [Ga]
and [S2].
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PROOF OF THEOREM B2. Let A be the set of the endpoints of F; and E5 as
subsets of C'. The reflection principle shows that v has a harmonic extension across
00N A. Let z9 € A, for example, zg € E;. We can chose a local conjugate v in (2
near zo such that, on the boundary, v = 0 on one side of zg and v = 0 on the other
side of zy. Then, by the reflection principle, there exists neighborhood V' of zg and
an analytic function ¢ in V \ {zp} such that ¢ = (u +iv)? in QN V. Hence, ¢ is
an analytic function on V' and has a simple zero at zg. Therefore, u, — iu, must
tend to oo, and the number of critical points in Q ~\ A is finite.

Locally, for every zg € 002 . A there exists a neighborhood V' of zp and an
analytic function f on V such that Re f = w on V. Hence, we can define horizontal
trajectories with respect to w = f(z). The part of noncritical horizontal trajectory
v which is in @ can be parameterized with parameter interval I = [0,1] such that:

1. v join E; and Es in © (more precisely v(0,1) C 2, v(0) € Ey and (1) € E,).

2. Re~ is strictly increasing function on I and Re(0) =0, Revy(1) = 1.

Hence, we conclude that up to a set of Lebesgue 2-dimensional measure zero
there exists finite number of disjoint quadrilateral X, &k = 1,2,...,n, such that:

1. Q=U, %

2. Each ¥ is swept out with noncritical horizontal trajectories

3. There exists rectangles Ry of width 1 and height m; and conformal (uni-
valent) mapping ® = &, of ) onto Ry, such that Re ®; = u on X;. Hence,

n
my = // |®'|°dzdy and m = ka = D(u).
Zk k=1

Together rectangles Ry, fill out a rectangle with sides 1 and D(u). After appro-
priate identification we obtain a model of Q with E; and E- as vertical sides.

From this model and Beurling theorem (Theorem B1) it is immediately clear
that the euclidean metric is extremal, and we conclude that do(FE1, E2) = 1/D(u).

Our first purpose was to give more elementary proof of this result (that is,
with no use of these two subjects), using a minimizing sequence (see, for example
Courant’s book [C]), and to derive some equalities not contained in the proof of
Beurling’s theorem. During our work on this problem we become aware of Gehring’s
works (see [Gel] and [Ge2]), which strongly influenced our research.

In [Gel] and [Ge2] Gehring proved that essentially Vaisild’s definition of ex-
tremal distance between Ey and E; in  is equivalent to the Dirichlet’s integral
definition due to Loewner (see [Lo]) if © is a ring domain in R?, and Ey and E;
are boundary components of ). Gehring used this result to study quasiconformal
mappings in space.

We generalize this result to the setting of smooth domains in R®. An appli-
cation of this result gives a short proof of Beurling’s Theorem. As we understand,
there are additional technical difficulties if we work with general domains instead
of ring domains. Before we state the result we need a few definitions.

DEFINITION B1. Let €2 be an open set in R” and " a set whose elements ~y are
rectifiable arcs in 2. Let p be a nonnegative Borel measurable function in 2 (such
p we will call metric). We can define the p-length of v by L(v,p) = fv pldz| the
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p-volume of @ as V(Q,p) = [, p"dV () where dV is the n-dimensional Lebesgue
measure in R”, and the minimum length of T by L(T, p) = inf L(vy, p). The modulus
of I' in € is defined by ver
o V(Q,p)
do(T) = inf ———=

modelD) =BT gy
where p is subject to the condition 0 < V (2, p) < oo. The extremal length of T in
Q is defined as Aq(I") = modgq(I')*/ "),

DEFINITION B2. Let Q be an open set in R, and let Ey, E; be two sets in the
closure of 2. Take I' to be the set of connected arcs in 0 which join Ey and E;,
i.e., each v € T has one endpoint in Ey and the other in E; and all other points of
v are in 2. The extremal length A(T") is called the extremal distance of Ey and E;
in Q, and we denote it by dq(Eo, E1).

Now, let  be a bounded region whose boundary consists of a finite number
of C' hypersurfaces. If Ey and E; are disjoint, and each is a finite union of closed
hypersurfaces contained in the boundary of €2, then we define the conformal n-
capacity of 2 as

C[Q, Ey, E1] :inf/ |Vu|"dV (x),
v Jo

where infimum is taken over all functions u : €2 — R which are differentiable in (2,
continuous in 2 and have boundary values 0 on Ej andvl on Ej.
The proof of the following theorem is given in [AMS].

THEOREM AMS. If Q is a bounded domain, whose boundary consists of a finite
number of C' hypersurfaces, and if Eq and E| are disjoint sets of the boundary of
Q consisting of finite number of closed hypersurfaces, then we have

V()
mod (T') = inf ————== = C[Q, Ey, E1],
where f is any metric in Q and T is the family of all Jordan arcs joining Ey and
E; inside (.

The case n = 2 of previous theorem enables us to give a short proof of Beurling
theorem (Theorem B2). In fact, the proof immediately follows from Theorem 1.3
(see [C]), which gives a solution of a mixed Dirichlet—-Neuman problem.

The proof of Theorem 1.3 in Courant’s book [C], is based on using minimizing
sequences. We believe that we can use minimizing sequences as Gehring in [Gel]
to show existence of the extremal admissible function u € E(2, Ey, E;) such that

C[Q,Eo,El] :/ |Vu|”dV
Q

After we had published [AMS] paper, we received some comments on it. Aseev (the
letter [As]) wrote: “Indeed the problem, related to Theorem AMS, was initiated by
L. Ahlfors and F. W. Gehring, but since 1970 year it has been thoroughly investi-
gated and successfully resolved in a number of papers. In the case where consender
has compact plates in a domain 2 C R" the equality was proved in 1975 by J. Hesse
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in Ark. Mat. (1975, 13, pp. 131-144) and independently by M. Ohtusuka in his man-
uscript on precise functions. In more general case where the plates of consender are
compact in Q the equality was established in 1993 by V.M. Shlyk in Siberian
Math. J. (1993, 34, pp. 216-221). Finally, the problem mentioned above has
been recently considered in metric spaces with dubbling measure by J. Heinonen —
P. Koskela (Acta Math., 1998, 181, pp. 1-61) and S. Kallunki — N. Shanmugalingam
(Ann. Acad. Sci. Fenn., 2001, 26, pp. 455-464).”

Notice here that we could prove Theorem AMS in more general settings, but
our emphasis was on the method of the proof. Recall, the case n = 2 of Theorem
AMS enables us to give a short proof of Beurling theorem (Theorem B2). In fact,
the proof immediately follows from Theorem 1.3 of [C], which gives a solution of a
mixed Dirichlet—-Neuman problem.

B4. Dirichlet’s principle for harmonic mappings. The Main Inequal-
ity and Dirichlet’s principle. Now we will state a formula for the energy density
which explains connection between Dirichlet principle for harmonic maps (in gen-
eral sense) and via the Main Inequality with Grotzsch principle (an integral version
of this formula appears in [ReS2], see also [We], [M3] and [Sh].

Suppose that p is a metric density on A, f is C' function on A and let h be
a diffeomorphism of A onto itself which is the identity on the boundary of A. If
v = Belt[h], then

1+ |v]?
= e
1—|v|?

where ¢ = ¢(f) = po fpg. Hence, e(f o h™) —e(f) = 2(l¢|T,p — |pl) + r(h),
where

e(foh™)

14
(f)—4Rem¢ ;

2lvf?
I

r(h) =r(h, f) = (e(f) = 2l¢l) > 0.

If f is a harmonic mapping (with respect to p), then ¢ = p(f) is a holomorphic
function on A. Hence, using the Main Inequality we obtain a version of Dirichlet
principle for harmonic mappings (in general sense): E(foh™!) > E(f). We expect
further applications of the Main Inequality in this direction.

In order to illustrate this we will outline a short proof of Dirichlet’s principle
(Theorem M6, below) for the harmonic mappings from the unit disk into Riemann-
ian n-dimensional manifold. Let N be complete Riemannian manifold of dimension
n and let its metric in local coordinates be given by (gix), with Christoffel symbols
Li,. For f € HY?(M, N) we define the energy density

(1)) = = S galh) (Firk + Fift).
and the energy as
1

E(f) = 3 /M e(f)o’dx dy = 3 /Mzgik(f) (fiff +f;f5) dz dy,
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where we write f = (f, f2,..., f") in local coordinates. A solution of the corre-
sponding Euler-Lagrange equation Vf* + T%, (f¥fL + fifl) =0,i=1,2,...,n,is
called harmonic map.

THEOREM M6 (Dirichlet’s principle fo_r harmonic mappings). Let N be Rie-
mannian n-dimensional manifold and f : A — N be a harmonic mapping. If ® is
diffeomorphism of A onto itself, which is identity on OA, then E(f o ®) > E(f),

C. Uniqueness of harmonic maps

Our further discussion is concerned mainly with the case when M and N are
domains in complex plane C. Recall, that the following result enables us to use
theory of trajectory of holomorphic quadratic differentials.

C1. If f is a harmonic mapping between Riemann surfaces M and N with
local conformal metrics o(z)|dz|?> and p(w)|dw|?, respectively, then ¢ = ppgdz?
is a holomorphic quadratic differential. For example if M and N are subset of
the complex plane C, this simply means that the function ppg is a holomorphic
function. This enables us to use the techniques and results from the theory of
holomorphic functions.

C2. Markovi¢ and the author, using a version of Reich—Strebel inequality,
proved the following uniqueness property.

THEOREM MM. Suppose that

(a) f and g are harmonic difeomorphisms of A onto itself

b) f and g are continuous on A

(c) f=g ondA.
If, in addition, we suppose that the energy integrals of f and g are finite, then they
are identical.

This result was communicated on our Seminar at Belgrade University in 1996
and at Nevannlina Colloquium, Switzerland 1997. The proof is based on the next
lemma if f and g are diffeomorphisms of A onto itself and on a new version of
Reich—Strebel inequality in general case.

LEMMA MM. Suppose that f and g are diffeomorphisms of A onto A and that
f is harmonic with respect to conformal metric ds = p(w)|dw| on A. If we suppose
in addition, that E(f) < 400 and that f = g on OA, then

. o L= Q)] 19101 |
/Ap(odfdn</Ap(<>1+m(o| e

wmmﬂ:B%U1LX=Bm@1)wdﬂO=P@f¥%&W

We will outline a proof of Theorem MM in the case that f =Id on A and that
f is diffeomorphism of A onto itself. For the proof it is useful to observe that if f

is harmonic, then Beltrami dilatation p of f has the form u(z) = s(2)|¢(2)|/¢(2),
where s is non-negative measurable function and ¢ = po fpg is an analytic function.
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Thus we have that expression ug/|p|, which appears in Reich—Strebel inequality

equals |u| and we get
|l
dz d dz dy.
/|¢|xy\/|¢|l+| €T ay

If ¢ is not identically zero we get u = 0 a.e. Hence we conclude that f is
conformal mapping. Since f = Id on A, we get that f = Id on A. In general,
we need a version of main inequality which holds for the mapping whose maximal
dilatation can be 1.

C3. Markovi¢ and the author have proved that f = g under weaker condition
then in Theorem MM. The following two results will appear in [MM3].

THEOREM MM1. Suppose that

(a) f is homeomorphism of A onto itself

(b) f has the first generalized derivatives on A

(c) f is identity on OA

(d) f is harmonic w. r. t. some metric density p on A
(e) Hopf differential of f is integrable on A.

Then f is the identity on A.

e

THEOREM MM2 (The uniqueness property). Suppose that

(a) f and g are homeomorphisms of A onto itself and f = g on OA
(b) f and g are loc. q.c. on A

(¢) f and g are harmonic w.r.t. some metric density p on A

(d) Hopf differentials of f and g are integrable on A.

Then f and g are identical.

Also, we might add that we have a generalization of this result if instead of
the unit disk, we consider Riemann surfaces. Recall, if the metric p = 1 on N,
which is open subset of complex plane C (euclidean case), we will say harmonic
function instead of harmonic mapping. Thus in euclidean case this result says that
the solution of classical Dirichlet problem is unique.

The proof of Theorem MM2 is based on a new version of Riech—Strebel inequal-
ity. Note that if f and g are harmonic property (A) says that function ¢ = po fpg
and 1) = pogAB are holomorphic functions on the unit disk, where we use notation
A = 0g, B = 0g. The idea of the proof is to apply a new version of Reich-Strebel
inequality to functions ¢ and .

In the next item we are going to give a short discussion of known result related
to uniqueness of harmonic maps.

C4. We refer the interested reader to [J] for the global uniqueness theorem of
Al’ber and Hartman, for the result of Jager and Kaul and for further references.

THEOREM AH (Al'ber and Hartman). Let u : M — N be a harmonic map be-
tween compact Riemannian manifolds (without boundary). Suppose N has negative



162 MATELJEVIC

sectional curvature. Then w is unique harmonic map in its homotopy class unless
u(M) is a point or a closed geodesic.

If the sectional curvature of N is non-positive, then for any two homotopic
harmonic ug,u1 : M — N, there exist a family us : M — N of harmonic maps,
with the property that the curves ui(z), for fized x € M, t € [0,1] varying, consti-
tute a family of parallel geodesics, parameterized proportionally to arc length. In
particular, all maps u; have the same energy.

TueorEM JK (Jiger and Kaul). Suppose that u; : @ — N (i = 1,2) are
harmonic maps of class C°(Q,N) N C?*(Q,N), Q is a bounded domain in some
Riemannian manifold, and u;(Q) C B(p,p), where B(p,p) is a geodesic ball in N,
disjoint to the cut locus of p and with radius p < /2K where ? is an upper bound

for the sectional curvature of B(p,p). If u1 = us on 08, then uy = us.

We refer the interested reader to the Schoen—Yau book [SY] for uniqueness
theorems concerning harmonic maps into non-positive curved metric spaces and
further references.

After writing the previous version Reich pointed out to us that Wei [We] studied
uniqueness property of harmonic mappings. Also, we became aware of the Coron—
Helein paper [CH].

Wei, using the formula for the energy of variation of a mapping (see [ReS2])
and Reich—Strebel inequality, proved a weaker version of Theorem MM2 concerning
q.c. mapping. Namely, he proved Theorem MM2 under additional hypotheses that

(c) f and g are q.c. mappings on the unit disk A onto itself
(d) the metric density p is an integrable function on A.

Note that the hypotheses (c) and (d) provide that the energy integral of f and

g are finite.

In [CH], Coron and Helein used completely different approach then Wei in [We]
to study minimizing harmonic mappings. Their approach was based on decompo-
sition of given metric g on A as the sum of two metrics ¢ and h such that c is
conformal metric of the euclidean metric e, h has non-positive Gaussian curvature
and Id is harmonic map between (A, e) and (A, h).

THEOREM CH (Coron and Helein). Let (M, h) and (N, g) be two Riemannian
compact surfaces of class C*° possibly with boundary. Then any smooth harmonic
diffeomorphism between (M,h) and (N,g) is minimizing in its homotopy class.
Moreover, if OM is nonempty or if the genus of M is strictly larger then one, then
such a diffeomorphism is the unique minimizing map in its homotopy class.

D. Related results

First, we will give an application of Theorem MM2 in the case when the energy
integral is infinite.

D1. Suppose that
(a) f and g are harmonic diffeomorphisms from the A onto itself w.r.t. Poincaré
metric.
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(b) Hopf differentials p=Hopf (f) and ¢» = Hopf(g) are integrable on A.

Since ¢ and 1 belong to Bers space (see, for example, [Ah2], [W] and [AMM]
for definition and properties of Bers space) a result of Wau [W] shows that f and
g are g.c. mappings of A onto itself. If, in addition, we suppose that f = g on the
boundary of the unit disk, an application of Theorem MM2 shows that f and g are
identical.

Note that every harmonic diffeomorphism of A onto itself w.r.t. Poincaré metric
has infinite energy integral.

The following example shows that without assumption that Hopf differentials
are integrable Theorem MM1 is not valid.

D2. Let ¢ be the conformal mapping of the unit disk A onto upper half-plane
H and let p(w) = |¢'(w)|. Next, let g = 1) o h o ¢, where 9 is the inverse function
of ¢ and h is given by h(z) = = + iky, k > 0. We leave to the reader to verify that
g is g.c. harmonic mapping (w.r.t. p) of the unit disk A onto itself and that g =Id
on the boundary of A.

Although, the metric defined by the density p is flat on the complex plane C'
except at one point, Theorem MMI1 is not valid.

D3. In connection with the parts (D1) and (D2) of this section, we will give a
short discussion (we follow Schoen [Sc]). There is an interesting conjecture which
is due to Schoen (see also [Sc]).

CONJECTURE. The q.c. harmonic homeomorphisms from the unit disk A onto
itself, w.r.t. Poincaré metric, are parameterized by the boundary values of q.c. maps
of the disk.

This is a question which involves proving both an existence and a uniqueness
theorem. The existence result for this ideal boundary value problem has been
shown by Li and Tam [LT1] under the additional hypothesis that boundary map be
sufficiently differentiable. They have also obtained counterexamples to uniqueness
without the quasi-conformal hypothesis (but with continuity) and then proved the
uniqueness part of Schoen’s conjecture (see [LT2]).

A result of Wan [W] gives a parametrization of the q.c. harmonic homeomor-
phisms of A in terms of bounded holomorphic quadratic differentials on A. Wan
has shown that if f is q.c. mapping then Hopf differential of f is bounded w.r.t. the
Poincaré metric on A. Conversely, he has shown that for any bounded holomor-
phic quadratic differential ® on A there is a unique g.c. harmonic homeomorphism
f: A = A such that Hopf(f) = ®.

D4. Theorem MM2 remains valid if the condition (b) (in the hypotheses of
Theorem MM2 is replaced by the following.
(e) f, g and their inverse mapping have L2-derivatives.

The idea of the proof is as follows. If the condition (e) holds, then one can get
that fog~! and go f~! have L'-derivatives and its partial derivatives satisfy the
chain rule (for a details see [LV, Lemma 6.4, p. 151]).
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It is well known that the condition (b) implies the condition (e) (see, for ex-
ample, [LV]).

For a development of theory of harmonic mappings by means of Sobolev spaces,
we refer to Schoen—Yau book [SY].

D5. Harmonic maps and extremal QC mapping

Before we state the results, we need some notations. Suppose that f is quasi-
conformal mapping of the unit disk A onto itself. Let k[f] = esssup{|us(2)] :
z € A} and let Q(f) denote the collection of all q.c. mappings of A whose pointwise
boundary values on A agree with those of f. We call f extremal (in its Teichmiiller
class) if k[f] < k[g] for every g € Q(f). An extremal q.c. mapping f is uniquely
extremal (in its Teichmiiller class) if k[f] < k[g] for every other g in Q(f).

THEOREM M7 (The first removable singularity theorem). Suppose that

(a) f is q.c. mapping from A onto A

(b) f is a harmonic function with respect to the metric density p on A\ K,
where K is compact subset of A

(c) f is extremal in its Teichmiiller class

(d) there are two positive constant m and M such that m < |o(2)
each z € A\ K, where ¢ is Hopf differential of f.

Then ¢ has an analytic extension ¢ from A N K to A and p(z) = k|p(2)|/¢(z)
a.e. in A, where k is a constant.

<M for

THEOREM M8 (The second removable singularity theorem). Suppose that

(a) f is uniquely extremal q.c. mapping, in its class, from A onto A
(b) f is a harmonic function with respect to the metric density p on A\ K,
where K is compact subset of A.

Then we have the same conclusion as in the previous theorem.

During my work with Bozin and Markov¢ on the problems related to uniquely
extremal q.c. mapping (see [BMM]), we also obtained some results of this type.

2. Estimates for the modulus of the derivatives
of harmonic univalent mappings

In this section we follow closely author paper [M6]. Let U denote the unit disc
and T' = 0U denote the unit circle.

THEOREM 2A. Suppose that:

(a) h is an euclidean harmonic mapping from an open set D which contains
U into C

(b) h(U) is a conver set in C

(¢) h(U) contains a disc B(a; R), h(0) = a and h(T) belongs to the boundary
of h(U).
Then

(@) |he(e)] > R/2, 0 < < 2.
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Also, we can generalize this result to several variables.

PROPOSITION 1. Suppose that:

(a') h is an euclidean harmonic orientation preserving univalent mapping from
an open set D which contains U into C

(b") WU) is a convex set in C

(c") h(U) contains a disc B(a; R) and h(0) = a.
Then

(d') [0n(z)] > R/4, 2 € U.

PrRoOOF OF THEOREM 2A. Without loss of generality we can suppose that
h(0) = 0. Let 0 < ¢ < 27 be arbitrary. Since h(U) is a bounded convex set in
C, there exists 7 € [0,27] such that harmonic function u, defined by u = ReH,
where H(z) = e!"h(z), has a maximum on U at €*. Since Poisson kernel for U
satisfies P,.(0) > (1—r)/(14r), using Poisson integral representation of the function
u(e?) —u(z), z € U, we obtain

1—r

ip\ _ ip >
u(e'¥) —u(re )/l—l-r

(u(e’) — u(0)),

and hence (d).

Applying Maximum Principle to the analytic function Oh, we obtain Proposi-
tion 1. As a corollary of it we obtain

THEOREM 2B. Let h be an euclidean harmonic orientation preserving univalent
mapping of the unit disc onto conver domain Q. If Q contains a disc B(a; R) and
h(0) = a, then |0Oh(z)| > R/4, z € U.

As a corollary of Theorem 2B we obtain

PROPOSITION 2. Let h be an euclidean harmonic orientation preserving univa-
lent mapping of the unit disc into C such that f(U) contains a disc Bg = B(a; R)
and h(0) = a. Then

(2.1) |OR(0)| > R/4.

PrOOF. Let V = Vg = h™'(Bg) and ¢ be a conformal mapping of the unit
disc U onto V such that ¢(0) = 0 and let hg = h o . By Schwarz lemma

(2.2) ' (0)] < 1.
Since 0hgr(0) = 0h(0)¢’(0), by Proposition 2 we get |0hgr(0)| = |0h(0)||¢'(0)] >
R/4. Hence, using (2.2) we get (2.1). O

Also as a corollary of Theorem 2B we obtain

THEOREM 2C. (see [Kal] and [Ka2]) Let h be an euclidean harmonic diffeo-
morphism of the unit disc onto convexr domain Q. If Q contains a disc _B(a;R)
and h(0) = a then D(h)(z) > R?/16, z € U, where D(h)(z) = |0h(2)|* + |0h(2)|*.
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The following example shows that Theorem 2A, Proposition 1, Theorem 2B,
Proposition 2 and Theorem 2C are not true if we omit the condition h(0) = a.

ExaMPLE. The mapping ¢, (z) = Z—_}), |b] < 1, is a conformal automorphism
of the unit disc onto itself and 1-bz
/ 1- |b|2
oy (2)] = 1= b2’ zeU.

In particular ¢} (0) =1 — |b|*.

Heinz proved (see [H]) that if & is a harmonic diffeomorphism of the unit disc
onto itself such that h(0) = 0, then D(h)(z) > 1/7% z € U.
Using Proposition 2 we can prove Heinz theorem:

THEOREM 2D (Heinz). There exists no euclidean harmonic diffeomorphism
from the unit disc U onto C.

Note that this result was a key step in his proof of the Bernstein theorem for
minimal surfaces in R? .

Schoen obtained a nonlinear generalization of Proposition 2 by replacing the
target by complete surface of nonnegative curvature (see Proposition 2.4 of [Sc])
and using this result he proved

THEOREM 2E (Schoen). There exists no harmonic diffeomorphism from the
unit disc onto a complete surface (S, p) of nonnegative curvature K, > 0.

Let f be a harmonic diffeomorphism from B, to (S, p) and dist(f(0),0(f(Br))
> R. Then it suffices to show that |df|>(0) > CR?/r?, where C is a universal
constant. By hypothesis, we have |0 f| > |0f] > 0 and

Aln|df] = —K,J; <0,
A = |0f]?|dz|*. Therefore dist(0,0(B,) > £ dist(f(0),0(f(By)) > LR.

LEMMA 1. If o is a metric density of nonnegative curvature K, > 0 on B, and
d = dist, (0,T,), then o(0) > Cd*/r?, where C is a universal constant.

A proof can be given by means the estimate of harmonic function in terms
of curvature (Cheng—Yau, CPAM 28 (1975), 333-354). We apply this lemma to
metric density A = |0f]?. By the above estimate we have |0f]?(0) > CR?/r?. This
proves the theorem.

QUESTION. Can one prove Lemma 1 elementarily? Note that In o is superhar-
monic function. Therefore ln% and % are subharmonic functions.

3. A version of Bloch theorem

Besides above mentioned, for further results related to the subject of this paper
and in particular to this section we refer the interested reader to author’s papers
[M5], [M7] and [M6] (see also author’s review papers [M9] and [MS8]). For ex-
ample, in [M5], using a version of Bloch theorem (see Lemma 3.1 below) we give a
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short proof of a Dyakonov’s theorem [Dyk]. Also we show that Lemma 3.1 holds
for quasiregular harmonic functions (see Theorem 3.1 below).

Let U denote the unit disc in the complex plane. If z and w are complex
numbers by A(z,w) we denote the half-line A(z,w) = {z + p(w — 2) : p > 0} and
A(w) = A0, w).

LEMMA 3.1. Suppose that [ is an analytic function on the unit disc U, f(0) =0
and |f'(0)] > 1. Then there is an absolute constant s such that for every § € R
there exists a point w on the half-line Ag = A(0,e") = {pe?® : p > 0}, which belongs
to f(U), such that |w| > 2s.

Since an analytic function is a quasiregular harmonic mapping, Lemma 3.1 is
a special case of Theorem 3.1 (the main result).

The example f,(z) = €™*/n shows that under condition of Lemma 1 there is
no absolute constant s such that the disc B(0, s) belongs to f(U).

If 0 < @ <1 and f is a complex function defined on a domain 2 we say that f
belongs Lip a if |f(z) — f(w)| < ¢|z —w|® for some ¢ = ¢; < 0o and for all z,w € Q.

LEMMA 3.2. Let f be an analytic function on U. Then
(3.1) (L= [zDIf ()] < Kwyp(1 = |2]), z €U,
where K = 1/s is the absolute constant and w)y| is the modulus of continuity of |f|.

Proor. Let z € U, r = (1 —|2])/2, w = f(z) and B = f(B). By Lemma 3.1
there is a point wq, belonging to B N A(w), such that

(3.2) lwi —w| > 2s|f'(z)]r.
Let z; be preimage of w;. Since |wy — w| = |Jwi| — |w|| = |f(z1) — f(2)] and
|21 — 2| < r, then (3.1) follows from (3.2). O

Using Lemma 3.2 and known result (see for example [Rud], Lemma 6.4.8) we
get Dyakonov’s theorem: If f is an analytic function on U then f belongs Lip « if
and only if |f| belongs Lipa. Using Schwarz lemma, Pavlovi¢ [Pa] found simple
proof of Dyakonov’s theorem. In addition, a very elementary proof of Dyakonov’s
theorem in some special cases has been given by Kaljaj [Ka]. We can show that
Lemma 3.1 (and therefore Dyakonov’s theorem) is true for classes of functions which
include pseudo-holomorphic functions, real harmonic functions of several variables,
holomorphic functions of several variables, quasiregular harmonic mappings, etc.

Now we will show that Lemma 3.1 holds for quasiregular harmonic functions.
For basic definitions and results we refer to [LV] book. First, we need to prove
Lemma 3.3. For definition of ¢k see [LV] and for definition of quasiregular function
see [AMM].

LEMMA 3.3. Let f be a K-quasiregular mapping from the unit disc U into
hyperbolic domain G. Then

(3.3) tanhpg (f(21), f(22)) < ¢k (tanhpy (21, 22)), 21,22 € U.
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PROOF. Since f = F og, where F is an analytic function from U into G and g
is K-quasiconformal mapping from U onto itself, (3.3) follows from inequality 3.13
of [LV]. O

THEOREM 3.1. Suppose that f is a K-quasireqular harmonic mapping on the
unit disc U, f(0) =0 and |grad f(0)| > 1. Then, there exists an absolute constant
« such that for every 6 € R there exists a point w on the half-line Ag = A(0,e?) =
{pei? : p > 0}, which belongs to f(U), such that |w| > 2a.

PROOF. If we suppose that this result is not true, then there is a sequence of
positive numbers a,,, converging to zero, and a sequence of K-quasiregular functions
fn, such that f,(U) does not intersect [a,,+00), n > 1. Next, the functions
gn = fun/an, map U into G = C \ [1,400) and hence, by inequality (3.3), the
sequence g, is equicontinuous and therefore forms normal family. Thus, there is a
subsequence, which we denote again by g,,, which converges uniformly on compact
subset of U to quasiregular harmonic function g, together with partial derivatives.
Since grad g, (0) converges to grad g(0) and |grad g,,(0)| = |grad f,,(0)|/a, converges
to infinity, we have a contradiction. O

After writing this paper we have found very simple proof of the following result
which seems as an appropriate generalization of Koebe one-quarter theorem (with
the best constant 1/4) .

THEOREM 3.2. Suppose that f is an analytic function on the unit disc U,
f(0) =0 and |f'(0)] > 1. Then for every 6 € R there exists a point w on the half-
line Ag = A(0,e) = {pe?? : p > 0}, which belongs to f(U), such that |w| > 1/4.

I wish to thank to Professor Cabiria Andreian Cazacu for useful conversations
and her interest in author’s papers [M5], [M6].
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