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THE HOLOMORPHIC CONTRACTIBILITY OF
TWO GENERALIZED TEICHMULLER SPACES

Clifford J. Earle

ABSTRACT. We show by simple explicit constructions that the Teichmiiller
spaces Tp(A) and To(A \ {0}) are holomorphically contractible. We also call
attention to a useful criterion for a map between domains in complex Banach
spaces to be holomorphic.

Introduction

We call a Riemann surface hyperbolic if its universal covering surface is confor-
mally equivalent to the open unit disk A in the complex plane C. We denote the
Teichmiiller space of the hyperbolic Riemann surface R by T'(R), and we denote by
To(R) the closed complex submanifold of T'(R) consisting of the Teichmiiller equiv-
alence classes of asymptotically conformal quasiconformal mappings with domain
R. (A fuller description of Ty(R) will be given in §1.2.)

A complex manifold X is said to be holomorphically contractible to the point
xo in X if there is a continuous map F': [0,1] x X — X such that for all z in X
we have F(0,2) = z and F(1,z) = zo, and for all ¢ in [0,1] the map = — F(t,z)
from X to itself is holomorphic and fixes the point xzg. Such a map F is said to
contract X holomorphically to 2. For example, the map (¢, ) — (1 —¢)x contracts
a complex Banach space X or its open unit ball holomorphically to 0. On the other
hand, there are contractible bounded domains of holomorphy in C? that are not
holomorphically contractible (see Zaidenberg and Lin [13]).

Since the Teichmiiller spaces T'(R) and Tp(R) are contractible bounded do-
mains, it is natural to ask whether they are holomorphically contractible. In fact,
this question for the Teichmiiller space T'(0,n) of the sphere with n > 5 punctures
was one motivation for the examples in [13]. The question for arbitrary T'(R) was
brought to our attention by Samuel Krushkal some time ago.

We have made no progress on that question, but we shall prove the following
rather simple theorem. Although our methods shed no light on the general problem,
the theorem has some interest, since both To(A) and To(A') can be interpreted as
groups of symmetric homeomorphisms of the unit circle (see [10]).
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THEOREM. Let A be the open unit disk, and let A" = A~{0}. The Teichmiiller
spaces To(A) and To(A') are holomorphically contractible to their basepoints.

We shall describe the Teichmiiller spaces T'(R) and Tp(R) in §1. Since they are
domains in complex Banach spaces, we discuss holomorphic mappings between such
domains in §2. Our discussion includes a somewhat unfamiliar characterization of
holomorphic mappings, due to Dunford, which we state in §2 and prove in §4. Our
theorem will be proved in §3.

1. T(R) and Ty(R) as domains in complex Banach spaces

1.1. The spaces T(R). Let R be a hyperbolic Riemann surface. Choose a
holomorphic universal covering @ : H* — R of R by the upper half plane H™T,
and let I be the Fuchsian group of covering transformations for @w. By definition,
the set of Beltrami differentials for I is the closed subspace L (H*,T) of L®(HT)
consisting of the p in L (H*) such that (uo7)y'/y' = p for all y in T.

The functions in the open unit ball M (T") of L (H*,T) are called the Beltrami
coefficients for I'. We extend any such Beltrami coefficient p to an L* function
on C by setting it equal to zero in the complement of H*. Let f, be the unique
quasiconformal map of C onto itself that fixes the points 0, and 1 and has the
complex dilatation . As f, is holomorphic and injective in the lower half plane
H~, we can form its Schwarzian derivative

_ e 3 (H@Y
) =S = 20 -3 (F5) - s

It is well known (see for example [9]) that ¢, belongs to the Banach space B(T") of
holomorphic functions ¢ on A~ that have finite norm

lellsr) = sup{lz — 2" (2)] : 2 € 1™}

and satisfy the I-invariance condition

(1.1) (o)) = for all v in T.
We define the Teichmiiller space T(R) to be the image of M (T") under the Bers
map p — ¢, from M(T) to B(T'). It is well known (see for example [9] or [12])
that T'(R) is a bounded domain (connected open set) in B(T"). Since f,(z) = z for
all z in C when g =0, T'(R) contains the point 0 in B(T").

REMARK. The space T'(R) can be defined intrinsically as a quotient space of
the set of all quasiconformal maps whose domain is R. Its concrete realization as a
domain in B(T") was discovered by Bers (see [1] for the finite dimensional case and
[2] for the general case).

1.2. The spaces Tp(R). We continue to use the notation of §1.1. We say
that u in L(HT,T) vanishes at infinity on R if for every e > 0 there is a compact
set E in R such that |u| < € almost everywhere in @™ (R \ E). We denote by
My (T') the set of p in M(T') that vanish at infinity on R. We also define By(T") to
be the closed subspace of B(T") consisting of the ¢ in B(T') such that the Beltrami
differential p,(2) = ¢(2)|z — z|*, z € HT, vanishes at infinity on R.
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By definition, To(R) is the image of My(I') under the Bers map p — ¢,. By
Theorems 2 and 4 in [8], Tp(R) is contractible and equals the intersection of T'(R)
and By(T). (In particular, To(R) is a bounded domain in By(T").)

REMARK. Let f be a quasiconformal map whose domain is R. We say f is
asymptotically conformal if for every € > 0 there is a compact set E in R such
that the restriction of f to R~ E is (1 4+ ¢)—quasiconformal. It is clear that f is
asymptotically conformal if and only if the lift of its Beltrami coefficient to H*
belongs to My(I"). That fact makes possible an intrinsic definition of Tp(R) as a
quotient space of the set of asymptotically conformal quasiconformal maps whose
domain is R. See [7], [8], or [9] for more details.

2. Holomorphic mappings in complex Banach spaces

Let X be a domain in the complex Banach space V', and let f be a map of X
into the complex Banach space W. As usual, we say that f is holomorphic if it is
Fréchet differentiable and its Fréchet derivative f'(z) is a C-linear map for each z
in X. These conditions are implied by the apparently weaker conditions that f is
locally bounded and its directional derivative

[z +tv) — f(x)
t

exists for every z in X and v in V. They imply the apparently stronger condi-

tion that f has a Taylor series expansion at each point of X. (See for example

Proposition 2 in §1 of Douady [5].)

In practice, the criterion above need be applied only to maps from X to C,
since f: X — W is holomorphic if £ o f is holomorphic for sufficiently many linear
functionals £ on W. A very convenient statement along these lines is given in
Dunford [6]. We need a definition from [6].

df (z,v) = 251(1) (t e C)

DEFINITION. Let W* be the (complex) dual space of the complex Banach space
W. The subset A of W* is determining if there is a positive number C such that
l
(2.1) [lw|| < C sup {% :L € Aand ||l > 0} for all w in W.
PRroPOSITION 1 (Dunford). Let V and W be complex Banach spaces, let X be
a domain in V, and let f be a map of X into W. Let Ay be the set of £ in W*
such that £ o f is holomorphic in X. Then,

(a) if Ay contains a closed determining subspace of W*, then f is holomor-
phic,
(b) if f is locally bounded in X, then Ay is a closed subspace of W*.

COROLLARY 1. If Lo f is holomorphic for all £ in W*, then f is holomorphic.
If f is locally bounded and o f is holomorphic for all ¢ in a determining subset of
W*, then f is holomorphic.

Corollary 1 is an obvious consequence of Proposition 1. Part (a) of the propo-
sition is Theorem 76 in [6]. One of its striking features is that its hypothesis does
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not mention local boundedness. Dunford’s statement of Theorem 76 in [6] requires
X to be a domain in C, but his proof works equally well for domains in complex
Banach spaces. We paraphrase that proof in §4.

REMARK. More general and even less stringent sufficient conditions for a map
f to be holomorphic can be found in Chapter 3 of Dineen [4].

In addition, Exercise 3.60 in that chapter implies that if f maps the domain X
into the dual space Y* of a complex Banach space Y, and if  — f(x)y is holomor-
phic for all y in Y, then f is holomorphic. Part (a) of Proposition 1 follows from
that special case, for if A is a closed determining subspace of W*, then Lemma 3
in §4 allows us to interpret f: X — W as a map from X to A*.

3. Proof of the theorem

3.1. A lemma. Our holomorphic contractions of Tp(A) and To(A') rely on
the following observation. We use the notation of §1.

LEMMA 1. Let g be a Mdobius transformation that maps H™ into itself, and let
g (p) = (pog)(g")? for all holomorphic functions ¢ on H~. If goyog~! belongs
to L' for all v in T, then g* is a bounded C—linear map of B(T') into itself, and it
maps T'(R) into itself.

ProOF. Thisis a standard fact when g(H~) = H~, and the usual proof applies
almost verbatim when g(7{ ™) is a proper subset of 74~. We sketch it for the reader’s
convenience.

Let ¢ in B(T') and 7 in T’ be given. By hypothesis, there is 4 in I" such that
goy =Fog. Set @ = (poF)(F)® Then (g°(¢) 0 1)(¥) = g*(§) by direct
calculation, so g*(ip) satisfies the invariance condition (1.1) whenever ¢ does. If in
addition ¢ belongs to B(T'), then

19" (@) ()12 = 217 = le(g (DIl ()12 = 21)* < le(g())l9(2) = 9()I* < Il pery

for all z in H~, so ¢g* is a C-linear map of B(T") into itself, and its operator norm is
at most one. (Observe that we have applied the infinitesimal Schwarz—Pick lemma
to the map g: H™ — H™.)

Now suppose ¢ € T(R). That means ¢ = S(f,) for some p in M(T"). Since
g(H~) C "™, fu o g is holomorphic and injective in H~. Let v be the Beltrami
coefficient of f, o g. The chain rule gives the formula v = (0 g)g’/g’, from which
it follows readily that v belongs to M (T"). (Recall that we are identifying L>°(HT)
with the space of functions in L*(C) that vanish identically on the complement of
Ht.) Using standard properties of the Schwarzian derivative, we obtain

9°(p) = 9"(S(fu)) = S(fuog) = 5(f,) € T(R). 0

REMARK. If T contains a hyperbolic transformation v and g is a Mobius trans-
formation such that goyog™! € T'and g(H~) C H, then g(H~) = H~. When
we apply Lemma 1, T’ will contain no hyperbolic transformations, and g(H ™) will
generally be a proper subset of H ™.
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3.2. The space Tp(A). When R = A, the covering map @w: HT — R is a
Mobius transformation, and the group T is trivial. In particular, B(T) is simply
the Banach space B(H ™) of holomorphic functions ¢ on H~ with finite norm

lellpa-y = sup{lz — 21%le(2)] : 2 € HT},
Bo(T) is the set Bo(H ™) of ¢ in B(H™) such that the function |z — z|?|¢(2)]
vanishes at infinity on H~, T'(A) is a bounded domain in B(#H ™), and Tp(A) is the
intersection of T'(A) and By(H ™).

Our contraction of Tp(A) is easier to describe if we replace the spaces B(H ™)
and Bo(H ™) by their counterparts on A, so we map A onto 1~ by the Mobius
transformation A(z) = i(2—1)(2+1)7%, z in A. The formula A*(¢) = (9o A)(4")?,
@ in B(H ™), defines an isometric isomorphism A* of B(H ™) onto the space B(A)
of holomorphic functions 1 on A with finite norm

16llsay = supf(1 = [sP)[(2)] : = € A},
Let Bo(A) be the set of ¢ in B(A) such that lim|,_, (1 — |z[*)?[¢)(2)| = 0. Then

A*(Bo(H ™)) = Bo(A). We shall identify T'(A) and Tp(A) with their images under
A*, so T(A) becomes a bounded domain in B(A), and To(A) = T(A) N By(A).

LEMMA 2. Given 7 in the closed unit disk A and 1 in Bo(A), let g, be the map
2+ 7z of A into itself, and let g%(v) be the holomorphic function (¢ o g.)(g-)? on
A. The formula G(7,v) = g () defines a continuous map G from A x By(A) to
Bo(A), and G maps A x To(A) into To(A). The restriction of G to A x By(A) is
holomorphic.

PRrOOF. For any given (7,%) in A x By(A) and z in A, the explicit formula,

(3.1) G(r,9)(2) = g7 (¥)(2) = *%(72)
implies that

(1= 122G (1, ) (2)] = (1 = [2*)? [ (r2)7*] < (1= |72 (r2)7*| < [Pl
Therefore (1 —[2]*)?[|G(7,9)(2)] = 0 as [2| = 1, [|G(r,9)llB@a) < [TPI¥llBA),
and G is a locally bounded map of A x By(A) into By(A).

Clearly, G(0,9) = 0 € T(A) for all ¢ in Bg(A). If 0 < |7| < 1, we apply
Lemma 1 with g = Aog, o A™': H™ — H~ to conclude that G(r,v) € T(A) for
all 1 in T'(A). Therefore, G maps A x B(A) into T'(A) N By(A) = To(A).

Now we examine the continuity of G in A x By(A). Since

IG(7,91) — G(1,¢2)||lB(a) = [|G(T, 91 — ¥2)lIB(A)
<Pl = dallpay < 1t — ¥allpay

for all 7in A and ¢ and 15 in By(A), it suffices to show that G(7, 1) is a continuous
function of 7 for every fixed ¢ in By(A). Let ¢ be given, and let the sequence (7;,)
in A converge to 7. We must show that the functions f,,(z) = (1—12|?)2G(1n,%)(2)
converge to f(z) = (1 —|2|*)?G(r, ) uniformly in A. For that purpose, we extend
the functions f, and f to continuous functions on A by setting them equal to



114 EARLE

zero when |z| = 1. As is well known (see Theorem 5 in Chapter 7 of [11] or the
discussion of continuous convergence in §§174-180 of [3]), it suffices to show that
(3.2) lim fn(zn) = f( lim zn)

n—o0 n—o0

for every convergent sequence (z,) in A. Since 1) € By(A), (3.2) follows readily
from (3.1), so G is continuous in A x By(A).

It remains to show that G is holomorphic in A x Bg(A). Since G is locally
bounded and the linear functionals 1 — (1 —|2|?)?4(2), z in A, are a determining
subset of By(A)*, Corollary 1 says that we need only consider the functions

h(r, ) = (1= 121*)?g:(¥)(2)
for arbitrary fixed z in A. Each of these functions h is locally bounded in A x By(A),
so we need only show that the directional derivative
. h(r+to,y+tp) — h(T,
an((7,). (0,0)) = lim "THITYH10) Z WY

exists for arbitrary (7,¢) in A X Bo(A), (0,¢) in Cx By(A), and z in A. A routine
calculation using (3.1) shows that the required limit exists. O

COROLLARY 2. The map F(t,¢) = G((1 —t),%) from [0,1] x To(A) to To(A)
contracts To(A) holomorphically to 0.

REMARK. We thank Fred Gardiner for pointing out to us that G is holomor-
phic in A x Tp(A). Although this fact plays no essential role in showing that Tp(A)
is holomorphically contractible, we could not resist including its proof. The same
argument shows that (3.1) defines a holomorphic map of A x T'(A) into Tp(A),
but that observation does not imply that T'(A) is holomorphically contractible.
Arbitrary points of T'(A) cannot be approximated by points in the proper closed
subspace Tp(A).

3.3. The space Tp(A'). When R = A’, we choose w(z) = exp(2miz) for the
covering map w: HT — R. In this case, ' is generated by the map z — z + 1, and
B(T) is the set of functions ¢ in B(H ™) such that p(z +1) = p(z) for all z in H~.

Let f: H~ — A’ be the map f(z) = w(—2) (= exp(—27iz)), z in H~. Let
B(A') be the Banach space of holomorphic functions ¢ on A’ with finite norm

lellB(an = sup{(2w|log [w|)?|p(w)] : w € A'}.
Every function in B(A') is meromorphic in A with at worst a simple pole at 0, so
limy, 0 (2|w|log |w|)?|e(w)| = 0 for all ¢ in B(A').

The map f*(¢) = (¢ o £)(f")?, ¢ in B(A'), is an isometric isomorphism of
B(A'") onto B(T), and (f*)1(By(T)) is the space Bo(A’) of ¢ in B(A’) such that
lim| |1 (2|w] log |w])?|@(w)| = 0. We shall identify T'(A’) and To(A') with their
images in B(A') under (f*)~!, so that T(A’) becomes a bounded domain in B(A’),
and To(A") = T(A) N By(A').

The Mobius transformations A¢(z) = 2z + ¢, ( in H~ UR, map H~ into itself
and commute with I'. By Lemma 1, the maps (f*)! o Af o f* carry B(A'") and
T(A') into themselves. By direct calculation, these maps are precisely the maps
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o gi(p) = (pogr)(gh)?, where 7 = exp(—2mi¢) and g, (w) = Tw, as in Lemma 2.
We can therefore proceed much as we did in §3.2.

Set G(0,)(w) = 0 and G(1,9)(w) = g7 (p)(w) = T°p(Tw) for ¢ in By(A'),
win A, and 0 < |7] < 1. Tt is easy to verify that G maps A x By(A') into By(A')
and A x Ty (A') into Tp(A'). In addition, if w € A" and 0 < 7 < 1, we can apply the
maximum principle to wp(w) (which has a removable singularity at 0) and obtain
the inequality

||<P||B(A')

[rusp(ru)] < max{C(Q)] £ 1€ = wl} < o, o0

It follows readily that ||G(T,¢)|lpa < |7lll¢llan for all 7in A.

To see that G is continuous, interpret the functions (2|w|log |w|)*p(w), ¢ in
By(A'), as continuous functions on A, and argue as in §3.2.

The map ¢ — G(1,p) of Bo(A') into itself is a bounded C-linear transforma-
tion, hence holomorphic, for each 7 in A. Therefore the map F(t,p) = G(1 —t, )
from [0,1] x To(A") to To(A") contracts To(A') holomorphically to 0.

4. Proof of Proposition 1

Let W be a complex Banach space, and let A be a closed determining subspace
of W*. We start by reformulating the inequality (2.1).

LEMMA 3. For each w in W, define Ay in A* by setting Ay, (£) = £(w) for all
Cin A. If C is any positive number that satisfies condition (2.1), then

(4.1) Doll < Il < ClXGll— for allw in W,

PROOF OF THE LEMMA. The inequality |[|Ay|| < ||w]| is obvious from the def-
inition of Ay. The inequality ||w|| < C||Aw|| simply restates condition (2.1), since
the right hand side of (2.1) is C' times the norm of A, on A. O

PROOF OF THE PROPOSITION. Let f: X — W be given, and let £ o f be hol-
omorphic in X for all £ in the closed determining subspace A of W*. To prove
assertion (a) of the proposition, we must show that f is holomorphic in X. We
follow Dunford’s proof of Theorem 76 in [6].

First we shall prove that f is locally bounded in X. Let the sequence (z,)
in X converge to some zp in X. We must show that the sequence of numbers
|| f(z,)|| is bounded. Since (f(zy)) — £(f(z0)) as n — oo for each £ in A, the
sequence of numbers Af(,.)(¢) = ¢(f(z,)) is bounded for each £ in A. By the
uniform boundedness principle, there is a number M such that [[Az(,,)|| < M for
all n. Since A is a determining set, there is a number C that satisfies (2.1). By
Lemma 3,

1 (n)ll < CliApe) |l < OM

for every n, so f is locally bounded.
Now we shall prove that the directional derivative df (z,v) exists for all z in X
and v in V. Given z and v, we choose positive numbers r and K so that z +tv is in
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X and ||f(z + tv)|| < K for all ¢ in C with |¢| < 2r. By Cauchy’s integral formula,

o oo e~ e conac

U@+ t0) = o+ sv)] = |5 S

(4.2)
2K
< THK” |t — s|

for all s and ¢ in the closed disk D = {z € C: |z| < r} and £in A. Since A is a
determining set, (4.2) implies that the map ¢ — f(z + tv) is Lipschitz continuous
in D. We can therefore define a holomorphic map g from the interior of D to W

by the formula
1 f(z + Cv)
o(0) = 5 /|<|r TEa <
Since £(g(t)) = £(f(z+1tv)) for all £ in the determining set A when || < r, we must
have ¢(t) = f(z + tv) for such t. Therefore df (z,v) exists and equals ¢'(0), and f
(being locally bounded) is holomorphic in X. That proves (a).

Since Ay is always a (not necessarily closed) subspace of W*, the point of
assertion (b) is that Ay is a closed set if f is locally bounded. For the proof, let ¢
belong to W*, let (£,,) be a sequence in W* that converges to £, and let f: X — W
be a locally bounded function such that g, = £, o f is holomorphic in X for all n.
We must show that ¢ = £ o f is holomorphic.

That is easy. Since f is locally bounded, so is g. Since in addition ||¢,, —£|| — 0
as n — 00, g, — ¢ locally uniformly in X. It follows readily that dg(x,v) exists
for any given x in X and v in V. In fact, dg(z,v) is the derivative at ¢ = 0 of
the function ¢ — g(x + tv), which is holomorphic in a neighborhood of zero since
it is the uniform limit of the holomorphic functions ¢t — g,(x + tv) in the disk
{t € C: |t| < €} if € > 0 is sufficiently small. O
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