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VARIOUS CONSTANTS ASSOCIATED
WITH QUASIDISKS AND
QUASISYMMETRIC HOMEOMORPHISMS

Shen Yu-Liang

ABSTRACT. In this expository paper, we will discuss some constants asso-
ciated with quasidisks and quasisymmetric homeomorphisms.

1. Quasidisks and quasisymmetric homeomorphisms

This is a survey article on various constants associated with quasidisks and qua-
sisymmetric homeomorphisms. Before discussing these constants, we recall some
basic definitions and notations.

Let D = {|2| < 1} denote the unit disk in the extended complex plane C,
and D* = C — D. Let Q be a Jordan domain in the extended complex plane
C,and Q* = C — Q. Let f; and fo map Q and Q* conformally onto D and
D*, respectively. Extend f; and fo to the boundary 90 = 00Q* and define the
homeomorphism hq : D — 0D by hqg = fz 0 ff1|8D. Then hgq is called the
sewing (welding) mapping of the domains € and Q*.

A Jordan domain € is called a quasidisk if it is the image of the unit disk D
under a quasiconformal self-mapping of the extended complex plane C. On the
other hand, a homeomorphism h : 8D — 9D is called a quasisymmetric home-
omorphism if h has a quasiconformal extension into the unit disk D (see [BA]).
Then € is a quasidisk if and only if hq is a quasisymmetric homeomorphism (see
[Le]). Conversely, a quasisymmetric homeomorphism h also determines a pair of
complementary quasidisks, which we denote by €, and €2}, respectively.
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We say a Jordan domain (2 is an asymptotically conformal extension domain
if the Riemann mapping from D to (2 has a quasiconformal extension to the whole
plane whose complex dilatation p satisfies |u(z)| — 0 as |z| = 1+. Q is a disk if it
is the image of D under a Mobius transformation. As usual, we say ) is smooth
if its boundary curve 99 has a continuously varying tangent. Clearly, a smooth
domain is always an asymptotically conformal extension domain, but the converse
is not true. A quasisymmetric homeomorphism / is said to be symmetric if it has a
quasiconformal extension into the unit disk D whose complex dilatation u satisfies
|(2)] = 0 as |z] = 1—. Then it is easy to see that 2 is an asymptotically conformal
extension domain iff hq is a symmetric homeomorphism (see [GS]).

2. Constants attached to quasidisks

2.1. Fredholm eigenvalue and Schober functional. Let €} be a Jordan
domain in the extended complex plane C, and I its boundary. Then the least
positive Fredholm eigenvalue Ar is defined by the equality (see Schiffer [S2])

(2.1) i — su |Da[v] — Do- [v]| _ max{s({, "), s(Q", )} -1
' A oer Da[v] + Da-[v] | max{s((,Q%),s(Q", Q) + 1’

Here and in what follows,

(2.2) Dall = [ 19 =2 [[ (ue + o) doay

is the Dirichlet integral, and H is the set of all real-valued functions v, which are
continuous in C, harmonic in QU Q* and Dqv] + Do+ [v] < +00. Also

and (2.4) s(Q*,Q) = sup Da- [v]

(23) 50,97 = sup 22U ver Dalu]

vEH DQ* [’U]

are known as the Schober’s domain functionals (see Schober [Scl]). It is obvious
that Ar > 1, and it is also known that Ap > 1 iff Q is a quasidisk.

It is known that the least positive Fredholm eigenvalue Ar plays an important
role in determining the rate of convergence of the classical Neumann-Poincaré series
(see [BS], [S1]), and many interesting properties of Ar have been obtained in the
literature (see [Ahl], [Ku], [S1-2], [Sc1-2], [Sp]). As pointed out by Schober [Scl,
p. 379], when I is three times continuously differentiable, both supremums in (2.3)
and (2.4) can be attained, and in this situtation, s(2, Q*) = s(Q*, ), so Schober’s
domain functionals s are actually curve functionals. However, in the general case,
the situtation is somewhat different. In fact, the following results were shown by
the author [Sh4].

THEOREM 2.1 [Shd]. For any quasidisk 2, s(Q, Q*) = s(Q*,Q).

PROPOSITION 2.1 [Sh4]. There exists a class of pairs of quasidisks Q and Q*
such that s(Q, Q*) = s(Q*,Q) can not be attained at any v € H.
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2.2. Quasiconformal reflection constant. It is known that a Jordan do-
main () in the extended complex plane C is a quasidisk iff there exists a quasicon-
formal reflection in 99, i.e. a mapping f which is a quasiconformal mapping of C'
and interchanges Q and Q* and keeps every point of 9 fixed (see [Le]). Thus, a
quasidisk Q determines the quasiconformal reflection constant R(€2), defined as

(2.5) R(Q) =inf{K|[f]: for all quasiconformal reflections f in 0Q}.

Clearly, R(Q?) = R(Q*). There always exists a so-called extremal quasiconformal
reflection which attains the infimum in (2.5). By the quasi-invariance property
of Dirichlet integral under quasiconformal mappings, we conclude that s(Q2, 2*) =
s(Q*, Q) < R(Q) and consequently that (see [Ah1])

1 _R(@Q)-1

(2.6) ¥ S RO

A necessary and sufficient condition for the equality in (2.6) will be given later (see
Corollary 4.1).

2.3. Quasiextremal distance constant. Before defining the quasiextremal
distance constant, we recall some basic relation between moduli and harmonic
functions. For reference, we refer the reader to Gerhing [Ge] or Ahlfors [Ah2,
Chapter 4]. Given any pair of disjoint nondegenerate continua A and B in C, let
mod(A4, B; C) denote the modulus of the family T'(A, B; C) of curves that join A and
B in C. Then there exists a unique real-valued function w4 g, which is continuous
in C', harmonic in C— (AUB), with constant values 0 and 1 in A and B, respectively,
such that mod(A4, B;C) = D¢ua,]. Note that the the modulus mod(A4, B; C') of
the family I'(A, B; C) is also closely related to the conformal module of the ring
domain C'—(AUB). Recall that for a ring domain R, its conformal module is defined
as M(R) = log(ra/r1), if R is mapped conformally onto {r; < |z| < r2}. Then the
conformal module of the ring domain C'—(AUB) is 27/ mod(A, B; C). Furthermore,
if ¢ maps C' — (AU B) conformally onto {1 < |z| < exp(27/ mod(A, B;C))}, then
ua,B = xB + (log|#|)/(2m/ mod(A, B; C))xc—(aun), Where x is the characteristic
function of a set. When A, B C 4D,

1 —
ua,B|D = §(¢A,B +94.8)
where ¢4 p is a conformal mapping of D onto
Rap={w=u+iv:0<u<1,0<v<mod(4,B;D)}.

Let Q be a domain in the extended complex plane C. Given a pair of disjoint
nondegenerate continua A and B in €, let mod(A, B;Q) denote the modulus of
the family I'(A4, B; Q) of curves that join A and B in Q. The following so-called
quasiextremal distance constant (or QED constant) was introduced in [Y1]:

mod(A4, B; C)

(2.7) M{($) = sup { mod(4, B; Q)

: for all pairs A and B in ﬁ}.
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The domain 2 is a QED domain if its QED constant M (Q) is finite. QED domains
were introduced by Gehring and Martio [GM] as a useful class of domains in the
study of quasiconformal mappings.

It was proved in [GM] that a Jordan domain Q is a QED domain if and only
if  is a quasidisk. Now the two domain constants M (Q2) and R(Q2) are closely
related to one another. For example, by the quasi-invariance property of modulus
under quasiconformal mappings, it holds that (see [Y1])

(2.8) M(Q) < R(Q) + 1.

It was conjectured by Garnett and Yang [GY] that the equality in (2.8) holds for all
quasidisks. But this was disproved by Yang [Y3] for ellipses. In [Y3] the following
boundary quasiextremal distance constant (or BQED constant) M;(Q2) was also
introduced:

mod(A4, B; C)
mod(4, B; Q)

Clearly, My(Q?) < M(Q2). However, the question whether M;(Q) = M(Q) still
remains open.

There have been much work related to the Garnet—Yang conjecture. Yang [Y4]
proved that M () < R(2) + 1 for all smooth domains other than disks and asked
whether M (Q) < R(2)+1 for all asypmtotically conformal extension domains other
than disks. On the other hand, Wu and Yang [WY] proved that M(2) < R(2) +1
for all asypmtotically conformal extension domains other than disks. Recently,
the author [Sh5] proved the following result, which contains the above-mentioned
results obtained by Wu and Yang and gives an affirmative answer to the question
of Yang as well. Consequently, the Garnett—Yang conjecture is not true for all
asypmtotically conformal extension domains other than disks.

(2.9) My(Q) = sup{ : for all pairs A and B in 89}.

THEOREM 2.2 [Sh5]. Let Q be an asymptotically conformal extension domain.
Then there exists a pair of disjoint nondegenerate continua A and B in Q such that
M) = %. Furthermore, M(Q) < R(Q) 4+ 1 unless Q is a disk.

3. Constants attached to quasisymmetric homeomorphisms

3.1 Extremal maximal dilatation and boundary dilatation. Given a

quasisymmetric homeomorphism h of the unit circle onto itself, we denote by Q(h)
the class of all quasiconformal mappings of the unit disk D with boundary values h.
The homeomorphism A then determines the extremal maximal dilatation K*(h),
defined as
(3.1) K'(h) = inf KIf)
Clearly, K*(h™1') = K*(h). f € Q(h) is called extremal if K[f] = K*(h) (see [St3]).
It is well known that there always exists at least one extremal mapping in the class
Q(h). Furthermore, the extremality of a quasiconformal mapping is completely
characterized by the following theorem due to Hamilton—Krushkal-Reich—Strebel
(see [Ga], [GL], [St3]).
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HAMILTON-KRUSHKAL-REICH-STREBEL THEOREM. A quasiconformal map-
ping f is extremal iff its complex dilatation p satisfies the Hamilton—Krushkal con-

dtion: Re [f, u(2)¢(z) de d
e[fpnz)p(z)dzdy
ST e dady e

where A is the Banach space of all holomorphic and integrable functions ¢ in the
unit disk.

A quasisymmetric homeomorphism h also determines the boundary dilatation
H(h) (see [St3]), defined as
(3.2)
H(h) =inf{K[f|D — E] : for all f € Q(h) and all compact subsets E C D}.

Then, H(h) = H(h™'), H(h) < K*(h). The set of all normalized (fixing three
boundary points on D) quasisymmetric homeomorphisms of the unit circle onto
itself is known as the universal Teichmiiller space T of Bers (see [Le], [Na]). Fol-
lowing Earle-Li [EL], a point h is called a Strebel point if H(h) < K*(h). Then, by
a result of Lakié¢ [Lal, the set of Strebel points is open and dense in the universal
Teichmiiller space T'. It is also known that h is symmetric iff H(h) =1 (see [GS]),
and all the normalized symmetric homeomorphisms comprise a closed set Ty of the
universal Teichmiiller space T'.

3.2 Maximal dilatation. The maximal dilatation K (h) of h is defined as

(3.3) K(h) = sup { moil(:(g(fg’ Z’(BD)S D) : for all pairs A and B in GD}.

Clearly, K(h~!) = K(h). By the quasi-invariance property of modulus under
quasiconformal mappings, it follows that K (h) < K*(h). It was an open question
for a long time to determine whether or not K(h) = K*(h) always holds before
Anderson and Hinkkanen disproved this by giving concrete examples of a family of
affine mappings of some parallelograms (see [AH]). Later, a necessary condition for
K(h) = K*(h) was obtained independently by Wu [Wu] and Yang [Y2]. We say
h is induced by affine mappings if it is the restriction to D of a map of the form
P20 frrod !, where fi(x+iy) = z+iKy, while ¢; and ¢ are conformal mappings
from a rectangle {z +iy : 0 < x < a,0 < y < b} and its image {u +iv: 0 < u <
a,0 < v < Kb} under fx onto D, respectively. Then the necessary condition for
K (h) = K*(h) obtained by Wu [Wu] and Yang [Y2] can be stated as

THEOREM 3.1 [Wu], [Y2]. Let h : 0D — 9D be a quasisymmetric homeo-
morphism. If K(h) = K*(h), then either h is induced by an affine mapping or
H(h) = K*(h).

In their papers [Wu] and [Y2], Wu and Yang also asked whether the converse
of Theorem 3.1 was true. Recently, the author [Sh2] proved that there exists a
family of quasisymmetric homeomorphisms h such that K(h) < K*(h) = H(h),
which gives a negative answer to the question. On the other hand, some classes
of quasisymmetric homeomorphisms h for which K(h) = K*(h) = H(h) were
discussed in [CZL] and [LWQ)].
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EXAMPLE 1 [Sh2]. For convenience we use the upper half plane H = {z : Imz >
0} instead of the unit disk D. For any K > 1, we consider the quasisymmetric
homeomorphism h of Strebel (see [St1], [St2]), namely, h = hg : OH — OH is as
h(z) =z for x < 0 and h(z) = Kz for > 0. It is easily computed from [St1] that

. 1 1 / 1
H(h) =K (h):1+mlog2K+;logK 1+m10g2K.

In fact, let
fz) = K'=reesy,
Then f is an extremal mapping in Q(h). It was calculated in [Sh2] that
K (h) = sup{A(Kp)/A(p) : p> 0},

where A(p) is the conformal module of the quadrilateral () with domain H and
vertices oo, —1,0 and p. It was also proved there that, when K is large,

1 1,
K(h)<1+;logK+4—ﬂ_210g K.

Another approach due to Reich [Re] and developed in [CC] gave a necessary
and sufficient condition for K(h) = K*(h).

THEOREM 3.2 [RE], [CC]. Let h : D — 0D be a quasisymmetric homeo-
morphism. Then K(h) = K*(h) if and only if Q(h) contains an extremal mapping
whose complex dilatation u satisfies

Re [[,, 1(2)¢'% 5(2) dz dy
sup 3
apcop [, 6% 5(2) dzdy

3.3 Two other constants. Now let D denote the set of all real-valued func-
tions v harmonic in D with finite Dirichlet integral. We also denote by AD the set
of all functions ¢ holomorphic in D with finite Dirichlet integral. For any u € D,
let P(u o h) denote the Poission integral of u o h. We define

(3.5) Ki(h) = sup Do %DLE?;ABBC]) )

(3.4)

= [llloo-

Since
DD[P(’LLAJ; o h)]

mod(h™*(A), h~*(B); D) = Dplun-1(a)n-1(5)]
- K (h)*. We also define

for all pairs A, B C 9D, it follows that K (h) = K(h™!)
Dp[P(uo h)]

3.6 Ks(h) = sup ———=

(3.6) 2(h) SUD —p ]

Note that the invariant K5(h) (more precisely, max(Ks(h), K2(h™!))) was already
introduced by Beurling and Ahlfors in their famous paper [BA] and has been much
investigated recently (see [KP], [NS], [P1-P5], [Sh1-Sh5]). Particularly, the follow-
ing result was pointed out by the author [Sh4].

<
<

*It is not known whether or not K1(h) = K;(h™!) for any quasisymmetric homeomorphism
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THEOREM 3.3 [Sh4]. For any quasisymmetric homeomorphism h, it holds that
Kg(h) = Kg(hil).

It is obvious that Ki(h) < K2(h). On the other hand, by the quasi-invariance
property of the Dirichlet integral under quasiconformal mappings, it holds that
K>(h) < K*(h). Consequently, for any quasisymmetric homeomorphism h, it holds
that

(3.7) K(h) < Ky (h) < Ka(h) < K*(h).
To determine when K»(h) = K*(h), the author [Sh1] proved

THEOREM 3.4 [Shl]. Let h: D — 0D be a quasisymmetric homeomorphism.
Then Ko(h) = K*(h) if and only if Q(h) contains an extremal quasiconformal
mapping whose Beltrami differential i satisfies

“ Re [[}, 1w(2)¢"” (2) dz dy
35 oo I 9@ dady

= [l1tlloo-

Remark. Here it is a convenient place to point out a result of Shiga and Tani-
gawa. After the paper [Sh2] was published, the paper [ST] by Shiga and Tanigawa
was called to the author’s attention. In their paper, among other things, Shiga
and Tanigawa proved that there exists a quasisymmetric homeomorphism A such
that H(h) = K*(h), and that the relation (3.8) and consequently the relation (3.4)
doesn’t hold for any extremal quasiconformal mapping in @(h), which implies that
K (h) < K*(h) by Theorem 3.2. Therefore, this has already given an example h for
which H(h) = K*(h) but K(h) < K*(h). However, this example was abstractly
constructed and somewhat complicated (but has some further properties). Note
that for this construction, K5(h) < K*(h) by Theorem 3.4, while for Strebel’s qua-
sisymmetric homeomorphism h in Example 1, it holds that K»(h) = K*(h) (see
[Sh2]).

To determine when K (h) = K*(h), the author [Sh5] proved

THEOREM 3.5 [Sh5]. Let h: 0D — 0D be a quasisymmetric homeomorphism.
Then

(1) Ky(h) = K*(h) if and only if Q(h) contains an extremal mapping whose
complex dilatation p satisfies the relation (3.4);

(2) If, in addition, K, (h) is attained by a pair of disjoint nondegenerate con-
tinua in D, then Ki(h) = K*(h) if and only if h is induced by an affine mapping.

4. Further results

Let Q be a quasidisk in the extended complex plane C. Recall that hq =
f2 0 f7 @D is the sewing mapping of the domains Q and Q*. In this section, we
will give some further relations among the constants attached to the quasidisk 2
and the constants to the quasisymmetric homeomorphism hg.

First we note the following proposition, the second part of which was proved
in [P4] and [Sh3], while the third part of which was proved in [Sh5].
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PROPOSITION 4.1. Let Q be a quasidisk in the extended complez plane C. Then
we have

(1) R(Q) = K*(ha);

(2) s(0%,9) = K»(hq), s(Q,Q%) = Ka(hg");

(3) K(hg)+ 1< My(Q) < Ki(hg') +1.

Noting that (see Theorems 2.1 and 3.3)

1 s(Q,0) -1 s(Q,9) =1 Ky(ha) =1 _ Ky(hg') =1
Ar s(Q,99) 41 s(,Q)+1  Ks(ha)+1  Ky(hg')+17

we find out that the equality in (2.6) holds, that is, ﬁ = %, iff Ko(hq) =
K*(hq), so we can conclude from Theorem 3.4 the following result. Note that
by the Schiffer—Kiihnau result [Ku], [S2], A\&'" is just the Grunsky functional (see
[Kr2]), so it is also implied by Krushkal’s work [Kr2].

COROLLARY 4.1. % = % iff Q(hq) contains an extremal quasiconformal

mapping whose Beltrami differential p satisfies (3.8).

The following theorem gives a characterization of the domains Q2 for which
My(Q2) = R(Q) + 1.

THEOREM 4.1 [Sh5]. Let Q be a quasidisk in the extended complex plane. Then

(1) Mp(Q2) = R(Q) + 1 if and only if Q(hq) contains an extremal mapping
whose complex dilatation p satisfies the relation (3.4).

(2) If, in addition, My(Y) is attained by a pair of disjoint nondegenerate con-
tinua in 0N, then My(Q) = R(Q) + 1 if and only if hq is induced by an affine
mapping.

An immediate consequence of Theorems 3.2, 3.5 and 4.1 is the following

COROLLARY 4.2. Let Q be a quasidisk in the extended complex plane. Then
the following conditions are all equivalent:

(1) My(Q) = R(?) +1; (2) K(hq) = K*(ha); (3) Ki(ha) = K*(ha);

(4) Q(hq) contains an extremal mapping whose complex dilatation p satisfies
the relation (3.4).

Now we want to give some relation between M,(Q2) and K (hg). When hq is
induced by an affine mapping, it holds that M;,(Q) = K(hq) + 1. The following
theorem says that this is the only case when M;(Q) = K(hq) + 1 if K(hg) is in
addition attained by a pair of disjoint nondegenerate continua.

THEOREM 4.2 [Sh5]. Let Q be a quasidisk in the extended complex plane. If A

and B is a pair of disjoint nondegenerate continua in 0D such that

mod(ho(A), ha(B); D)
mod (4, B; D) ’

K(hq) =

then My(Q) = K(hq) + 1 if and only if hg is induced by an affine mapping.
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As an application of previous results, we have a rather satisfactory discription
of the various constants when 2 is an asymptotically conformal extension domain.
Note that in this case, hq can not be induced by affine mappings unless €2 is a disk.

THEOREM 4.3 [Sh5]. Let Q be an asymptotically conformal extension domain.
Then all the supremums in (2.9), (3.3), (3.5) and (3.6) can be attained. Further-
more, K(hg) < My(Q) —1 < Ky (hq) < K*(hq) = R(Q) unless Q is a disk.

Remark. As stated in section 2, Wu and Yang [WY, Theorem 2.3] proved
that Mp(Q) < R(Q) + 1 for all asymptotically conformal extension domains other
than disks. On the other hand, Wu [Wu, Theorem 4] and Yang [Y2, Corollary
2.6] proved independently that K (hq) < K*(hg) for all asymptotically conformal
extension domains other than disks. Theorem 4.3 implies the stronger result that
K(hg) < My(©2) — 1 < K*(hq) for such domains.

We also have some further results concerning the Garnett—Yang conjecture.

THEOREM 4.4 [Sh5]. Let Q be a quasidisk in the extended complex plane. If

M(Q) is attained by a pair of disjoint nondegenerate continua A and B in Q, then
M(Q) = R(Q) + 1 if and only if hq is induced by an affine mapping.

THEOREM 4.5 [Sh5]. Let Q be a quasidisk in the extended complex plane. Then
either there exists a pair of disjoint nondegenerate continua A an B in ) such that

M(Q) = LBl or M(Q) < 2H (h).

Remark. An interesting question is to determine whether the bound 2H (hq)
in Theorem 4.5 can be replaced by 1+ H(hq). If the answer to the question were
affirmative, then there would be a large class of domains Q for which M(Q) <
R(2) 41, namely, the domains Q2 whose associated sewing mappings hq are Strebel
points and are not induced by affine mappings.

We end this section with some questions relating to the quasiextremal distance
constant and the quasiconformal reflection constant. For a pair of complementary
quasidisks, we do not know whether the relations hold: M;(Q2) = M (), M,(Q) =
Mp(Q*), M(Q) = M(Q2*). Note that the last relation was also conjectured by
Garnett—Yang [GY]. Even for asymptotically conformal extension domains, these
questions still remain open. Theorems 2.2 and 4.3 may shed some new light on
these questions for asymptotically conformal extension domains. We also have no
characterizations of the domains 2 for which the relation M (2) = R(2) + 1 holds.

5. Metrics on the Universal Teichmiiller space

Using some constants attached to quasisymmetric homeomorphisms, one can
define some invariant metrics on the universal Teichmiiller space. Given two points
[h1] and [hs] in the universal Teichmiiller space T', we define

(5.1) d* ([, [ha]) = %mgK*(@ o hh),
(5.2) (], o)) = 3 Tog K (hs o B ),

(5.3) d ([h], [ha]) = %logKg(i@ ohil).
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Note that d* is the well-known Teichmiiller metric (see [Gal], [GL]), d is the
metric defined by Lehto [Le], while ds is precisely the metric defined previously by
the author [Sh3]. It should be pointed out that the metric d has been much discussed
recently by Partyka, Sakan and Zajac (see [PS1], [PS2], [SZ], [Z]). Although we
do not know whether these metrics are metrically equivalent, they are actually
uniformly topologically equivalent. In fact, they are metrically equivalent in the
infinitesimal sense.

Let hs be a family of quasisymmetric homeomorphisms which are the boundary
values of the quasiconformal mappings f; with complex dilatation u; = tu + o(t)
for small ¢t > 0. It is known (see [Ga], [GL]) that

. B . _ eff 'u da:dy
(:4) (0] [e]) =l + o) = £ sup ff§|¢ |dmdy

It was calulated by the author [Sh3] that

+ o(t).

55 (0] ) = el +olt) = ¢ sup ReJpple)d” (2 dedy |,y

eap [ 19" (2)| dwdy

A direct computation will also show that

&2

5.6 oLl = Hull+ o) =t sup “HprOCasGddy
A,BCOD ffD|¢AB |da:dy

||]]* is known as the Teichmiiller norm of u. [|u]|2 can be regarded as another norm

of p, which was proved to be equivalent to ||u||* (see [Sh3]). Now [|u|| is precisely

the cross-ratio norm of y in the sense of Earle-Gardiner-Laki¢ [EGL]. They also

proved that ||| is equivalent to ||u||*. In fact, for any pair of disjoint arcs A and B

in @D joining 21,z and z3, 24, respectively, by the well-known Christoffel-Schwarz

formula, we have

72 _ (z1—22)(23—24)
¢A,B (z—21)(2—22)(2—23)(2—24)

ffD|¢’?4,B| ffD = Z|(Z1 22)(23—24)]

1)(z—22)(2—23)(2—24)|

(5.7)

Consequently, if we extend u to the whole plane by reflection, we have

Re [[,, u(z) ' B(2)drdy

llull = sup
A,BCOD ffD|¢AB |da:dy
(2)(21—22)(23—24)
. Re [[p bt s Ao dy
- [(z1—22)(23—24)|
S ) Py e (i zzxf o) (=]
(58) _ sup |ffC (z—z1)(2— ZQ)(Z zs)(z 24) da:dy|

21,%2,%3,%4 ffC [(z—21)(z— zz)(z z3)(2—24)]
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