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HOLDER SPACES OF
QUASICONFORMAL MAPPINGS

Leonid V. Kovalev

ABSTRACT. We prove that a K-quasiconformal mapping belongs to the little
Hélder space ¢®1/X if and only if its local modulus of continuity has an appro-
priate order of vanishing at every point. No such characterization is possible
for Holder spaces with exponent greater than 1/K.

1. Introduction

Let 2 denote a domain in C, and let f : 2 — C be a continuous complex-valued
function. Given E C , define the modulus of continuity of fz by

wy(E,6) =sup{|f(z1) — f(22)| : 21,22 € E, |21 — 22| < 6}
For 0 < a < 1 we consider the Holder space

CO*E)={f:E—C: (Sslilg 0 wr(E,0) < 0o},

with the seminorm
| fllE,a =limsupd~%wy(E,9).
d—0

This seminorm vanishes on the little Holder space
" (E) ={f € C*E) : [|fllp.« = O}.
Furthermore, define C>% () = (\peq C*(E) and similarly for ¢, (Q).

loc
We can also consider the local modulus of continuity at a point z €

wr(z,0) = sup{[f(C) — f(2)] : C € Q, |¢ — 2 < 6}
If U is a neighborhood of z in Q, then wy(z,d) < wr(U,d) for all sufficiently small
0 > 0. In particular,

(1.1) limsup 6~ *wy(2,6) < [|fllv,a-
0—0
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Inequality (1.1) provides a simple necessary condition for a continuous mapping
f:Q — C to be in the class cﬁ;f (Q); namely,
(1.2) fe®(Q) = limsupdws(z,6) =0 Vze .
i 60

This condition can be helpful because it is often easier to estimate wy(z,d) for z € Q
than to estimate wy(E,J) for all E € Q. Unfortunately, the implication in (1.2)
cannot be reversed in general.

The present paper deals with the following question: is the reverse implication
in (1.2) true under the additional assumption that f is a K-quasiconformal mapping

from Q to C? Tt is well-known that under this assumption f belongs to C*/ K@)

loc

[1, 3, 7], but not necessarily to c?o’i/K(Q) (for example, f(z) = |z|'/K~1z is K-
0,1/K

quasiconformal in C, but f ¢ ¢,

when 1/K < a < 1.
The answer turns out to be affirmative in the case « = 1/K (Theorem 2.1) and
negative in the case 1/K < a < 1 (Proposition 2.1).

(©)). Therefore, our question is nontrivial only

2. Main results

We start by showing that in general one cannot determine the degree of Holder
continuity of a quasiconformal mapping from its local behavior. More precisely,
the following proposition exhibits a K-quasiconformal mapping which has linear
local modulus of continuity at every point, yet does not belong to c?o’?(ﬂ) with a
arbitrarily close to 1/K. We use notations D(a,r) = {z € C : |z —a| < r} and
D =D(0,1).

PROPOSITION 2.1. Given K > 1 and 1/K < a < 1, there exists a K -quasicon-
formal automorphism f:D — D such that f ¢ co’a(]D)), but

loc

(2.1) li?jgpw < 00

for every z € D.

PROOF. Choose € > 0 so that (o« —¢)/(1 —¢) = 1/K. Consider two sequences
of open disks D,, = D(2=",2=(»*2)) and D!, = D(2-",2=("+2)/¢) 5 > 1. We will
define f separately on D), D,, \ D}, and D\ |J;—_, D,. Each disk D, is stretched
under f by the factor of 20— (n+2)/e.

f(27" 4 re?) =2"" 4 ol—a)(nt2)/epeiv < p < 2=/ e R

Thus f(D!) is a disk that is concentric with D,, and has the radius 2-*("+2)/= <

2-("+2) Hence f(D!) C D,. Next, f maps the annulus D, \. D!, onto D,, . f(D",)

by means of the “extremal K-quasiconformal stretch mapping” (cf. [5, p.63]).
f(27n + T_eicp) =9 n 4 2(n+2)(1/K71)7_1/K6i1p’ 27(n+2)/€ <r< 277172, g€ R.

Finally, let f(z) = z for z ¢ |J,—, D,,. It is easy to see that f is continuous and
thus K-quasiconformal in . It is also evident that f is locally Lipschitz in D~ {0},
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which implies that (2.1) holds for z € D \ {0}. To verify (2.1) for z = 0, observe
that f maps each disk D,, onto itself. Hence for every ( € D, we have

SO 2 a2t s

(- S22y
Thus (2.1) holds for all z € D.
Now let a, = 27" + 2= (+2)/¢ and b, = 27", n > 1. By the definition of f we
have

Flan) =277+ o(n+2)(1/K—-1) (27(n+2)/5)1/K _ 9 4 o(n+2)((e-1)/eK -1)
—92 N4 2—a(n+2)/8
and f(by) =2"". Since

|f(an) — f(bn)| _ 9—a(n+2)/s

(an —bale  2-atDE

)

it follows that for every 7 > 0 the mapping f fails to be in ¢*®(D(0,7)). ad

Surprisingly, the situation is different for the critical Holder exponent 1/K.
According to the following theorem, one can determine if a K-quasiconformal map-
ping belongs to ¢/K just by looking at its local modulus of continuity. Its proof
uses some ideas from [4].

THEOREM 2.1. Let f: Q — C be a K -quasiconformal mapping, and let E be a
compact subset of Q. Then f € VX (E) if and only if for every z € E

O =
CEE

Proor. If f € >/K(E), then(2.2) follows immediately from the definition of
/K (E). Conversely, suppose that f ¢ /X (E), i.e. ||fllz1/x > 0. Our goal is
to prove that (2.2) fails for some z € E.

By the definition of || f||g,1/x there exists a sequence §; — 0 and points a;, b; €
E such that |a; — b;| = d; and

(2.3) 1f(aj) = FO)] = fllma/xd) S (L +0(1), §— oo

Without loss of generality we may assume that a; — 0 € E, ﬁ(aj,éj) C D for
every j, D C Q, and f(0) = 0. Since f is continuous in D, the domain ' = f(D)
is bounded. Let R = diam ' be its diameter.

The set F; = f(D(aj;,d;)) is connected and its diameter is controlled by (2.3).
We are going to use this information to estimate its capacity from below. On the
other hand, the quasiconformality of f will lead to an upper bound for the capacity
of Fj. Comparison of the two estimates will show that f satisfies the hypotheses

of [2, Thm.1], which in turn implies that (2.2) fails for z = 0.
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Let us begin by defining the conformal capacity of a compact set E with respect
to a domain 2 D F.

(2.4) cap(Q2, E) = inf {/Q |Vu(2)]? dC?(2) :u € O () and u > 1 on E} ,

where £? is the 2-dimensional Lebesgue measure. Since ' C D(f(a;), R), it follows
from (2.4) that cap(?, Fj) > cap(D(f(a;), R), F;). Observe that D(f(a;), R) \ F;
is a doubly-connected domain. There is another well-known conformal invariant
associated with such objects, namely, the ring module [7, 5.49]. It can be defined
as follows: M (D(f(a;),R) \ F;) = log(ra/r1) if D(f(a;),R) \ F; is conformally
equivalent to the circular ring {z : 71 < |z| < r2}. The relation between capacity
and module is given by

2

cap(D(f(a;), R), Fj) = M(D(f(a;),R) \ F})

(compare [7, 7.8] with [7, 5.49]).
Since F} is connected and contains both f(a;) and f(b;), the Grotzsch module
theorem [5, p.54] and the estimate (2.10) in [5, p.61] imply

M(D(f(a;), R) \ Fy) <log(4R/|f(a;) — f(b)])-
Hence

2T
> Tog@R/[f(ay) = FO)

(25) Cap(QlaFj) Z Cap(]D)(f((lj),R),Fj)

Now plug (2.3) into (2.5) to obtain

2
Z Tog R/ lpa/m) + K- 1log(1/8;) + o(1)

_ _2rK log(4R/[lfllp1/x) |, 1 !
- log(1/4;) <1+K og(1/5) <log(1/5j)>>

__2nK _ log(4R/|| fllE,1/x) o 1
~ log(1/4;) <1 o og(1/s;) <log(1/5j)>>'

Let C' = 2nK?1og(4R/||f||g,1/K) + 1; then for all sufficiently large j we have

cap(, F})

S 2r K _ C
~ log(1/6;)  (log(1/d;))?

To obtain an upper bound for cap(', Fj), we proceed as follows. Let g : Q' — D
be the inverse of f and define

_ log"™{(1 — |a;)/lg(w) — a;}
log{(1 - la;])/9;}

(2.6) cap(Q, F})

u(w)
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for w € Q'. (Here log™ ¢ = max{logt,0}.) It is easy to see that the function wu is
Holder continuous in ' \ Fj, min{u, 1} € Wy>*(?), and ujp, > 1. Therefore,

Cap(Q',Fj)g/Q’ IVuw) dew)
(2.7) ~
< (log{(1— |aj|)/5j})_2/ [V log |g(w) — ajl|* dL? (w).

Q'\F;
At the points where log |g—a;| is differentiable, its gradient can be written in terms
of the complex differential operators 0 and 0.

|V loglg — a;||* = 4|01og|g — a;]|* = |0log(g — a;) + dlog (g — a;y)|?

_2
0
9 +< dg )‘ _
g—a;  \g-—a

Since Og(w)jw=f(-) = 0f(2)J5(z)™" and dg(w)w=y(z) = —0f(2)Js(2)"", we can
express the last integral in (2.7) in terms of the complex dilatation u = 9f/8f.
Indeed, using notation ¢; = arg(z — a;), we have

/Q,\FJ_ [Vlog|g(w) — aj||* dL?(w)
of(z) (( 3f(2) )

:/D\ﬁ(aj,aj) (z—ap)Js(z)  \(z—a;)Js(2)

_ e—2i0i § 2
:/ |6f(z) € af(2)| |z—aj|_2d£2(z)
DD (a;,0;)

Ji(2)dL?(2)

0f(2)]> = [0f (=)

1— —2ip; 2
= / [1—c H(2Z)| |z —a;| 72 dL(2).
D\ﬁ(a]‘ﬁj) 1 - |'LL(Z)|

This, together with (2.6) and (2.7), yields

|1 —e™2%ip(2)]? —2 152
2.8 / z—a;|7*dL (2
( ) »\ﬁ(a]‘,r]‘) 1 - |I’L(Z)|2 | ]| ( )
21K C )

> (a1~ /8 (1ot ~ a5

for large j. Since a; — 0, it follows that
(log{ (1 — [aj1)/0;})* = (10g(1/5;))* + o(log(1/5})), § — o0
Hence the right-hand side of (2.8) is bounded from below by
2nKlog(1/6;) — C +o(1), j — oc.

For all sufficiently large j we have

1 — e2%5 y(2)]? _
/Dﬁ( )| 1—|u(zl;|(2)| |z —a;|7?dL?(2) > 2rK log(1/6;) — C1,
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where C7 = C' + 1. Since

2 2
DND(a;,d5) |Z - aJ| D(aj,2)~D(a;,d;) |Z — aJ|

it follows that
1— —2ip; 2
/ (K _f=e 'u(;” ) |z —a;| 72 dL?(2) < C1 + 27K log 2.
DN\D(aj,r;) 1- |/J‘(Z)|
Note that the integrand is non-negative because |u| < (K —1)/(K + 1) for K-

quasiconformal mappings. (See also Proposition 2.2 below.) This allows us to pass
to the limit 7 — oo using Fatou’s lemma, thus obtaining

e eu(n)
29) /D T )P

where ¢ = argz. By (2.9) and Proposition 2.2

Lt e ()P
(2.10) /D [ ()P

By virtue of (2.9) and (2.10) we can apply Theorem 1 of [2] which asserts
that there exists A > 0 such that |f(z)|/|z|'"/%X — A as z — 0. This leads to the
conclusion that (2.2) does not hold at the point z = 0, because 0 is a non-isolated
point of the set E. O

ProprosITION 2.2. Ifv € C and K > 1 are such that [v] < (K —1)/(K + 1),
then

K |z| 2 dL%(2) < o0,

Kt |2|72dL?(2) < 0.

1+v> 1 1—v?
|

0< <K - .
- K 1— |2

PROOF. The first inequality follows from
L A Gl L R el A
I-wPZ 1-p2 1+~ K’
while the second one follows from
11+ v N 1-vP _ 14 <2(K+1)2+(K—1)2 -
=P T T T SR - (K -1

1
7
a

It was recently proved [4] that for a K-quasiconformal mapping f the limit
lime,, | £(¢) — f(2)|/|¢ — 2|'/% exists at every point z in its domain of definition.
At the points where this limit is positive, the linear dilatation of f

{If(21) — /(2|
| (22) = £(2)]

is evidently equal to 1. Thus we arrive at the following corollary.

Hy(z) = limsup sup :|z1—z|:r:|22—z|}.

r—0 21,22

COROLLARY 2.1. For a K-quasiconformal mapping f : Q@ — C, one of the
following statements is true: (a) f € cO’l/K(Q); (b) Hy(z) =1 for some z € Q.

loc

It is likely that the following quantitative version of Theorem 2.1 is true.
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CONJECTURE 2.1. Let f : Q@ — C be a K -quasiconformal mapping, and let E
be a compact subset of Q2. Then

(2.11) /11,15 = sup lim, %
(eE

It is obvious that the right-hand side of (2.11) does not exceed ||f||g,1/x, but
the reverse inequality seems much harder to prove.

3. Concluding remarks

As Corollary 2.1 indicates, there is a tight connection between the modulus of
continuity of a quasiconformal mapping and its linear dilatation. Recall that the
linear dilatation H of a K-quasiconformal mapping f can exceed K (see [5] or [6],
where the sharp upper bound for Hy is found). On the other hand, H;(z) < K if
f has a non-zero derivative at z [6]. Also, H¢(z) = 1 if the upper limit

s O = 1(2)

(»z |¢— 2K

is strictly positive [4]. This naturally leads to the following question: what is the
exact value of

H(a) = sup{Hf(z) : fis K-qc and hr?_f“’% > 0}

for a between 1/K and K? The function H increases from H(1/K) =1to H(K) =
A(K) (as defined in [5, I1(6.4)] or [6, (11)]). Apparently, none of its intermediate

values are known, although it seems likely that H(1) = K.
Note that the authors of [6] use a symmetrization argument to show that

= o lim g GO = £(2)]
(3.1) sup Hy(2) = suplimsup er—n—53

where the supremum is taken over all K-quasiconformal mappings of the plane.
The identity (3.1) is one of the crucial points in [6], and it is not clear if it still
holds when the supremum on both sides is taken only over those K-quasiconformal
mappings for which

s O = 1)

> 0.
(—z |C - Z|a
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