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ON SOLUTIONS OF

THE BELTRAMI EQUATION. II

Melkana A. Brakalova and James A. Jenkins

Abstract. We study the existence of solutions of the generalized Beltrami
equation fz̄ = µ(z)fz , ‖µ(z)‖∞ = 1, in a plane domain ∆, under general
conditions that include previously known results.

1. Introduction

Let µ(z) be a measurable complex valued function. In our previous paper [2]
we treated the question of existence and uniqueness of solutions for the Beltrami
equation

(1) fz̄(z) = µ(z)fz(z),

assuming that |µ(z)| satisfies a subexponential integrability condition. In the
present paper we treat the existence problem under general conditions which in-
clude previous results.

2. Main results

Let h(x) be a convex, increasing function defined on [1,∞) such that h(x) >
Cλxλ for any λ > 1 with Cλ > 0. From now on we will assume also that

(2)

∞∫

1

1
th−1(t)

dt = ∞.
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Main Theorem. Let ∆ be a plane domain, µ(z) a measurable function defined
a.e. in ∆, with ‖µ‖∞ 6 1. Suppose that for every bounded measurable set B ⊂ ∆
there exists a positive constant ΦB such that

(3)
∫∫

B

h

(
1

1− |µ|
)

dA < ΦB .
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Then there exists an ACL homeomorphism f(z) of ∆ into the plane, which
satisfies the Beltrami equation a.e., with partials fz and fz̄, locally in Lq, for 0 <
q < 2. The partials are also distributional derivatives. The inverse g(w) = f−1(w)
is ACL in f(∆) , and has partials gw and gw̄ locally in L2.

Theorem A. (the case of the plane) If ∆ is the plane and if, in addition to
(3), µ(z) satisfies ∫∫

{|z|<R}

1
1− |µ|dA = O(R2), R →∞.

then there exists an ACL homeomorphism f which maps the plane onto itself with
all the properties listed in the Main Theorem.

3. Auxiliary Results and an Equivalent Statement

Let h(x) be the function defined in Section 2. Denote by θ(x) = ln(h(x)) for x
greater than some constant c > 1, such that h(c) > e. θ(x) is a positive increasing
function in [ ln h(c),∞). Next we show that the following conditions

(4)

∞∫

c1

dx

xh−1(x)
= ∞, (5)

∞∫

c2

θ(x)
x2

dx = ∞.

hold simultaneously, where c1 and c2 are suitable constants. The result can be
stated as:

Lemma 1. Conditions (4) and (5) are equivalent.

Proof. Make a change of variables in
∞∫
c1

dx

xh−1(x)
by using the substitution

y = ln(x). Then the last integral becomes
∞∫
c∗

dx

θ−1(x)
, where c∗ = ln c1. Since

1
θ−1(x)

and θ

(
1
x

)
are inverses of each other, it follows that

∞∫
c∗

dx

θ−1(x)
is divergent iff

c∗∫
0

θ

(
1
x

)
dx is for some suitable constant c∗ < 1. After another substitution y =

1
x

we obtain that the divergence of the last integral is equivalent to the divergence of
∞∫
c3

θ(x)
x2

dx, where c3 =
1
c∗

.

From the auxiliary results above follows a statement equivalent to the Main
Theorem.

Theorem B. Let ∆ be a plane domain, µ(z) a measurable function defined
a.e. in ∆, with ‖µ‖∞ 6 1. Suppose that for every bounded measurable set B ⊂ ∆
there exists a positive constant ΦB such that

∫∫

B

exp
(

θ

(
1

1− |µ|
))

dA < ΦB .
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If
∞∫

1

θ(x)
x2

dt = ∞,

there exists an ACL homeomorphism f(z) of ∆ into the plane, which satisfies the
Beltrami equation a.e., with partials fz and fz̄, locally in Lq, for 0 < q < 2. The
partials are also distributional derivatives . The inverse g(w) = f−1(w) is ACL in
f(∆) , and has partials gw and gw̄ locally in L2.

4. Construction of the solution f(z)

Here we assume that µ(z) satisfies condition (3), with h(z) satisfying (2). In
∆ we define µn, n = 1, 2, . . . , so that

µn(z) =
{

µ(z), if |µ(z)| 6 1− 1/n

0, if |µ(z)| > 1− 1/n.

From the theory of quasiconformal mappings we know that there exist q.c. mappings
fn, n = 1, 2, . . . , of ∆ into the plane with complex dilatations µn, n = 1, 2, . . . .

Let z0 be a fixed point in the plane. For r2 > r1 > 0 denote by A the circular
ring A = {z : r1 < |z − z0| < r2}, and by Mn(r1, r2) the module of its image under
fn.

Proposition 1. For any point z0 and circular ring A = {r1 < |z − z0| < r2},
the module Mn(r1, r2) of the image of A under fn tends uniformly to ∞ as r1 → 0.

Proof. The module Mn(r1, r2) can be estimated from below in terms of the
complex dilatation µn, where µn = µn(z) = µn(z0 + reiθ), as follows (see [4]):

Mn(r1, r2) >
∫ r2

r1

1
2π∫
0

|1− e−2iθµn|2
1− |µn|2 dθ

dr

r
.

Using this we obtain:

Mn(r1, r2) > 1
4

∫ r2

r1

1
2π∫
0

1
1− |µ|dθ

dr

r
.

For any z0 in a compact subset T of the plane containing the disc |z − z0| < r2

∫ r2

r1

r2

∫ 2π

0

h

(
1

1− |µ|
)

dθ
dr

r
6 C,

where C depends only on the compact subset T and the choice of r2.
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Now we have

r2

∫ 2π

0

h

(
1

1− |µ|
)

dθ <
2C

log
r2

r1

on a set E of logarithmic measure
1
2

log
r2

r1
. Thus

1
2π

∫ 2π

0

h

(
1

1− |µ|
)

dθ <
C

πr2 log
r2

r1

on E.

Using the convexity of h(x), we have

h

(
1
2π

∫ 2π

0

1
1− |µ|dθ

)
<

C

πr2 log
r2

r1

on E

and
1
2π

∫ 2π

0

1
1− |µ|dθ < h−1

(
C

πr2 log
r2

r1

)
on E.

From the estimates of the module and monotonicity properties of h(x) we have

Mn(r1, r2) > 1
8π

∫ r2

r1

1

h−1

(
C

πr2 log r2
r1

) dr

r
> 1

8π

∫ √
r1r2

r1

1

h−1

(
C

πr2 log r2
r1

) dr

r
.

Now we consider a monotonically decreasing sequence {sk}∞k=1 of positive num-
bers tending to 0 such that each interval [sk+1, sk] has the same logarithmic length,
where

sk

sk+1
= c. By a ring decomposition we mean a family of rings r

(j)
1 < |z−z0| <

r
(j)
2 with r

(j+1)
2 6 r

(j)
1 and r

(j)
1 and r

(j)
2 → 0 as j →∞.

We take two ring decompositions with

r
(j)
1 = s2j+1, r

(j)
2 = s2j−1

r̂
(j)
1 = s2j+2, r̂

(j)
2 = s2j .

Now
∞∑

j=1

Mn

(
r
(j)
1 , r

(j)
2

)
> 1

8π

∞∑

j=1

s2j∫

s2j+1

1

h−1

(
C

πr2 log c

) dr

r
,

while
∞∑

j=1

Mn

(
r̂
(j)
1 , r̂

(j)
2

)
> 1

8π

∞∑

j=1

s2j+1∫

s2j+2

1

h−1

(
C

πr2 log c

) dr

r
,
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so
∞∑

j=1

Mn

(
r
(j)
1 , r

(j)
2

)
+

∞∑

j=1

Mn

(
r̂
(j)
1 , r̂

(j)
2

)
> 1

8π

s1∫

0

1

h−1

(
C

πr2 log c

) dr

r
.

Making the change of variables t =
C

πr2 log c
this last term becomes equal to

1
8π

∞∫
?

1
th−1(t)

dt, with a well defined lower limit. Thus at least one of the ring de-

compositions has module sum bounded below by
1

16π

∞∫
?

1
th−1(t)

dt and therefore

approaches ∞ uniformly with respect to n and z0. From the superadditivity prop-
erty of the module it follows that lim

r1→0
Mn(r1, r2) = ∞, uniformly with respect to

z0 and n.

From now on we shalll assume that the quasiconformal mappings {fn(z)},
n = 1, 2 . . . have two fixed points a1 and a2, with d = |a2 − a1|. The following
proposition was proved in [2]:

Proposition 2. If lim
r1→0

Mn (r1, r2) = ∞, uniformly with respect to z0 and n,

then the family of quasiconformal mappings {fn(z)}, n = 1, 2, . . . , is uniformly
equicontinuous on each compact subset T of ∆.

Thus from this proposition and the Arzela-Ascoli’s theorem follows:

Proposition 3. For the sequence {fn(z)} there exists a subsequence of func-
tions, which converges uniformly to a function f(z) on compact subsets.

We follow the statements in [2] to show the properties of f(z) outlined in the
Main Theorem.

5. f(z) is a homeomorphism

In the same manner as in [2], one can prove that:

Proposition 4. The function f(z) constructed in Proposition 3 is a homeo-
morphism of ∆ into the plane.

6. Differentiability properties of f(z)

In the same manner as in [2], one can prove that:

Proposition 5. The function f(z) is ACL.

Proposition 6. The partials fz and fz̄ of f(z) are in Lq on compact subsets
of ∆ for every q < 2.

Thus f(z) has generalized Lq-derivatives according to the terminology intro-
duced in [3].
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7. f(z) satisfies the Beltrami equation

Using the same methods as in [2], one can prove that:

Proposition 7. The function f(z) satisfies the Beltrami equation.

8. The inverse function g(w) of f(z)

In the same manner as in [2], one can prove that:

Proposition 8. The function g is ACL and gw and gw̄ are locally in L2.

So far we have proved the Main Theorem and Theorem B.

9. The case of mapping the plane onto itself

In the same manner as in [2], one can prove that

Proposition 9. If
∫∫

|z|<R

1
1− |µ|dA = O(R2) as R →∞,

then fn(z) converges uniformly to ∞, as z →∞.

This proposition and the rest of the results imply Theorem A. This concludes
the proofs of the Main Theorem, Theorem A and Theorem B.
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