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ABSTRACT. A slant Hankel operator K, with symbol ¢ in L>°(T') (in short
L), where T is the unit circle on the complex plane, is an operator whose
representing matrix M = (a;;) is given by a; ; = {(p,272*77), where (-,-) is
the usual inner product in L2(T) (in short L2?). The operator L, denotes
the compression of K, to H?(T) (in short H?). We prove that an operator
L on H? is the compression of a slant Hankel operator to H? if and only
if U L = LU?%, where U is the unilateral shift. Moreover, we show that a
hyponormal L, is necessarily normal and L, can not be an isometry.

1. Introduction

Let ¢ be in L. Then ¢(z) ~ > ;o a;z", where a; = (p,z") is the i-th
Fourier coefficient of ¢ and {z*: i € Z} is the usual orthonormal basis of L? and Z

is the set of integers. A slant Toeplitz operator A, is an operator on L? defined by

o0
Aw(zk) = Z agi_ k2",
i=—00
for k in Z. Furthermore A, = WM, where M, is a multiplication operator on L?
and W is an operator on L? such that Wz?" = 2" and Wz2"~1 =0, for n in Z.
A Hankel operator S, is an operator on L? defined by

for k in Z [1]. Moreover, S, = JM, and M, = JS,, where J is the reflect in
operator on L2, that is, J(2") = 2z~", for n in Z. A slant Hankel operator K, is
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an operator on L? defined by

o0
Kw(zk) = Z Q_oi_ 12"
i=—00
for k in Z. Moreover, K, = JA, and A, = JK,, The compression of K, to H? is
denoted by L. Symbolically L, = PK,|y>, equivalently L,P = PK,P, where P
is the orthogonal projection of L? onto H?.
In this paper, we establish equations which characterize slant Hankel opera-
tors and their compressions. We also investigate the conditions under which these
operators are self-adjoint, normal, hyponormal or compact.

2. Slant Hankel operators

In this section, we obtain a characterization of a slant Hankel operator on L?
and prove that the set of all slant Hankel operators on L? is a subspace of B(L?)
(the algebra of all operators on L?). We begin by recalling the definition of the
reflection operator J on L2. For f in L2, J(f(z)) = f(z). The matrix of J with
respect to the orthonormal basis {z" : n € Z} is

Since J2(f(2)) = J(f(2)) = f(2), it follows that J? = I. Since (J*(f(2)),g(z))

(2, I (g(2)) = (£(2),9(2) = (F(2), 9(2)), forall £, g in L2, it follows that J* = J.
Moreover, we have ||J|| = 1.

REMARK 2.1. (a) Since, for nin Z, WJ(2?") =z = JW (22), WJ(z?"71) =
0 = JW (1), W*J(z") = 22" = JW*(z"), it follows that K, = JA, =
JWM, =WJM, =WS,, where S, is a Hankel operator on L?.

(b) 1K, = [ A,

(c) We note that J has a doubly infinite Hankel matrix, and an operator A
having a Hankel matrix is characterized by the operator equation V*A = AV,
where V is the bilateral shift [11].

(d) K3, the adjoint of K, is given by K = A%LJ* = MaW*J = MaJW* =
J My W™ = JA;(E).

We know that an operator A on L? is a slant Toeplitz operator if and only if
VA = AV? where V is the bilateral shift [7, Proposition 3]. We present here a
similar characterization of a slant Hankel operator.
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THEOREM 2.2. An operator A on L? is a slant Hankel operator if and only if
V*A = AV?, where V is the bilateral shift.

PROOF. Suppose A = K, is a slant Hankel operator. Then V*K, = V*JA, =
JVA, = JA,V? = K,V2 Conversely, suppose V*A = AV2. Then VJA =
JV*A = JAV?2. Therefore, JA is a slant Toeplitz operator on L? by [7, Proposition
3]. Consequently, A is a slant Hankel operator on L2. O

COROLLARY 2.3. The set of all slant Hankel operators on L? is a subspace of
B(L?).

PrOOF. If a and b are complex numbers and ¢, € L, then

aK, +bKy =aJA, +bJAy = J(aA,) + J(bAy) = J(aA, + bAy)
= J(Aap+by) = Kaptby-
Therefore, it is a linear manifold.

Suppose that for each a, K, is a slant Hankel operator such that K, — K
weakly, where {a} is a net. Then, for f, g in L? we have (K, V2f,g) — (KV2f, g)
and (V*K.f,g) = (Kof,Vg) — (Kf,Vg) = (V*Kf,g). Since K,V? = V*K,
for all o, we get (KV?f,g) = (V*Kf,g). This implies that V*K = KV? and
hence K is a slant Hankel operator by Theorem 2.2. Therefore, the set of all slant

Hankel operators is weakly closed and hence strongly closed [5, Problem 13]. This
completes the proof. O

3. Compressions of slant Hankel operators

We denote the compression of a slant Hankel operator K, to H? by L,. By
the definition of compression, we have L, = PK,|g2, equivalently, L,P = PK,P,
where P is the orthogonal projection of L? onto H2?. We have the following.

THEOREM 3.1. L, = WH,, where H, is a Hankel operator on H?. (Note that
H,=PS,|n2)

PROOF. L, = PK,|p» = PJAy| g2 = PIJWMy|y2 = WPJIMy|y> = WH,.
O

REMARK 3.2. (a) If ¢ — ¢ is in zH>, then for f in H?, we have L,_y(f) =

. N e i

WH,_y(f) = WPJ((¢ — $)f) = 0, since J(( — 0)) = (¢ — ¥)[(2) is m H**)

Therefore, L, = Ly. This implies that the mapping ¢ — L, is not one-one and
hence ¢ is not unique.

(b) If ¢(z) = 1, then, for f in H?, we have Li(f) = WHy(f) = WPJ(f) =
WP(f(2)) = (f,2°)2°. Hence L; is the projection of H? onto the subspace spanned
by 2°.

(c) For f in H?, we have, by Theorem 2 [12], H,W(f) = PJM,W(f) =
PJWMLP(Z2)(f) = PJA¢(22)(f) = PKW(ZZ)(f). Therefore7 H¢W = Lw(zz).

Z. Nehari [8] proved that an operator B on H? is a Hankel operator on H?
if and only if U*B = BU, where U is the unilateral shift. We state and prove a
similar result for the compression of a slant Hankel operator. To achieve this we
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need the ‘lifting theorem’ of Sz-Nagy and Foias [3], [4], [9] and [11]. One version of
the theorem is as follows:

LIFTING THEOREM. For i = 1,2, let B; be a contraction on a Hilbert space
H;, and let A;, acting on the Hilbert space K;, be the minimal unitary dilation of
B;. Let P; be the orthogonal projection of K; onto H;. Then an operator X from
H, to Hy satisfies Bo X = X By only if there exists an operator Y from Ky to Ko
such that (i) AY =Y Ay, (i) | X|| =Y, (i) PYP, =XP.

THEOREM 3.3. An operator L on H? is the compression of a slant Hankel
operator if and only if U*L = LU?, where U is the unilateral shift. In that case
|IL|| = || K||, where L = PK|g=.

PROOF. Since P(zW f) = PW(22f) = WP(z2f), for f in H?, we have U*W =
WU*2. Now, suppose L = L, the compression of a slant Hankel operator. Then
L,=WH, and U*L, =U*WH, =WU**H, = WH,U? = L,U?.

For the converse, we first note that V', the bilateral shift, is the minimal unitary
dilation of U, the unilateral shift; and V* is the minimal unitary dilation of U* [5,
Problem 155]. Suppose U*L = LU?. Then by the lifting theorem, there is an

operator K on L? such that V*K = KV? |K| = ||L|| and LP = PKP. By
Theorem 2.2, we get K = K, for some ¢ in L*°. Therefore, PK,P = L,P.
Consequently, L = L, the compression of K. This completes the proof. O

We give another proof of Theorem 3.2 by using S. Parrott’s observation [10]
which is as follows.

. (X C
PARROTT’S OBSERVATION. The smallest norm of an operator matrix < B A> ,

L . 0 0 0 C
as X varies, is given as the maximum of the norms of ( B A) , and <0 A) . Now,
suppose that L is an operator such that U*L = LU?. Then L = (a_gi_j)szo. Let

e . ap a—1la_9 a_3 a_4 ® - X C
217 lasasagsasa6 o | \B A}
[ ] ° I [ ] [ L] [
Then
0 0 0 C
(B A) - (o A> = K
Therefore, by Parrott’s observation, we have ||Ks 1| = ||L|. Consequently K1 is

bounded. Continuing this construction, let

o agJ'_ as ap ag
az a1 lay a—1 a_o ® X C
K4 3 = | = .
’ ap G-1,G-2 G_3 G4 ® B A
[ ) [ ) | [ ) [ ) [ ] [ ]
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Then
0 O 0o C
(5 4)=(0 &) =r
Therefore, by Parrott’s observation again, we have || K4 3|| = ||K2,1|| = ||L||. Conse-
quently Ky 3 is bounded. Continuing this construction, at the n-th step, a bounded
linear transformation Ky, 2,1 is constructed with ||Kap 2n—1] = ||L|. It follows

that K = (a_2i—;)%- o and K is an operator on L. Moreover, V*K = KV?.
Therefore, by Theorem 2.2, K = K, for some ¢ in L> and L = PK,|g2. There-
fore, L = L. This completes the proof. U

REMARK 3.4. According to the construction above it is also apparent that ¢
is not unique. In fact, as remarked earlier, if ¢ — 1) is in 2>, then L = L, = L.

We observe that ||Ay|| = ||V[/|<,0|2H<1>é2 [7, Proposition 5] and ||K,| = || A, by
Remark 2.1. Hence ||K,|| = ||[W|p[2[|5°.
THEOREM 3.5. We have || Ly | = inf{|W|e — ¢|2||5* : ¢ € zH>®}.

PrOOF. By Theorem 3.2, we know that there is a ¢ in L* and ¢ — 1 in zH>
such that ||Ly|| = | Kyl = ||V[/’|1/)|2||(1>é2 This implies that

inf{[|[Wle — 67|17 : ¢ € zH®} < [WIP* | = |1 Kyl = | Lo l-
On the other hand, ||Ly|| = | Lo—sll < [Kp_sll = [W]e — ¢[2]|%2. This implies

that || Ly|| < inf{||W]e — gz5|2\|<1>42 : ¢ € zH*}. This completes the proof. O
For f,g in H?, we have (H;f,g) = (f, Hyg) = (f,PJ(¢g)) = (2(2)f(2),9)-
This implies that H}f = P(¢(2)f(2)) = PJ(@¢(2)f(2)) = Hgz)f. Therefore,

H} = Hg(z). Since L, = WH,, we have Li, = Hyz)W™.

THEOREM 3.6. 0 # L, is self-adjoint if and only if ¢(z) = non-zero real
constant.

ProoOF. If Y272 ;2" is the Fourier expansion of ¢, then the (i, j)-th entry
of the matrix of L, is given by (Ly,27,2%) = (WHy27,2%) = (PJ(p2?),2%) =
<(p, Z_Qi_j> =a_-2i—j-

Now, suppose L, is self-adjoint. Then, for ¢,5 > 0, a_2;—; = @a_25—;. Put
i = 0. Then we have a_; = a_o;. This implies that for each k& > 0 and for all n > 0
|a_r| = |a—gan|- This in turn implies that a_; = 0, for all k > 0, because a_j, — 0,
as k — oo. Therefore, p(z) = ag.

Conversely, if ¢(z) = ag, then L,(f) = WPJ(¢f) = ao(f,2")z° and Ly(f) =
Hy iy W*(f) = PJ(@(2)f(2?)) = ao(f(2?),2°)2° = ao(f, 2")2%. Since ap = ag, we
have the desired result. O

REMARK 3.7. If ¢ € zH*°, then L, = 0. Therefore, L, is self-adjoint.

By making the same type of calculations as in the proof of Theorem 3.5, we
can prove the following.

THEOREM 3.8. L, is hyponormal if and only if ¢ is in H*.
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PRroor. Suppose L, is hyponormal. Then L, = WH, and for f in H?,
IWHfl| > [HzW* f|. Equivalently, [WPJI(@f)] > |PI(@(2)f(:2)]. Putting
f(z) =1, we get |[WPJ()||? > ||PJ(#(2))]|?. Equivalently,

o0 oo
Z la_si|” > Z ja—i|*,
=0 i=0

where Y°°° __a;z* is the Fourier expansion of ¢. This implies that a_s; 1 = 0, for

i=—00

i=0,1,2,.... Again putting f(z) = 2, we get |[WPJ(p2)||* > ||PJ(z%¢(2))]?.

Equivalently,
o o
Z |CL—2i—1|2 = Z \@—i—2|2~
i=0 i=0

But the left-hand side is equal to 0. Therefore a_;—o = 0, for ¢ = 0,1,2,....
Consequently, a_; =0, for i = 1,2,3, ..., which means ¢ is in H*.

Conversely, let ¢ be in H*°. Then L, = 0 if ¢ € zH*°, and L, is a multiple
of the projection on the subspace of H? spanned by z° if p(2) = constant. In
other words, if ¢(z) = ag, then L,(f) = Loy (f) = ao(f,2%)z" and its adjoint
Ly(f) = Ly (f) = aolf, 20)20. Therefore, L, is normal and hence hyponormal.
This completes the proof. O

REMARK 3.9. (a) The non-zero hyponormal L, are the scalar multiples of the
projection of H? onto the subspace spanned by z°.
(b) A hyponormal L, is necessarily normal.

THEOREM 3.10. L, can not be an isometry.

PROOF. Suppose L, is an isometry. Then, for j = 0, 1,2,..., we have
| Ly27|| = ||27|| = 1. Equivalently,

oo

D lacan gt =1,
k=0
o0
where 3" apz" is the Fourier expansion of (. Putting 7 = 0 and j = 2, we get
k=—oc0

oo oo

Z la_op” = Z la_op_o|* = 1.

k=0 k=0

This implies that ag = 0. In general, by putting j = 2n and j = 2n + 2, we get
G_on =0,forn=0,1,2,.... Similarly by putting j = 2n+1 and j = 2n+3, we get

a_on—1 =0, for n = 0,1,2,.... Therefore, ¢(z) = > 7=, axz", but this ¢ induces
the zero operator, that is, L, = 0. This is a contradiction. Hence L, cannot be an
isometry. O

THEOREM 3.11. L, is never a Fredholm operator.

PROOF. Suppose L, is a Fredholm operator. Then: (i) ran(L,) is closed,  (ii)
dimker(L,) and dimker(L?,) are finite.
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If ker(L,) = ker(L}) = {0}, then L, would be invertible, and hence U* =
L,U?L;Y, as UL, = L,U? by Theorem 3.2. But this is not true, because U*
is not similar to U?. Therefore, either ker(L,) # {0} or ker(L}) # {0}. Suppose
ker(L,) # {0}. Then there is a non-zero f in H? such that L,f = 0. Since
U*"L, = L,U?", by repeated use of Theorem 3.2, it follows that U?"f is in
ker(L,), forallm =1,2,3,.... Since U?" f are linearly independent for different n’s,
we have dimker(L,) is equal to infinity, and hence L, is not Fredholm. Similarly,
if ker(L%) # {0}, then there is a non-zero g in H? such that L,g=0. Since L,U™ =
U #*" L}, by Theorem 3.2, it follows that U™g is in ker(L?) and dimker(L},) = occ.
Therefore, L, is not Fredholm. This completes the proof. O

Consider the matrix of L7, the adjoint of L, given below

ag Q_o G_4 ®
a-1 Q-3 G_5 ®
d_g d_4 d—G [ ]

[ ] [ ] [ ] [}

Since W eliminates every odd row of the matrix of L7, it follows that the matrix

of WL, is a matrix of a Hankel operator as shown below

(_10 AG_o Q_y4 ®
C_L_2 C_L_4 C_L_G o
a_4 Q_g G_g ®

o [ ] [ ] [

If >2° __a;z" is the Fourier expansion of ¢, then the matrix above defines the
Hankel operator induced by the function W (p(z)). Therefore, WL}, = Hy, where
¥ =W(p(2)).

REMARK 3.12. (a) If L, is compact, thenL, is also compact. By the above
relation WL, = Hy, and hence Hy is compact. By Hartman’s theorem [2] and [6],

we have that ¢ belongs to H> + C(T).
(b) If ¢ is in H*® + C(T'), then L, is also compact, since L, = W H,,.
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