
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
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Abstract. A slant Hankel operator Kϕ with symbol ϕ in L∞(T ) (in short
L∞), where T is the unit circle on the complex plane, is an operator whose
representing matrix M = (aij) is given by ai,j = 〈ϕ, z−2i−j〉, where 〈·, ·〉 is

the usual inner product in L2(T ) (in short L2). The operator Lϕ denotes
the compression of Kϕ to H2(T ) (in short H2). We prove that an operator
L on H2 is the compression of a slant Hankel operator to H2 if and only
if U ∗ L = LU2, where U is the unilateral shift. Moreover, we show that a
hyponormal Lϕ is necessarily normal and Lϕ can not be an isometry.

1. Introduction

Let ϕ be in L∞. Then ϕ(z) ∼ ∑∞
i=−∞ aiz

i, where ai = 〈ϕ, zi〉 is the i-th
Fourier coefficient of ϕ and {zi : i ∈ Z} is the usual orthonormal basis of L2 and Z
is the set of integers. A slant Toeplitz operator Aϕ is an operator on L2 defined by

Aϕ(zk) =
∞∑

i=−∞
a2i−kzi,

for k in Z. Furthermore Aϕ = WMϕ, where Mϕ is a multiplication operator on L2

and W is an operator on L2 such that Wz2n = zn and Wz2n−1 = 0, for n in Z.
A Hankel operator Sϕ is an operator on L2 defined by

Sϕ(zk) =
∞∑

i=−∞
a−i−kzi

for k in Z [1]. Moreover, Sϕ = JMϕ and Mϕ = JSϕ, where J is the reflect in
operator on L2, that is, J(zn) = z−n, for n in Z. A slant Hankel operator Kϕ is
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an operator on L2 defined by

Kϕ(zk) =
∞∑

i=−∞
a−2i−kzi

for k in Z. Moreover, Kϕ = JAϕ and Aϕ = JKϕ, The compression of Kϕ to H2 is
denoted by Lϕ. Symbolically Lϕ = PKϕ|H2 , equivalently LϕP = PKϕP , where P
is the orthogonal projection of L2 onto H2.

In this paper, we establish equations which characterize slant Hankel opera-
tors and their compressions. We also investigate the conditions under which these
operators are self-adjoint, normal, hyponormal or compact.

2. Slant Hankel operators

In this section, we obtain a characterization of a slant Hankel operator on L2

and prove that the set of all slant Hankel operators on L2 is a subspace of B(L2)
(the algebra of all operators on L2). We begin by recalling the definition of the
reflection operator J on L2. For f in L2, J(f(z)) = f(z̄). The matrix of J with
respect to the orthonormal basis {zn : n ∈ Z} is




•
•

0 •
1

1
1

• 0
•

•




Since J2(f(z)) = J(f(z̄)) = f(z), it follows that J2 = I. Since 〈J∗(f(z)), g(z)〉 =
〈f(z), J(g(z))〉 = 〈f(z), g(z̄)〉 = 〈f(z̄), g(z)〉, for all f, g in L2, it follows that J∗ = J .
Moreover, we have ‖J‖ = 1.

Remark 2.1. (a) Since, for n in Z, WJ(z2n) = z̄n = JW (z2n), WJ(z2n−1) =
0 = JW (z2n−1), W ∗J(zn) = z̄2n = JW ∗(zn), it follows that Kϕ = JAϕ =
JWMϕ = WJMϕ = WSϕ, where Sϕ is a Hankel operator on L2.

(b) ‖Kϕ‖ = ‖Aϕ‖.
(c) We note that J has a doubly infinite Hankel matrix, and an operator A

having a Hankel matrix is characterized by the operator equation V ∗A = AV ,
where V is the bilateral shift [11].

(d) K∗
ϕ, the adjoint of Kϕ, is given by K∗

ϕ = A∗ϕJ∗ = Mϕ̄W ∗J = Mϕ̄JW ∗ =
JMϕ̄(z̄)W

∗ = JA∗ϕ(z̄).

We know that an operator A on L2 is a slant Toeplitz operator if and only if
V A = AV 2, where V is the bilateral shift [7, Proposition 3]. We present here a
similar characterization of a slant Hankel operator.
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Theorem 2.2. An operator A on L2 is a slant Hankel operator if and only if
V ∗A = AV 2, where V is the bilateral shift.

Proof. Suppose A = Kϕ is a slant Hankel operator. Then V ∗Kϕ = V ∗JAϕ =
JV Aϕ = JAϕV 2 = KϕV 2. Conversely, suppose V ∗A = AV 2. Then V JA =
JV ∗A = JAV 2. Therefore, JA is a slant Toeplitz operator on L2 by [7, Proposition
3]. Consequently, A is a slant Hankel operator on L2. ¤

Corollary 2.3. The set of all slant Hankel operators on L2 is a subspace of
B(L2).

Proof. If a and b are complex numbers and ϕ,ψ ∈ L∞, then

aKϕ + bKψ = aJAϕ + bJAψ = J(aAϕ) + J(bAψ) = J(aAϕ + bAψ)

= J(Aaϕ+bψ) = Kaϕ+bψ.

Therefore, it is a linear manifold.
Suppose that for each α, Kα is a slant Hankel operator such that Kα → K

weakly, where {α} is a net. Then, for f, g in L2, we have 〈KαV 2f, g〉 → 〈KV 2f, g〉
and 〈V ∗Kαf, g〉 = 〈Kαf, V g〉 → 〈Kf, V g〉 = 〈V ∗Kf, g〉. Since KαV 2 = V ∗Kα

for all α, we get 〈KV 2f, g〉 = 〈V ∗Kf, g〉. This implies that V ∗K = KV 2 and
hence K is a slant Hankel operator by Theorem 2.2. Therefore, the set of all slant
Hankel operators is weakly closed and hence strongly closed [5, Problem 13]. This
completes the proof. ¤

3. Compressions of slant Hankel operators

We denote the compression of a slant Hankel operator Kϕ to H2 by Lϕ. By
the definition of compression, we have Lϕ = PKϕ|H2 , equivalently, LϕP = PKϕP ,
where P is the orthogonal projection of L2 onto H2. We have the following.

Theorem 3.1. Lϕ = WHϕ, where Hϕ is a Hankel operator on H2. (Note that
Hϕ = PSϕ|H2)

Proof. Lϕ = PKϕ|H2 = PJAϕ|H2 = PJWMϕ|H2 = WPJMϕ|H2 = WHϕ.
¤

Remark 3.2. (a) If ϕ − ψ is in zH∞, then for f in H2, we have Lϕ−ψ(f) =
WHϕ−ψ(f) = WPJ((ϕ − ψ)f) = 0, since J((ϕ − ψ)f) = (ϕ − ψ)f(z̄) is in H2⊥ .
Therefore, Lϕ = Lψ. This implies that the mapping ϕ → Lϕ is not one-one and
hence ϕ is not unique.

(b) If ϕ(z) = 1, then, for f in H2, we have L1(f) = WH1(f) = WPJ(f) =
WP (f(z̄)) = 〈f, z0〉z0. Hence L1 is the projection of H2 onto the subspace spanned
by z0.

(c) For f in H2, we have, by Theorem 2 [12], HϕW (f) = PJMϕW (f) =
PJWMϕ(z2)(f) = PJAϕ(z2)(f) = PKϕ(z2)(f). Therefore, HϕW = Lϕ(z2).

Z. Nehari [8] proved that an operator B on H2 is a Hankel operator on H2

if and only if U∗B = BU , where U is the unilateral shift. We state and prove a
similar result for the compression of a slant Hankel operator. To achieve this we
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need the ‘lifting theorem’ of Sz-Nagy and Foias [3], [4], [9] and [11]. One version of
the theorem is as follows:

Lifting Theorem. For i = 1, 2, let Bi be a contraction on a Hilbert space
Hi, and let Ai, acting on the Hilbert space Ki, be the minimal unitary dilation of
Bi. Let Pi be the orthogonal projection of Ki onto Hi. Then an operator X from
H1 to H2 satisfies B2X = XB1 only if there exists an operator Y from K1 to K2

such that (i) A2Y = Y A1, (ii) ‖X‖ = ‖Y ‖, (iii) P2Y P1 = XP1.

Theorem 3.3. An operator L on H2 is the compression of a slant Hankel
operator if and only if U∗L = LU2, where U is the unilateral shift. In that case
‖L‖ = ‖K‖, where L = PK|H2 .

Proof. Since P (z̄Wf) = PW (z̄2f) = WP (z̄2f), for f in H2, we have U∗W =
WU∗2. Now, suppose L = Lϕ, the compression of a slant Hankel operator. Then
Lϕ = WHϕ and U∗Lϕ = U∗WHϕ = WU∗2Hϕ = WHϕU2 = LϕU2.

For the converse, we first note that V , the bilateral shift, is the minimal unitary
dilation of U , the unilateral shift; and V ∗ is the minimal unitary dilation of U∗ [5,
Problem 155]. Suppose U∗L = LU2. Then by the lifting theorem, there is an
operator K on L2 such that V ∗K = KV 2, ‖K‖ = ‖L‖ and LP = PKP . By
Theorem 2.2, we get K = Kϕ, for some ϕ in L∞. Therefore, PKϕP = LϕP .
Consequently, L = Lϕ, the compression of Kϕ. This completes the proof. ¤

We give another proof of Theorem 3.2 by using S. Parrott’s observation [10]
which is as follows.

Parrott’s observation. The smallest norm of an operator matrix
(

X C
B A

)
,

as X varies, is given as the maximum of the norms of
(

0 0
B A

)
, and

(
0 C
0 A

)
. Now,

suppose that L is an operator such that U∗L = LU2. Then L = (a−2i−j)∞i,j=0. Let

K2,1 =




a2 a1 a0 a−1 a−2 •
a0 a−1 a−2 a−3 a−4 •
a−2 a−3 a−4 a−5 a−6 •
• • • • • •


 =

(
X C
B A

)
.

Then (
0 0
B A

)
=

(
0 C
0 A

)
= K2,1

Therefore, by Parrott’s observation, we have ‖K2,1‖ = ‖L‖. Consequently K2,1 is
bounded. Continuing this construction, let

K4,3 =




a4 a3 a2 a1 a0 •
a2 a1 a0 a−1 a−2 •
a0 a−1 a−2 a−3 a−4 •
• • • • • •


 =

(
X C
B A

)
.
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Then (
0 0
B A

)
=

(
0 C
0 A

)
= K2,1

Therefore, by Parrott’s observation again, we have ‖K4,3‖ = ‖K2,1‖ = ‖L‖. Conse-
quently K4,3 is bounded. Continuing this construction, at the n-th step, a bounded
linear transformation K2n,2n−1 is constructed with ‖K2n,2n−1‖ = ‖L‖. It follows
that K = (a−2i−j)∞i,j=−∞ and K is an operator on L2. Moreover, V ∗K = KV 2.
Therefore, by Theorem 2.2, K = Kϕ, for some ϕ in L∞ and L = PKϕ|H2 . There-
fore, L = Lϕ. This completes the proof. ¤

Remark 3.4. According to the construction above it is also apparent that ϕ
is not unique. In fact, as remarked earlier, if ϕ−ψ is in zH∞, then L = Lϕ = Lψ.

We observe that ‖Aϕ‖ = ‖W |ϕ|2‖1/2
∞ [7, Proposition 5] and ‖Kϕ‖ = ‖Aϕ‖ by

Remark 2.1. Hence ‖Kϕ‖ = ‖W |ϕ|2‖1/2
∞ .

Theorem 3.5. We have ‖Lϕ‖ = inf{‖W |ϕ− φ|2‖1/2
∞ : φ ∈ zH∞}.

Proof. By Theorem 3.2, we know that there is a ϕ in L∞ and ϕ−ψ in zH∞

such that ‖Lϕ‖ = ‖Kψ‖ = ‖W |ψ|2‖1/2
∞ . This implies that

inf{‖W |ϕ− φ|2‖1/2
∞ : φ ∈ zH∞} 6 ‖W |ψ|2‖1/2

∞ = ‖Kψ‖ = ‖Lϕ‖.
On the other hand, ‖Lϕ‖ = ‖Lϕ−φ‖ 6 ‖Kϕ−φ‖ = ‖W |ϕ − φ|2‖1/2

∞ . This implies
that ‖Lϕ‖ 6 inf{‖W |ϕ− φ|2‖1/2

∞ : φ ∈ zH∞}. This completes the proof. ¤

For f, g in H2, we have 〈H∗
ϕf, g〉 = 〈f, Hϕg〉 = 〈f, PJ(ϕg)〉 = 〈ϕ̄(z)f(z̄), g〉.

This implies that H∗
ϕf = P (ϕ̄(z)f(z̄)) = PJ(ϕ̄(z̄)f(z)) = Hϕ̄(z̄)f . Therefore,

H∗
ϕ = Hϕ̄(z̄). Since Lϕ = WHϕ, we have L∗ϕ = Hϕ̄(z̄)W

∗.

Theorem 3.6. 0 6= Lϕ is self-adjoint if and only if ϕ(z) = non-zero real
constant.

Proof. If
∑∞

i=−∞ aiz
i is the Fourier expansion of ϕ, then the (i, j)-th entry

of the matrix of Lϕ is given by 〈Lϕzj , zi〉 = 〈WHϕzj , zi〉 = 〈PJ(ϕzj), z2i〉 =
〈ϕ, z−2i−j〉 = a−2i−j .

Now, suppose Lϕ is self-adjoint. Then, for i, j > 0, a−2i−j = ā−2j−i. Put
i = 0. Then we have a−j = ā−2j . This implies that for each k > 0 and for all n > 0
|a−k| = |a−k2n|. This in turn implies that a−k = 0, for all k > 0, because a−k → 0,
as k →∞. Therefore, ϕ(z) = a0.

Conversely, if ϕ(z) = a0, then Lϕ(f) = WPJ(ϕf) = a0〈f, z0〉z0 and L∗ϕ(f) =
Hϕ̄(z̄)W

∗(f) = PJ(ϕ̄(z̄)f(z2)) = ā0〈f(z2), z0〉z0 = ā0〈f, z0〉z0. Since ā0 = a0, we
have the desired result. ¤

Remark 3.7. If ϕ ∈ zH∞, then Lϕ = 0. Therefore, Lϕ is self-adjoint.

By making the same type of calculations as in the proof of Theorem 3.5, we
can prove the following.

Theorem 3.8. Lϕ is hyponormal if and only if ϕ is in H∞.
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Proof. Suppose Lϕ is hyponormal. Then Lϕ = WHϕ and for f in H2,
‖WHϕf‖ > ‖H∗

ϕW ∗f‖. Equivalently, ‖WPJ(ϕf)‖ > ‖PJ(ϕ̄(z̄)f(z2))‖. Putting
f(z) = 1, we get ‖WPJ(ϕ)‖2 > ‖PJ(ϕ̄(z̄))‖2. Equivalently,

∞∑

i=0

|a−2i|2 >
∞∑

i=0

|ā−i|2 ,

where
∑∞

i=−∞ aiz
i is the Fourier expansion of ϕ. This implies that a−2i−1 = 0, for

i = 0, 1, 2, . . . . Again putting f(z) = z, we get ‖WPJ(ϕz)‖2 > ‖PJ(z2ϕ̄(z̄))‖2.
Equivalently,

∞∑

i=0

|a−2i−1|2 >
∞∑

i=0

|ā−i−2|2 .

But the left-hand side is equal to 0. Therefore a−i−2 = 0, for i = 0, 1, 2, . . . .
Consequently, a−i = 0, for i = 1, 2, 3, . . . , which means ϕ is in H∞.

Conversely, let ϕ be in H∞. Then Lϕ = 0 if ϕ ∈ zH∞, and Lϕ is a multiple
of the projection on the subspace of H2 spanned by z0 if ϕ(z) = constant. In
other words, if ϕ(z) = a0, then Lϕ(f) = La0(f) = a0〈f, z0〉z0 and its adjoint
L∗ϕ(f) = L∗a0

(f) = ā0〈f, z0〉z0. Therefore, Lϕ is normal and hence hyponormal.
This completes the proof. ¤

Remark 3.9. (a) The non-zero hyponormal Lϕ are the scalar multiples of the
projection of H2 onto the subspace spanned by z0.

(b) A hyponormal Lϕ is necessarily normal.

Theorem 3.10. Lϕ can not be an isometry.

Proof. Suppose Lϕ is an isometry. Then, for j = 0, 1, 2, . . . , we have
‖Lϕzj‖ = ‖zj‖ = 1. Equivalently,

∞∑

k=0

|a−2k−j |2 = 1,

where
∞∑

k=−∞
akzk is the Fourier expansion of ϕ. Putting j = 0 and j = 2, we get

∞∑

k=0

|a−2k|2 =
∞∑

k=0

|a−2k−2|2 = 1.

This implies that a0 = 0. In general, by putting j = 2n and j = 2n + 2, we get
a−2n = 0, for n = 0, 1, 2, . . . . Similarly by putting j = 2n+1 and j = 2n+3, we get
a−2n−1 = 0, for n = 0, 1, 2, . . . . Therefore, ϕ(z) =

∑∞
k=1 akzk, but this ϕ induces

the zero operator, that is, Lϕ = 0. This is a contradiction. Hence Lϕ cannot be an
isometry. ¤

Theorem 3.11. Lϕ is never a Fredholm operator.

Proof. Suppose Lϕ is a Fredholm operator. Then: (i) ran(Lϕ) is closed, (ii)
dimker(Lϕ) and dim ker(L∗ϕ) are finite.
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If ker(Lϕ) = ker(L∗ϕ) = {0}, then Lϕ would be invertible, and hence U∗ =
LϕU2L−1

ϕ , as U∗Lϕ = LϕU2 by Theorem 3.2. But this is not true, because U∗

is not similar to U2. Therefore, either ker(Lϕ) 6= {0} or ker(L∗ϕ) 6= {0}. Suppose
ker(Lϕ) 6= {0}. Then there is a non-zero f in H2 such that Lϕf = 0. Since
U∗nLϕ = LϕU2n, by repeated use of Theorem 3.2, it follows that U2nf is in
ker(Lϕ), for all n = 1, 2, 3, . . . . Since U2nf are linearly independent for different n’s,
we have dim ker(Lϕ) is equal to infinity, and hence Lϕ is not Fredholm. Similarly,
if ker(L∗ϕ) 6= {0}, then there is a non-zero g in H2 such that Lϕg=0. Since L∗ϕUn =
U ∗2n L∗ϕ by Theorem 3.2, it follows that Ung is in ker(L∗ϕ) and dim ker(L∗ϕ) = ∞.
Therefore, Lϕ is not Fredholm. This completes the proof. ¤

Consider the matrix of L∗ϕ, the adjoint of Lϕ, given below



ā0 ā−2 ā−4 •
ā−1 ā−3 ā−5 •
ā−2 ā−4 ā−6 •
• • • •




Since W eliminates every odd row of the matrix of L∗ϕ, it follows that the matrix
of WL∗ϕ is a matrix of a Hankel operator as shown below




ā0 ā−2 ā−4 •
ā−2 ā−4 ā−6 •
ā−4 ā−6 ā−8 •
• • • •




If
∑∞

i=−∞ aiz
i is the Fourier expansion of ϕ, then the matrix above defines the

Hankel operator induced by the function W (ϕ̄(z̄)). Therefore, WL∗ϕ = Hψ, where
ψ = W (ϕ̄(z̄)).

Remark 3.12. (a) If Lϕ is compact, thenL∗ϕ is also compact. By the above
relation WL∗ϕ = Hψ, and hence Hψ is compact. By Hartman’s theorem [2] and [6],
we have that ψ belongs to H∞ + C(T ).

(b) If ϕ is in H∞ + C(T ), then Lϕ is also compact, since Lϕ = WHϕ.
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