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CHARACTERIZATIONS OF sn-METRIZABLE SPACES

Ying Ge

Communicated by Rade Živaljević

Abstract. We give some characterizations of sn-metrizable spaces. We prove
that a space is an sn-metrizable space if and only if it has a locally-finite point-
star sn-network. As an application of the result, a space is an sn-metrizable
space if and only if it is a sequentially quotient, π (compact), σ-image of a
metric space.

1. Introduction

To characterize generalized metric spaces by some point-star networks and by
some map images of metric spaces are important questions in general topology.
The former was due to thought of Alexandroff and Urysohn characterized metric
spaces by point-star neighborhood base [1], and the later came from the Alexan-
droffsuggestion to investigate images or preimages of “nice” spaces under “nice”
maps [2]. Having gained some enlightenment from investigation of g-developable
spaces by Tanaka in [18], Lin characterized g-metrizable spaces by point-star weak
neighborhood base, and proved that a space X is g-metrizable if and only if X has
a locally-finite point-star weak neighborhood base [9]. Notice that it is difficult
to characterize generalized metric spaces by using general map images of metric
spaces. Recently the authors of [13] introduced σ-map, and proved that a space
X is g-metrizable if and only if X is a compact-covering, quotient, compact, σ-
image of a metric space [13]. In a private communication the first author of [13]
posed the question if there is a similar characterization for sn-metrizable spaces,
an important generalization of g-metrizable spaces. In this paper, we investigate
this question, prove that a space is an sn-metrizable space if and only if it has a
locally-finite point-star sn-network, if and only if it is a sequentially quotient, π
(compact), σ-image of a metric space. As a corollary of the results above, a space
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is a g-metrizable space if and only if it is a quotient, π (compact), σ-image of a
metric space, which improves a foregoing result on g-metrizable spaces by omitting
the condition “compact-covering” in the statement.

Throughout this paper, all spaces are assumed to be regular T1, and all maps
are continuous and onto. Every convergent sequence contains its limit point. N
denotes the set of all natural numbers. S1 denotes the subspace {0}∪{1/n : n ∈ N}
of the real numbers space. Let A be a subset of a space X. Ā denotes the closure
of A. Furthermore let x ∈ X, U be a collection of subsets of X,

⋃U =
⋃{U :

U ∈ U}, st(x,U) =
⋃{U ∈ U : x ∈ U}. The sequence {xn : n ∈ N}, the sequence

{Pn : n ∈ N} of subsets and the sequence {Pn : n ∈ N} of collections of subsets are
abbreviated to {xn}, {Pn} and {Pn} respectively. For terms which are not defined
here, please refer to [9].

Definition 1.1. [5] Let X be a space, x ∈ P ⊂ X. P is a sequential neigh-
borhood of x, if every sequence {xn} converging to x is eventually in P , i.e., there
is k ∈ N such that xn ∈ P for n > k.

Remark 1.2. (1) P is a sequential neighborhood of x if and only if x ∈ P and
every sequence {xn} converging to x is frequently in P , i.e., for every k ∈ N , there
is n > k such that xn ∈ P .

(2) The intersection of finitely many sequential neighborhoods of x is a sequen-
tial neighborhood of x

Definition 1.3. [6], [10] A cover P =
⋃{Px : x ∈ X} of a space X is a cs-

network (cs∗-network), if every convergent sequence S converging to a point x ∈ U
with U open in X, then S is eventually (frequently) in P ⊂ U for some P ∈ Px. A
space X is csf -countable, if X has a cs-network P =

⋃{Px : x ∈ X} such that Px

is countable for every x ∈ X; is an ℵ-space, if X has a σ-locally-finite cs-network.

Definition 1.4. [3], [11] Let P =
⋃{Px : x ∈ X} be a cover of a space X.

Assume that P satisfies the following (a) and (b) for every x ∈ X.
(a) P is a network of X, that is, whenever x ∈ U with U open in X, then

x ∈ P ⊂ U for some P ∈ Px; Px is said to be a network at x for every x ∈ X.
(b) If P1, P2 ∈ Px, then there exists P ∈ Px such that P ⊂ P1 ∩ P2.
(1) P is a weak base of X, if for G ⊂ X, G is open in X if and only if for every

x ∈ G there exists P ∈ Px such that P ⊂ G; Px is said to be a weak neighborhood
base (wn-base for short) at x.

(2) P is an sn-network of X, if every element of Px is a sequential neighborhood
of x for every x ∈ X; Px is said to be an sn-network at x.

(3) A space X is gf -countable (snf -countable), if X has a weak base (sn-
network) P =

⋃{Px : x ∈ X} such that Px is countable for every x ∈ X; is
g-metrizable (sn-metrizable), if X has a σ-locally-finite weak base (sn-network).

Remark 1.5. [8], [10], [11] (1) weak base ⇒ sn-network ⇒ cs-network, so gf -
countable ⇒ snf -countable ⇒ csf -countable, and g-metrizable ⇒ sn-metrizable
⇒ ℵ.

(2) g-metrizable ⇔ k and sn-metrizable.
(3) In the class of Fréchet spaces, metrizable ⇔ g-metrizable ⇔ sn-metrizable.
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Definition 1.6. [12] Let {Pn} be a sequence of covers of a space X.
(1) {Pn} is a point-star network (point-star sn-network, point-star wn-base)

of X, if {st(x,Pn)} is a network (sn-network, wn-base) at x for every x ∈ X.
(2) {Pn} is locally-finite (hereditarily closure-preserving, discrete, point-finite),

if every Pn is locally-finite (hereditarily closure-preserving, discrete, point-finite).

Definition 1.7. [4], [13], [14], [17] Let f : X → Y be a map.
(1) Let (X, d) be a metric space. f is a π-map, if d(f−1(y), X − f−1(U)) > 0

for every y ∈ Y and every neighborhood U of y in Y .
(2) f is a σ-map, if there exists a base B of X such that f(B) is σ-locally-finite

in Y .
(3) f is a sequentially-quotient map, if whenever S is a convergent sequence in

Y there is a convergent sequence L in X such that f(L) is a subsequence of S.
(4) f is a quotient map, if whenever U ⊂ Y , f−1(U) is open in X iff U is open

Y .

Remark 1.8. [9] (1) Closed map ⇒ quotient map.
(2) If the domain is sequential, then quotient map ⇒ sequentially-quotient

map.
(3) If the image is sequential, then sequentially-quotient map ⇒quotient map.

2. sn-metrizable spaces and point-star sn-networks

Let P be a collection of subsets of a space X. We recall that P is a k-network
of X, if whenever K is a compact subset of an open set U , there is a finite F ⊂ P
such that K ⊂ ⋃F ⊂ U .

Lemma 2.1. [9] Let P be a σ-hereditarily closure-preserving collection of subsets
of a space X. If P is a cs∗-network of X, then P is a k-network of X.

Lemma 2.2. [7], [8] For a space X, the following are equivalent.
(1) X is an sn-metrizable space.
(2) X has a σ-discrete (closed) sn-network.
(3) X has a σ-hereditarily closure-preserving (closed) sn-network.
(4) X is an snf -countable space with a σ-hereditarily closure-preserving (closed)

k-network.

The following lemma can be obtained from Lemma 3.1 and Lemma 3.2.

Lemma 2.3. A space is sn-metrizable if and only if it is an snf -countable space
with a σ-hereditarily closure-preserving (closed) cs∗-network.

Lemma 2.4. Let P be a hereditarily closure-preserving collection of subsets of
a space X, and L be a convergent sequence, which is eventually in

⋃P. Then there
exists P ∈ P such that L is frequently in P .

Proof. If not, then L ∩ P is finite for every P ∈ P. We may assume without
loss of generality that L = {xn : n ∈ N} ⊂ ⋃P and L is infinite. Pick xn1 ∈

⋃P,
then there exists P1 ∈ P such that xn1 ∈ P1. Since L is infinite and L ∩ P1 is
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finite, L − P1 is infinite, we may pick n2 > n1 and P2 ∈ P such that xn2 ∈ P2

and xn2 6= xn1 . By induction, we can obtain a convergent subsequence {xnk
} of

L such that xnk
∈ Pk ∈ P for every k ∈ N , and xnk

6= xnl
if k 6= l. Thus

{{xnk
} : k ∈ N} is not closure-preserving. This contradicts the fact that P is

hereditarily closure-preserving. ¤

Theorem 2.5. For a space X, the following are equivalent.
(1) X is an sn-metrizable space.
(2) X has a locally-finite point-star sn-network.
(3) X has a hereditarily closure-preserving point-star sn-network.

Proof. (1) ⇒ (2): Let X is an sn-metrizable space. X has an sn-network
P =

⋃{Pn : n ∈ N} from Lemma 2.2, where every Pn is a discrete collection of
closed subsets of X. Write P =

⋃{Bx : x ∈ X}, where every Bx is an sn-network
at x. For every n ∈ N , Put Fn = {x ∈ X : Pn ∩ Bx = ∅}, Fn = {Fn} ∪ Pn.
Obviously, {Fn} is a sequence of locally-finite covers of X. Let x ∈ X. We prove
Fx = {st(x,Fn) : n ∈ N} is an sn-network at x as follows.

Claim A. Fx is a network at x: Let x ∈ X and U be an open neighborhood of
x. Since Bx is a network at x, there exists Px ∈ Bx ∩Pn for some n ∈ N . such that
x ∈ Px ∈ U . Then x 6∈ Fn. Notice that elements of Pn are mutually disjoint. So
Px = st(x,Fn), that is, x ∈ st(x,Fn) ⊂ U . This proves that Fx is a network at x.

Claim B. Fx satisfies Definition 1.4(b): Consider st(x,Fn) and st(x,Fm),
where n,m ∈ N . Then one of the following holds:

(a) Bx ∩ Pn 6= ∅, Bx ∩ Pm 6= ∅; (c) Bx ∩ Pn = ∅, Bx ∩ Pm 6= ∅;
(b) Bx ∩ Pn 6= ∅, Bx ∩ Pm = ∅; (d) Bx ∩ Pn = ∅, Bx ∩ Pm = ∅.
We prove the case (b), the other cases are similar. Bx ∩Pn 6= ∅, so there exists

Pn ∈ Bx ∩ Pn. Notice that Bx ∩ Pm = ∅. U = X − ⋃{P ∈ Pm : x 6∈ P} is an
open neighborhood of x, and U ⊂ st(x,Fm), so there exists Pl ∈ Bx ∩ Pl such
that Pl ⊂ U ⊂ st(x,Fm). There exists Pk ∈ Bx ∩ Pk such that Pk ⊂ Pn ∩ Pl.
Bx ∩ Pn 6= ∅ and Bx ∩ Pk 6= ∅, so x 6∈ Fn and x 6∈ Fk. Notice that Pn and Pk are
discrete. Pn = st(x,Fn) and Pk = st(x,Fk). This proves that st(x,Fk) = Pk ⊂
Pn ∩ Pl ⊂ st(x,Fn) ∩ st(x,Fm).

Claim C. st(x,Fn) is a sequential neighborhood of x for every n ∈ N : Let
L is a sequence converging to x ∈ st(x,Fn). If Bx ∩ Pn 6= ∅, then there exists
P ∈ Bx ∩Pn. Since P is a sequential neighborhood of x, L is eventually in P , thus
L is eventually in st(x,Fn). If Bx ∩ Pn = ∅, Put U = X − ⋃{P ∈ Pn : x 6∈ P}.
Then U is an open neighborhood of x, so L is eventually in U . It is easy to see
that U ⊂ st(x,Fn), So L is eventually in st(x,Fn). This proves that st(x,Fn) is a
sequential neighborhood of x for every n ∈ N .

By the three claims above, {st(x,Fn) : n ∈ N} is an sn-network at x. This
proves that {Fn} is a locally-finite point-star sn-network.

(2) ⇒ (3): This is clear.
(3) ⇒ (1): Let X has a hereditarily closure-preserving point-star sn-network

{Fn}. Then Fn is hereditarily closure-preserving for every n ∈ N . It is easy to see
that X is snf -countable. We only need prove that

⋃{Fn : n ∈ N} is a cs∗-network
of X by Lemma 2.3. Let L be a sequence in X converging to x, and U be an open
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neighborhood of x. {st(x,Fn) : n ∈ N} is a network at x, so there exists n ∈ N
such that x ∈ st(x,Fn) ⊂ U . Since st(x,Fn) is a sequential neighborhood of x, L
is eventually in st(x,Fn). By Lemma 2.4, there exists F ∈ Fn and x ∈ F such that
L frequently in F . So there exists a subsequence S of L such that S ⊂ F . This
proves that

⋃{Fn : n ∈ N} is a cs∗-network of X. ¤
Can “locally-finite” in Theorem 2.5 be replaced by “discrete” or “point-finite”?

The answers are negative by the following.

Example 2.6. There exists a space X with a point-finite point-star wn-base,
and X is not an ℵ-space.

Proof. Let I denote the closed interval [0, 1], let S(x) be homeomorphic to S1

for every x ∈ I, and T =
⊕{S(x) : x ∈ I}. X is the quotient space obtained from

the topological sum Z = I ⊕ T by identifying every x ∈ I with the limit point of
S(x). Then Z is a locally compact metric space, and the natural map f : Z → X is
quotient, compact, compact-covering. So X has a point-finite point-star wn-base
by [9, Theorem 2.9.14] and X has not point-countable cs-networks by [9, Example
2.9.27]. ¤

Lemma 2.7. [16] A space is metrizable if and only if it has a locally-finite
point-star closed network.

Proposition 2.8. Let X have a discrete point-star network. Then X is metriz-
able.

Proof. Let {Pn} is a point-star network of X, where every Pn is discrete.
Put Pn = {P : P ∈ Pn}; then {Pn} is discrete point-star closed network of X.
Thus X is metrizable by Lemma 2.7. ¤

3. sn-metrizable spaces and images of metric spaces

Lemma 3.1. Let X be a sequentially-quotient, π-image of a metric space. Then
X has a point-star sn-network, and so X is snf -countable.

Proof. Let f : M → X be a sequentially-quotient, π-map, (M, d) be a metric
space. Put Pn = {f(B(z, 1/n)) : z ∈ M} for every n ∈ N .

(a) {Pn} is a point-star network of X: Let x ∈ U with U open in X. Since
f is a π-map, there exists n ∈ N such that d(f−1(x), M − f−1(U)) > 1/n. Pick
m ∈ N such that m > 2n. Notice that Pm covers X, there exists z ∈ M such that
x ∈ f(B(z, 1/m)). It is easy to see that f−1(x) ∩ B(z, 1/m) 6= ∅. We claim that
B(z, 1/m) ⊂ f−1(U). If not, there would exists y ∈ B(z, 1/m) ∩ (M − f−1(U).
Pick t ∈ f−1(x) ∩ B(z, 1/m), then d(t, y) 6 d(t, z) + d(z, y) < 2/m 6 1/n. This
contradicts the fact that d(f−1(x), M−f−1(U)) > 1/n, hence B(z, 1/m) ⊂ f−1(U).
Thus st(x,Pm) ⊂ U , so {Pn} is a point-star network of X.

(b) st(x,Pn) is a sequential neighborhood of x for every x ∈ X and every n ∈ N :
Let S be a sequence converging to x. Since f is sequentially-quotient, there exists
a sequence L converging to t ∈ f−1(x) ⊂ M such that f(L) = S′ is a subsequence
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of S. Write B = B(t, 1/n), then f(B) ∈ Pn. Since B is an open neighborhood of
t, L is eventually in B, and so S′ = f(L) is eventually in f(B) ⊂ st(x,Pn), That
is, S is frequently in st(x,Pn), so st(x,Pn) is a sequential neighborhood of x.

By the above, {Pn} is a point-star sn-network of X. ¤
As an application of the lemma above we have the following proposition, which

improves a typical result that perfect maps preserve metric spaces.

Proposition 3.2. Closed, π-maps preserve metric spaces.

Proof. Let f : X → Y be a closed, π-map, and X be a metric space. Then
Y is a Fréchet space with σ-hereditarily closure-preserving k-network. Since closed
maps are sequentially-quotient maps(Remark 1.8), Y is snf -countable from Lemma
3.1, hence Y is sn-metrizable by Lemma 2.2. So Y is a metric space by Remark
1.5. ¤

Lemma 3.3. Let f : X → Y be a map, {yn} a sequence converging to y ∈ Y .
If {Bk} is a decreasing network at some point x ∈ f−1(y), and {yn} is frequently
in f(Bk) for every k ∈ N , then there exists a sequence {xk} converging to x such
that {f(xk)} is a subsequence of {yn}.

Proof. Since {yn} is frequently in f(B1), there exists n1 ∈ N such that
yn1 ∈ f(B1). Pick x1 ∈ f−1(yn1)∩B1. We construct a sequence {xk} by induction
as follows. Assume {xk} have been picked for k ∈ N . Since {yn} is frequently in
f(Bk+1), there exists nk+1 ∈ N and nk+1 > nk such that ynk+1 ∈ f(Bk+1), and so
we may pick xk+1 ∈ f−1(ynk+1) ∩Bk+1. Thus we construct a sequence {xk}. It is
easy to see that {f(xk)} = {ynk

} is a subsequence of {yn}. Notice that xk ∈ Bk for
every k ∈ N , and {Bk} is a decreasing network at x. So {xk} converges to x. ¤

Theorem 3.4. For a space X, the following are equivalent.
(1) X is an sn-metrizable space.
(2) X is a sequentially-quotient, compact, σ-image of a metric space.
(3) X is a sequentially-quotient, π, σ-image of a metric space.

Proof. We only need prove (1) ⇒ (2) and (3) ⇒ (1).
(1) ⇒ (2): Since X is an sn-metrizable space, X has a locally-finite point-star

sn-network {Pn} by Theorem 2.5. Write Pn = {Pα : α ∈ An} for every n ∈ N ,
where {An} are mutually disjoint. For every n ∈ N , put Fn = {⋂i6n Pαi : αi ∈
Ai, i = 1, 2, · · · , n}; then Fn is locally-finite. Endow the discrete topology on An for
every n ∈ N . Put Z = {a = (αn) ∈ ∏

n∈N An : {Pαn} is a network at an xa ∈ X}.
Then Z is a metric space, where metric d is as follows: Let a = (αn), b = (βn) ∈ Z,
d(a, b) = 0 if a = b, and d(a, b) = 1/ min{n ∈ N : αn 6= βn} if a 6= b.

Obviously, {Pαn} is a network at some xa ∈ X iff xa ∈
⋂

n∈N Pαn for a =
(αn) ∈ ∏

n∈N An. It is not difficulty to prove that f : Z → X defined by f(a) = xa

is a map. We only need prove that f is a sequentially-quotient, compact, σ-map.
(a) f is a sequentially-quotient map: Let x ∈ X. Assume S is a sequence

converging to x. For every n ∈ N , since st(x,Pn) is a sequential neighborhood
of x, S is eventually in st(x,Pn). Notice that Pn is point-finite, so there exists a
subsequence S′ of S such that S′ is eventually in some element of Pn.
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Let L = L0 = {xn : n ∈ N} ∪ {x} be a sequence converging to x. By
induction, for every n ∈ N , we may choose αn ∈ An and a subsequence Ln of
L0, such that Ln is a subsequence of Ln−1, and Ln is eventually in Pαn

∈ Pn. Put
z = (αn) ∈ ∏

n∈N An. Obviously, {Pαn : n ∈ N} is a network at x, so z ∈ Z and
f(z) = x. Put Zn = {(βk) ∈ Z : βk = αk for k 6 n}. Then {Zn} is a decreasing
neighborhood base at z. We prove that f(Zn) =

⋂
k6n Pαk

for every n ∈ N as
follows.

In fact, let b = (βk) ∈ Zn. Then f(b) ∈ ⋂
k∈N Pβk

⊂ ⋂
k6n Pαk

, so f(Zn) ⊂⋂
k6n Pαk

. On the other hand, let y ∈ ⋂
k6n Pαk

. Then there exists c′ = (γ′k) ∈ Z

such that f(c′) = y. For every k ∈ N , put γk = αk if k 6 n, and γk = γ′k
if k > n. Put c = (γk). It is easy to see that y ∈ ⋂

n∈N Pγn
, so c ∈ Z and

f(c) = y, hence c ∈ Zn. This shows that y ∈ f(Zn). So
⋂

k6n Pαk
⊂ f(Zn). Thus

f(Zn) =
⋂

k6n Pαk
.

Let n ∈ N . By the construction of Ln, Ln is eventually in Pαk
for every k 6 n,

and so Ln is eventually in
⋂

k6n Pαk
= f(Zn). Thus L is frequently in f(Zn) for

every n ∈ N . By Lemma 3.3, there exists a sequence {zn} converging to z, and
{f(zn)} is a subsequence of L. So f is sequentially-quotient map.

(b) f is a compact map: Let x ∈ X. Put Bn = {α ∈ An : x ∈ Pα}, then∏
n∈N Bn is a compact subset of

∏
n∈N An. It is easy to prove that f−1(x) =∏

n∈N Bn. So f ia a compact map.
(c) f is a σ-map: Put B(α1, α2, . . . , αn) = {(βk) ∈ Z : βk = αk for every k 6

n}, where (αi) ∈ Z and n ∈ N . Then {B(α1, α2, · · · , αn) : (αi) ∈ Z and n ∈ N}
is a base of Z. By an argument similar to that in (a), f(B(α1, α2, · · · , αn)) =⋂

k6n Pαk
∈ Fn. Notice that Fn is locally-finite. So {f(B(α1, α2, · · · , αn)) : (αi) ∈

Z and n ∈ N} is σ-locally-finite. Thus f is a σ-map.
(3) ⇒ (1): Let Z be a metric space, and f : Z → X a sequentially-quotient,

π, σ-map. Then X is snf -countable by Lemma 3.1. By Lemma 2.3, it suffices to
prove that X has a σ-hereditarily closure-preserving cs∗-network. Since f is an
σ-map, there exists a base B of Z such that f(B) is a σ-locally-finite collection in
X, so we only need to prove that f(B) is a cs∗-network of X. Let S be a sequence
converging to x ∈ X and U an open neighborhood of x. f is sequentially-quotient,
so there exists a sequence L converging to z ∈ Z such that f(L) is a subsequence
of S. Since z ∈ f−1(x) ⊂ f−1(U) and B is a base of Z, there exists B ∈ B
such that z ∈ B ⊂ f−1(U). So L is eventually in B, hence f(L) is eventually
in f(B) ⊂ ff−1(U) = U . Thus S is frequently in f(B) ∈ f(B). So f(B) is a
cs∗-network of X. ¤

Corollary 3.5. A space is g-metrizable if and only if it is a quotient, π
(compact), σ-image of a metric space.

Corollary 3.6. Pseudo-open, π, σ-maps preserve metric spaces.

Recall that a map f : X → Y is a σ-locally finite [15] if for every σ-locally finite
cover P of X, there exists a refinement B of P such that f(B) is a σ-locally finite
collection. It is known that every σ-map is a σ-locally finite map, but the converse
is not true [13]. We point out that “σ-map” in Theorem 3.4 can not be replaced
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by “σ-locally-finite map”. In fact, the authors of [13] gave a compact-covering,
open, compact, σ-locally finite map f from a metric space M onto a first countable
non-g-metrizable space X [13]. Then X is not sn-metrizable by Remark 1.5.

The author would like to thank the referee for his valuable amendments.
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