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Nouvelle série, tome 74(88) (2003), 115–120

COVERING PROPERTIES
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Abstract. It is known that monotone mappings preserve the covering
property for continua. Similar result is proved for having the covering
property hereditarily. An example is constructed which shows that the two
results cannot be extended to almost monotone mappings.

Given a (metric) continuum X, a family F of nonempty closed subsets of X
is said to cover X provided that

⋃F = X. We denote by C(X) the hyperspace
of (nonempty) subcontinua of X equipped with the Hausdorff metric (see [13, 0.1,
p. 1]; compare [9, 2, p. 9]). By a Whitney map for C(X) we mean a mapping
µ : C(X) → [0,∞) such that

(a) µ({x}) = 0 for each x ∈ X,
(b) if A ( B, then µ(A) < µ(B).

For the existence of a Whitney map for C(X) see e.g., [13, 0.50.1–0.50.3, p. 25–27]
and [9, Chapter 4, Section 13, p. 106–108 and Chapter 7, Section 23, p. 205–207].

For each t ∈ [0, µ(X)] the preimage µ−1(t) is called a Whitney level for C(X).
It is known that Whitney levels are subcontinua of C(X) (i.e., that any Whitney
map for C(X) is monotone, see [13, Theorem 14.2, p. 400] and [9, Theorem 19.9,
p. 160]).

The reader is referred to [13] and [9] for these and other concepts used in this
paper.

A continuum X is said to have the covering property (written X ∈ CP ) pro-
vided that for each Whitney map µ : C(X) → [0,∞) and for each t ∈ [0, µ(X)] no
proper subcontinuum of µ−1(t) covers X. A continuum X is said to have the cov-
ering property hereditarily (written X ∈ CPH) provided that each nondegenerate
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subcontinuum of X has the covering property (see [16, property (2), p. 159]; com-
pare also [13, p. 486]). Obviously X ∈ CPH implies X ∈ CP but not conversely,
as an example shows of ray spiraling down on a circle, see [16, p. 160].

Bruce Hughes has shown (see [13, Theorem 14.73.3, p. 482]) that a continuum
X has the covering property if and only if for each Whitney map each Whitney level
is an irreducible continuum. Consequently, we have the following result (compare
[13, Theorem 14.73.1, p. 478]).

Theorem 1. If a continuum X has the covering property, then X is irre-
ducible.

Another attribute of continua with the covering property has been formulated
in [10, Section 6, 2., p. 179] (see [13, Theorem 14.14.1, p. 418]).

Theorem 2. If a continuum X has the covering property, then X is unicoher-
ent.

However, a continuum with the covering property, being unicoherent, need not
be hereditarily unicoherent, as it can be seen from a continuum which is the union
of a circle and a ray spiraling down on it, see [15, Example 28] and [16, p. 160].

The next statement is a consequence of the previous two.

Theorem 3. If a continuum X has the covering property hereditarily, then X
is hereditarily irreducible and hereditarily unicoherent.

A further progress has been made by B. Hughes [13, Theorem 14.73.21, p.
497], J. Grispolakis and E. D. Tymchatyn [8, Theorem 3.2, p. 178], J. Grispolakis,
S. B. Nadler, Jr. and E. D. Tymchatyn [7, Theorem 2.2, p. 199], C. W. Proctor
[17, Theorem, p. 294]. The mentioned results are of a special importance because
they tie several conditions defined in very different ways (as the structure of some
compactifications of the real half-line, being in the Class(W ), C∗-smoothness, and
CP . The results can be summarized as follows (see [9, conditions (a)–(d), p. 254,
and Theorem 67.1, p. 320], where a proof of the equivalences is presented).

Theorem 4. For a continuum X the following statements are equivalent:
(4.1) X is absolutely C∗-smooth;
(4.2) X ∈ Class(W );
(4.3) each compactification Y of [0, 1) with X as the remainder has the property

that C(Y ) is a compactification of C([0, 1));
(4.4) X ∈ CP .

The following results are known.

Theorem 5. Each of the continua below has the covering property hereditarily:
(5.1) arc-like continua (see [10, Theorem 4.2, p. 171 and Section 6, p. 179],

[16, Proposition 18, p. 162] and [13, Lemma 14.13.1, p. 415, and Theo-
rem 14.73.12, p. 490]);

(5.2) hereditarily indecomposable continua (see [10, Section 6, 2, p. 179], [16,
Proposition 18, p. 162] and [13, Theorem 14.14.1, p. 418, and Theorem
14.73.12, p. 490]);
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(5.3) nonplanar circle-like continua (see [15, Proposition 24], [16, Proposition 19,
p. 162], and compare [13, Theorem 14.73.17, p. 493]); in particular nonpla-
nar solenoids (i.e., solenoids different from a circle) (see [16, Proposition
20, p. 163], and compare [13, p. 493]).

Theorem 6. Let a continuum X be hereditarily decomposable. Then X ∈
CPH if and only if X is arc-like (see [13, Theorem 14.73.19, p. 496]).

Theorem 7. Let X be a (metric) compactification of the half-open interval
[0, 1). Then X ∈ CP if and only if C(X) = clC(X) C([0, 1)) (i.e., if and only if
[0, 1) approximates each subcontinuum of the remainder) (see [6, Proposition 4, p.
387]; compare [9, Exercise 67.17, p. 325]).

B. Hughes asked the following question (see [13, Question 14.73.26, p. 501] and
[9, Chapter 15, p. 458]).

Question 8. What classes of mappings preserve the covering property?

In connection with this, recall the following. It is shown in [7, Theorem 3.9,
p. 204] that monotone mappings (i.e., having connected point-inverses) preserve
being in the Class(W ). By the equivalence of (4.2) and (4.4) in Theorem 4, the
next theorem follows (compare [9, Chapter 15, Comment to Question 14.73.26 of
[13], p. 458]; see also [13, Chapter 14, Note 3, p. 511]).

Theorem 9. Monotone mappings preserve the covering property.

It is very natural to consider the same for CPH.

Question 10. What classes of mappings preserve the covering property hered-
itarily?

A partial answer is similar to the previous one.

Theorem 11. Monotone mappings preserve the covering property hereditarily.

Proof. Let X be a continuum with X ∈ CPH, and let f : X → Y be a
monotone surjection. Since X is hereditarily unicoherent according to Theorem
3, and since a continuum is hereditarily unicoherent if and only if each monotone
mapping defined on X is hereditarily monotone, see [12, 6.10, p. 53], it follows that
f is hereditarily monotone. Take a subcontinuum Q of Y , and let K = f−1(Q).
Then K is a subcontinuum of X, thus K ∈ CP . Furthermore, the partial mapping
f |K : K → f(K) = Q ⊂ Y is monotone, so Q ∈ CP by Theorem 8. ¤

It is interesting to know whether or not the above results, namely Theorems 9
and 11, can be extended to other classes of mappings, especially such ones which
contain the class of monotone mappings as a proper subclass.

One of such mappings is a confluent mapping. A mapping f : X → Y between
continua is said to be confluent provided that for each continuum Q ⊂ Y and
for each component K of f−1(Q) we have f(K) = Q (see e.g., [1, p. 213], [13,
0.45.3, p. 21] or [9, Definition 24.1, p. 207]). Each monotone mapping is obviously
a confluent one; and confluent mappings contain open mappings as a subclass, see



118 CHARATONIK

[18, 7.5, p. 148]. However, a dyadic solenoid X which has the covering property
hereditarily according to (5.3) of Theorem 5 can be mapped onto a circle under
an open mapping, see [13, 14.73.26, p. 501] and compare [1, p. 218] for details.
The circle does not have the covering property according to either Theorem 1 or
Theorem 2. Thus we have the following proposition.

Proposition 12. Open mappings, and thus confluent ones, need not preserve
covering property and covering property hereditarily for continua.

Other classes of mappings which comprises monotone ones are the following.
A mapping f : X → Y between continua X and Y is said to be:
— almost monotone provided that for each subcontinuum Q in Y with nonempty
interior the inverse image f−1(Q) is connected;
— quasi-monotone provided that for each subcontinuum Q in Y with nonempty
interior the inverse image f−1(Q) has a finite number of components and f maps
each of them onto Q;
— weakly monotone provided that for each subcontinuum Q in Y with nonempty
interior each component of the inverse image f−1(Q) is mapped under f onto Q;
— feebly monotone provided that if A and B are proper subcontinua of Y such
that Y = A ∪B, then their inverse images f−1(A) and f−1(B) are connected.

Properties of quasi-monotone mappings are well-known (see e.g., Whyburn’s
book [18]). Also the concept of a weakly monotone mapping between continua is
known for years and was studied by a number of authors. The reader is referred
to Maćkowiak dissertation [12] for interrelations between these classes of mappings
and their basic properties. Some properties related to almost monotone and feebly
monotone mappings (without using these names) were considered by Maćkowiak
in [12, proof of Theorem 4.44, p. 25]). Feebly monotone mappings were introduced
by the author in [2, p. 210] and studied in [3].

The following diagram (see [3, Proposition 2.1, p. 16]) illustrates the relations
between these mappings.

monotone ⇒ almost monotone ⇒ quasi-monotone ⇒ weakly monotone
⇓

feebly monotone

To see that Theorems 9 and 11 cannot be extended from monotone to almost
monotone mappings consider the following example (for other properties of the
same example see [12, Example 7.4, p. 59]).

Example 13. There exist a continuum X ∈ CPH, a continuum Y /∈ CP and
an almost monotone surjective mapping f : X → Y .

Proof. Let X be the sin(1/x)-curve and let J denotes the limit segment of X.
Then X is hereditarily decomposable and arc-like, and thus X ∈ CPH by Theorem
6. Let a mapping f : X → Y identify the end points of J to a point y0 ∈ Y . Note
that f is almost monotone.

To see that Y does not have the covering property take an arc A ⊂ f(J) ⊂ Y
such that y0 ∈ A and y0 is not an end point of A, and observe that the ray Y rf(J)
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does not contain any sequence of continua converging to the arc A. Therefore
the ray does not approximate each subcontinuum of the remainder f(J), and the
conclusion Y /∈ CP is a consequence of Theorem 7. ¤

So, we have the next proposition.

Proposition 14. Almost monotone mappings (and hence quasi-monotone,
weakly monotone and feebly monotone ones) need not preserve covering property
and covering property hereditarily for continua.

A mapping f : X → Y between continua is said to be:
— simple provided that cardf−1(y) 6 2 for each y ∈ Y ;
— light provided that f−1(y) is totally disconnected for each y ∈ Y .

Thus each simple mapping is light, and a mapping is light if and only if it is
0-dimensional, i.e., dim f−1(y) = 0 for each y ∈ Y (see e.g., [18, p. 130]).

Observe that the mapping f of Example 13 is simple, and thus light. Hence
the next proposition follows.

Proposition 15. Simple mappings (and thus light ones) need not preserve
covering property and covering property hereditarily for continua.

Let M be a class of mappings between continua. A mapping f : X → Y
between continua is said to be hereditarily M provided that for each continuum
K ⊂ X the partial mapping f |K : K → f(K) ⊂ Y belongs to M (see [11, p. 124];
compare also [12, Chapter 4, Part B, p. 16]). Hereditary classes of mappings were
studied in [11], [12], [4], [14] and in many other papers quoted therein.

In a discussion on the subject of this paper W. J. Charatonik asked the following
questions.

Questions 16. What hereditary classes of mappings preserve a) the covering
property, b) the covering property hereditarily?

Since each hereditarily weakly confluent mapping preserves C∗-smoothness of
continua, (see [5, Corollary 3.6]) it is especially interesting to know whether the
same holds for absolutely C∗-smoothness (which is equivalent to the covering prop-
erty according to Theorem 4). This can more precisely be formulated as follows.

Question 17. Let a continuum X be absolutely C∗-smooth, and let a sur-
jection f : X → Y be hereditarily weakly confluent. Is then the continuum Y
absolutely C∗-smooth?
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