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Abstract. Billiards in the plane with a homogeneous Finsler metric are
considered, where the indicatrix is an ellipse. It is proved that billiards in
such spaces, up to a linear transformation, have the same trajectories like
billiards in the Euclidean plane.

1. Introduction.

Since Finsler geometry is a natural generalization of Riemannian geometry,
let us compare them from the point of view of geometric optics [1]. Riemannian
geometry describes propagation of waves in an isotropic medium, i.e., in such a
medium where velocities of wave propagation from any point are equal in every
direction. On the other hand, Finsler geometry describes wave propagation in
an anisotropic medium. A medium is homogeneous if waves propagate from any
its point in the same way. Minkowski space is a space R

n with the structure of
homogeneous Finsler space. Euclidean spaces are a special case of them.

A study of billiards in Finsler spaces started in [3]. Billiard law is defined there
in a natural way, which, in the case of Riemannian space, coincides with the usual
billiard law, with equal impact and reflection angles. A simple generalization of
the Riemannian reflection law is impossible, because of absence of angles in Finsler
spaces. In [3], many properties of billiards in Finsler spaces are deduced. Some of
them are analogous to the corresponding properties of Riemannian and Euclidean
billiards.

In this paper, billiard trajectories in 2-dimensional Minkowski space with ellip-
tic indicatrix are completely described. It is shown that, by a suitably chosen affine
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transformation, billiard trajectories of Minkowski plane with elliptic indicatrices
can be transformed into trajectories of Euclidean billiard.

In Section 2 necessary definitions and properties of Finsler spaces and their
billiards are listed following [2] and [3]. Section 3 contains results obtained by
concerning billiards in a Finsler plane with the elliptic indicatrix – it turned out
that, after an affine transformation, these billiards become trajectorially equivalent
to billiards in Euclidean plane. Some remarks are given in Section 4.

2. Finsler geometry and billiards.

A Finsler space is a smooth manifold M with a smooth Lagrangian function
F : M → R whose restriction to each tangent space is non-negative, strictly convex
and positively homogeneous of degree 1. Restriction of the Lagrangian to a tangent
space is Finsler length of vectors. The set of all points of unit Finsler length in a
tangent space is a strictly convex smooth hyper-surface, called indicatrix.

Length of a smooth curve γ : [a, b] → M is L(γ) =
∫ b

a
F(γ(t), γ′(t))dt. Finsler

geodesics are extremals of the functional L. When indicatrices are not symmetric
with respect to the origin, Finsler length of a curve depends on its orientation.

Minkowski space is R
n with the same Finsler metric in every point. From the

convexity of Finsler metric, it follows that geodesic curves in Minkowski spaces are
straight lines.

A Finsler billiard table is a Finsler manifold M with the smooth boundary N ,
∂M = N . Let a, b be points inside the table and x on the boundary. Denote by
ax and xb geodesic segments. According to [3], we will say that the ray xb is the
billiard reflection of ax if x is a critical point of the function F (y) = L(ay)+L(yb),
y ∈ N .

3. Billiards in Minkowski plane with elliptic indicatrix.

Any affine transformation of space R
n induces an isomorphism of Minkowski

spaces:

Lemma 1. Suppose that Minkowski space is given by a Finsler Lagrangian F
on R

n, and let A : R
n −→ R

n be a regular affine transformation. Then (Rn, dA(F))
is also a Minkowski space and A is an isomorphism of this space with (Rn,F).

Lemma 2. Billiard reflection is preserved by affine transformations of a Min-
kowski space.

Proof. If A is an affine transformation, then dA is a linear isomorphism of tan-
gent spaces. Thus, dimensions of intersections of affine subspaces remain preserved,
and the claim follows from [3, Lemma 3.3]. �

Notice that by a suitably chosen linear transformation, we can map an ellipse
onto a circle.

Corollary 1. Minkowsky plane with elliptic indicatrix which is symmetric
with respect to the origin can be affine transformed to the Euclidean plane. Finsler
billiard law is transformed to the usual one with equal impact and reflection angles.
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However, if the geometric center of the ellipse in the tangent space does not
coincide with the origin, it is impossible to transform the Finsler space to Eucledean.

Let p be a given line in the plane. Reflection from this line induces the trans-
formation

Rp : I −→ I
of indicatrix I, such that Rp(u) = v if a ray of the direction u, after reflection from
p, becomes of the direction v.

Proposition 1. Let u, v be vectors with endpoints on the indicatrix I, and p
a line, such that Rp(u) = v. If u′, v′ ∈ I are vectors collinear with u, v respectively,
but of the opposite directions, then Rp(v′) = u′.

Proof. We are going to apply Lemma 3.3 from [3]. The equality Rp(u) = v is
equivalent to the condition that the line p and tangent lines to the indicatrix at
points u, v are in the same pencil. We need to prove that p belongs to the pencil
determined by tangents to the indicatrix at u′, v′. Using a projective transforma-
tion, it is possible to map the indicatrix onto a circle and the intersecting point of
the pencil TuI, TvI to an infinite point of the plane. In that way, u and v become
endpoints of a diameter of the circle and p becomes parallel to tangents at these
points. If we take that the radius of the circle is 1 and that u, v, u′, v′ have the
coordinates (0, 1), (0,−1), (cos α, sin α), (cos β, sin β), then p is given by the equa-

tion y =
sin α+β

2

cos α−β
2

and by straightforward calculations we obtain that tangent lines

at u′, v′ to the circle intersect on p. �
Proposition 1 gives the reversibility of billiard reflections: if the segment xb

is the billiard reflection of the ray ax, then xa is the billiard reflection of bx. In
general case, reversibility of billiard refections in Finsler spaces does not hold if
indicatrices are not symmetric with respect to the origin.

Since in our case the Finsler manifold is the space R
2, we can identify it with

its tangent space, and take the indicatrix for the boundary of the billiard table.

Proposition 2. Suppose that a segment of a billiard trajectory passes through
the origin. Then the next segment, after reflection from the boundary, will contain
the point symmetric to the origin with respect to the geometric center of the ellipse.

Proof. Denote the origin by O and geometric center of the ellipse by C. Let
OX be a segment of a billiard trajectory, where X is the point of collision with the
boundary. Tangent vector to the trajectory before the collision is

−−→
OX, and after

the reflection is
−→
OY , where tangents to the ellipse in point X and Y are parallel.

Thus, X and Y are symmetric with respect to C. The segment of the billiard
trajectory after the impact to the boundary is parallel to OY , hence it contains the
point symmetric to O with respect to C. �

By a linear transformation, it is always possible to map the indicatrix onto
an ellipse whose focus coincides with the origin. In that way, we obtain that
billiard trajectories inside the indicatrix, which pass through a focus, in the points
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of collision obey the usual law: the impact angle is equal to the reflection angle.
However, this property will be even kept for all other trajectories.

Proposition 3. Suppose the indicatrix of the 2-dimensional Minkowski space
is an ellipse with a focus at the origin. Then the billiard system within any smooth
closed curve is trajectorially equivalent to the billiard system with the same boundary
in the Euclidean plane.

Proof. Let p be a line. We need to prove that impact and reflection angles
when a point collides with this line are equal. Reflection from p in the Finsler
plane induces the transformation Rp of the indicatrix. Reflection from p by the
rule of equality of impact and reflection angle induces another transformation R′

p

of the indicatrix. According to Propositions 2 and 3, these transformations coincide
in four points. Besides, for the vector v parallel to p, we have:

Rp(v) = R′
p(v) = v.

Thus, Rp and R′
p have two common fixed points. Also, notice that both trans-

formations are involutive. They can be written as rational functions in Euclidean
coordinates. The ellipse which represents their domain, is the real part of a conic in
C

2, i.e., of a rational algebraic curve. Transformations Rp and R′
p can be extended

to the whole curve, and they represent its rational involutions. Two maps of degree
1 of a rational curve will coincide, if they coincide in 3 points. Hence, Rp = R′

p. �

Theorem. Suppose the indicatrix of a 2-dimensional Minkowski space is an
ellipse. Then there is a linear mapping of the space which transforms the billiard
system inside an arbitrary smooth closed curve into a system which is trajectorially
equivalent to a billiard system in the Euclidean plane.

Proof. Take the linear mapping which transforms the indicatrix to an ellipse
whose focus coincides with the origin. The statement follows from Lemma 2 and
Proposition 3. �

We have shown that, after a suitably chosen affine transformation, the billiard
motion in Minkowski plane with elliptic indicatrix becomes trajectorailly equivalent
to the usual billiard motion. Although the trajectories coincide, these motions will
not be identical. In the plane with Euclidean metrics, the point always moves with
a constant velocity. In the Finsler plane, it moves uniformly along any segment but
changes the speed after each reflection.

4. Concluding remarks

From trajectorial equivalence, it follows that a billiard trajectory inside an
ellipse in the Minkowski plane with elliptic indicatrix has a caustic, which is a
curve of the second order. Examples of such trajectories, with caustics clearly
offprinted can be seen in Figures 1 and 2.
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Fig. 1 Fig. 2

Let us note that we started the investigation of billiards in Finsler spaces by
making with a programme which calculates numerically the coordinates of con-
secutive bounces and draws a trajectory. From drawings obtained for different
initial conditions, a clear feeling of the results presented in the paper was acquired.
Trajectories shown in Figures 1 and 2 were obtained in this computer experiment.

This result gives a new family of integrable billiards in plane. Study of their
integrable potential perturbations could be a direction for further investigation.
Also, it would be interesting to investigate billiard systems in the Finsler spaces
with elliptic indicatrices in higher dimensions.
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