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OF A HERMITIAN MANIFOLD

Masafumi Okumura
Communicated by Mileva Prvanovié

ABSTRACT. On an even-dimensional real submanifold of a Hermitian manifold,
making use of the fundamental 2-form of the ambient manifold, we define a
function. In this paper, we investigate the function in detail in some special
submanifold.

1. Introduction

Let M be an even-dimensional real submanifold of a Hermitian manifold M.
Then, making use of the fundamental 2-form of the ambient manifold, we can define
a function f on M. In [4], the present author and Y. Kubo defined the function and
using this function, proved that an even-dimensional extrinsic sphere a of Kéahler
manifold is isometric with a sphere. Even though the final result in [4] is correct,
there are some mistakes. In this paper, we correct these as well as investigate more
properties of the function.

In Section 2 we recall some general preliminary facts on real submanifold of a
Hermitian manifold and in Section 3 we define the function f and give a concrete
form of the function. In Section 4 we discuss the function on some kind of real
submanifolds and show that in these cases it takes much simple form.

In Section 5 we consider the function on a totally umbilical submanifold and
give a differential equation which the function should satisfy, from which we con-
clude that if the totally umbilical submanifold has parallel mean curvature vector
field, the gradient of the function defines an infinitesimal concircular transforma-
tion. From this, together with the theorem of Obata [2], we prove that the subman-
ifold M is isometric with a sphere in Euclidean (n+ 1)-space. This is the correction
of the paper [4]. Finally in Section 6 we consider the case that the totally um-
bilical submanifold is a submanifold of codimension 2 of complex submanifold and
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give a concrete form of the second covariant derivative of the function which is a
generalization of the result in [3].

The author wishes to thank the referee who read the manuscript carefully and
pointed out the author’s many careless mistakes.

2. Even dimensional submanifold of a Hermitian manifold

Let M be a real (n+2p)-dimensional Hermitian manifold with Hermitian struc-
ture (.J,g), that is, J is the almost complex structure of M and g the Riemannian
metric of M satisfying the Hermitian condition g(JX,JY) = g(X,Y) for any
X,Y € T(M). Let M be an n-dimensional real submanifold of M and ¢ be the
immersion. Then the tangent bundle T'(M) is identified with a subbundle of T'(M)
and the induced Riemannian metric g of M is defined by ¢(X,Y) = g(tX,.Y) for
X,Y € T(M), where we use the same ¢ for the differential map of the immersion ¢.
The normal bundle 7+ (M) is the subbundle of T'(M) consisting of all X € T'(M)
which are orthogonal to T'(M) with respect to g. At each point of M, we choose or-
thonormal local vector fields &1, ..., &2, in such a way that they belong to T (M).
For any X € T(M) and for & (a = 1,...,2p) the transforms J:X and J¢, are
respectively written in the following forms:

2p
(2.1) JiX = 1FX + Y u*(X)é,
a=1
2p
(2.2) Jéa = —Wa+ Y _ Pabée,
b=1

where F', pap, U, and u® define respectively an endomorphism of T'(M), that of
T+(M), local tangent vector fields and local 1-forms on M. They satisfy the
relations u®(X) = g(Uqy, X) and pap = —ppa- If Uy, a = 1, ..., 2p vanish identically,
the tangent space of M is invariant under J and in this case the submanifold is a
complex manifold with induced almost complex structure.

Applying J to both side members of (2.1) and (2.2), we find

2p
(2.3) FPX ==X+ Y u"(X)U,
a=1
2p 2p
(2.4) u (FX) == poat®(X), FUs==> pals, a=1,...,2p,
b=1 b=1
2p
(2.5) > pacher = —0ap + 0’ (Ua), ab=1,...,2p.
c=1

We denote by V and V the Riemannian connection of M and M respectively and
by D the induced normal connection from V to T+ (M). Then they are related by
the following equations [1]:
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(2.6) V.xtY =VxY +h(X,Y),
2p

(2.7) Vix€a = —1AaX + Dx&a, Dx& =) sa(X)&%, a=1,...,2p,
b=1

where h is the second fundamental form and A, is a symmetric linear transformation
of T(M), which is called the shape operator with respect to &,. The last two
equations show that h(X,Y) = 32 g(A4.X,Y)&,.
The mean curvature vector field u of M is defined by
2p

(2.8) o= % D (trace Ag)éa,

a=1

and it is well-known that p is independent of the choice of orthonormal normals
&1,...,&p. The length of the mean curvature vector field is called the mean cur-
vature of the submanifold and it is given by

(2.9) Il = 711{ ip:(trace AG)Z}UQ.

a=1

Differentiating (2.8) covariantly, we get

2p 2p
nDxp = Z {X(trace Ag)éa + Z(trace Aa)sab(X)fb},

a=1 b=1

from which we know that the mean curvature vector field is parallel with respect
to the normal connection if and only if

2p
(2.10) X (trace Ag) = Z(traee Ap)sap(X),
b=1

because of the fact that sq, = —Spq.

3. A function defined by the fundamental 2-form of M

Let Q be the fundamental 2-form of the Hermitian manifold M, that is,  is
defined by

Q(X,Y) = /X, V)
for X,Y € T(M). We put
(31) f:Qp(fla§25"'a€2p)7
where 2P denotes p-times exterior product of 2. Then we have

LEMMA 3.1. f is independent of the choice of mutually orthonormal normals

61;' .. ;5217'
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PROOF. Let n1,...,m2, be another choice of mutually orthonormal normals to
M. Then we have
2p
(3.2) Mo = T,
b=1

for some orthogonal matrix (7) € O(2p). Denoting by S(2p) the symmetric group
of order 2p, we have from (3.2)

f/ = Qp(Th, s 777210) = Z T1C1T2CQ ’ "TQC;pQP(gcugcza e 7502;;)

C1,..-,C2p
= Z Tla(l)T20(2) T T20p(2p)Qp(fcr(l)7§U(2)a cee 750(21)))
oeS(2p)
= > WD T sno07(61, 6, o)
oeS(2p)
= det(T2)P (&1, ..., &) = f.
This shows that f is independent of the choice of normals. O

Now we discuss the function f more concretely. The number A of the terms in
the expansion of f as a sum of product Q(&a,,8a,)2(Eas,8as) - - 2Eanp_15Eas,) 18

2p\ /2p — 2 4\ 2\ (2p)!
(2)( 2 )(2)(2) oo
and the number B of different factorization of Q(&q,, &, )’s is (2p—1)(2p—3) - - - 5-3-1.
Hence, in the expansion, there are A/B = p! like terms. Hence we can write

(3.3) F=p Qb 6an)  Uany s Eany)s
where Y means the sum of all such combinations of ag;—1, agy € {1,2,...,2p} that
agi—1 < a2y

-2
4. Complex submanifolds, CR submanifolds of CR dimension HT

Let M be a complex submanifold of a Hermitian manifold M. Since the normal
space T;-(M) of x € M is J-invariant subspace of T, (M) as well as the tangent
space T, (M), we can choose an orthonormal basis of T;-(M) in such a way that
(é20)e = J(§2a—1)z, a = 1,...,p and extend them to local fields &1, ...,&2,. Then
we have

Q(&2a-1,82p-1) = G(JE2a—1,&2p—-1) = G(§2a,E2p—1) = 0,
Q(62a-1,820) = G(JE2a-1,826) = G(§245 §26) = dab-
Thus in (3.3), Q(&a;,8as) - QUas, 1+ Ean,) = 0, except
Q(&1,82)2(E3,€4) -+ QE2p—1,E2p) = 1.
Hence, from (3.3) f = p!. Thus we have

PROPOSITION 4.1. For a complex submanifold M we have f = pl.
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Now we consider a CR submanifold M of CR dimension (n—2)/2 in a Hermitian
manifold M. By definition, at each point x € M, the real dimension of the holomor-
phic tangent space H,(M) = JT,(M)NT,(M) is n—2. We choose an orthonormal
basis e1,ea,...,e, of T,(M) in such a way that eq,es,...,en,_0 € Hy(M). Then
Je; € T,(M), (j=1,...,n—2) and

(4.1) Jiep_1 = e, +1m1,  Jie, = —Ae,_1 + 1o,

where 17 and 72 denote the normal part of Jie,_1 and Jee, respectively. We note
that n; and 72 never vanish. In fact, if, for example, 7; vanishes at a point ©z € M,
from the first equation of (4.1) it follows that Jie,—1 € T, (M). This shows that
the real dimension of H,(M) at x is greater than n — 2. This is a contradiction.

We choose orthonormal normal vectors &1, &2,...,§2, to M in such a way that
& and & are in the direction of 7 and 7y respectively, that is, & = m1/|m],
&2 = n2/|n2]- Then we have for a = 3,... 2p,

E(J&MLX) = *g(gaa JLX) =0,
g(‘]gav gl) _g(ga; Jé-l) = 07
g(‘]ga7£2) = _§(£a7 J§2) =0,

because of (4.1). These equations show that the subspace span{&s,...,&,} of
T+ (M) is J-invariant and therefore we choose such an orthonormal basis of span{¢s,

., &p} that &g = J&2e—1, a = 2,...,p. By choosing these orthonormal normals,
it follows that, for a,b > 2:

Q(€20-1,80-1) = G(J&a—1,820-1) = G(&2a,E20—-1) = 0,
Q(&2a-1,%2) = G(J€2a-1,520) = G(&2a:E20) = Oabs

and for a > 3:

Q(&,fa) = g(ngvfa) = 07 Q(&Qvga) = g(J£27£a) =0.

Hence in (3.3), only the term Q(&1,£2)Q(&s,&4) - - - Q(€2p—1, &2p) does not vanish and
consequently we have

PROPOSITION 4.2. For a CR submanifold M of CR dimension (n — 2)/2 we
have f = plQ(&1, &2)-

Next let M be a real submanifold of codimension 2 of a complex submanifold
M’ of a Hermitian manifold M. We choose orthonormal normals to M in M in
such a way that &1, & € T(M') and &s,...,&, € TH(M’). As M’ is a complex
submanifold, T (M’) is J-invariant. Hence, in entirely the same argument as in
the case that M is CR submanifold of CR dimension (n — 2)/2, we have

PROPOSITION 4.3. For a real submanifold of codimension 2 of a complex sub-
manifold of a Hermitian manifold we have f = p!Q(&1,&2).
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5. Totally umbilical submanifold of a Kihler manifold
Let M be a submanifold of M. If at each point of M there exist differentiable
functions p,, a = 1,2, ..., 2p, satisfying
(5.1) A X = poX

for any X € T'(M), we call the submanifold a totally umbilical submanifold. In
this case p, = (trace A,)/n, that is,

1
(5.2) A, X = —(trace A,) X
n

First we consider the function f on a typical example of a totally umbilical sub-
manifold.

ExAMPLE 1. Let M be a complex space C+2)/2 with complex coordinates
=2 4+ V=1y*, (A =1,...,¢= (n+2)/2). An n-dimensional sphere S™ defined

by
S—{ P ‘Z{ }—11/—0}

is a totally umbilical submanifold of codimension 2 of C("*2)/2_ We choose mutually
orthonormal vector fields & and & to S™ as

1 ) ) )
51:§($>\8+ /\aA) fzzaiy(f

Then J& = —9/0xz%. Since codimension is 2, the function f = Q(&,&) =
—g(&1,J&) = x%. Thus, in this case, f is the level function of the last real co-
ordinate.

From now on we assume that the ambient manifold M is a Kdhler manifold.
Then J is covariant constant and therefore VxQ = 0. So, from (2.7):

2p
glgradf,Y) =Y(Q (&, ... &) = D (&1, &am1, VivéarEasns - -5 E2p)
a=1

2p 2p
(53) :ZQp(€17"'7€a 1, — —1A Y+Zsab £b7§a+la---;€2p>
a=1 b=1

2p
- _Zﬂp(gl, o agaflvbAaY’a £a+17 cee 7£2p);

because QP is a 2p-form and s, are skew-symmetric with respect to a and b. Then
it follows that

9(Vx gradf,Y) = X(g(gradf,Y)) — g(gradf, VxY)

2p
-X (Z Qp(é-h e 76(1717 LAG,Y? §a+1a o 752;0)) _g(gradf7 VXY)
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a—1 2p

= _ZZQP(£17"°7vLX§b7' "7€a717LAa1/7§a+17"'7£2p)

b=1a=1

2p
- Z Qp(glﬁ s 7§a—hﬁl,XLAaYa ga-‘rla s 7§2p)
a=1

P P
- Z ng(gla v 75(1—13 [,AaY, §a+17 s 761)(5?)5 v 752[))

b=a+1a=1
— glgradf, VxY).
Substituting (2.7) into the above equation and making use of the fact that

(gradf7 v)(YV ZQP 517 LR afa—l,LAavXYa fa-‘rla e a§2p)7

we have
a—1 2p

9(Vxgradf,Y) =Y "> 0P(&, ...t X, Ca1,tAaY Ear, -, Eap)
b=1a=1
a—1 2p

—Z Z Spe(X)QP (&1, 61,80, Epr1s - -, LAY, ., Eap)

b=1a,c=1

2p
- meh &, UV X ALY Eaprs 5 Eap)

- Z AbA YX Qp(gla'"7£a—1a§b)€a+1a"'7§2p)

a,b=1

2p
+ > ZQ (1o a1 tAaY Earrs o LA X, Egp)

b=a+1a=1

- Z Z Sb(, Qp 515' 75(1—17LA(LY)"'afb—lagwgb-‘rla"'a§2p)

b=a+1 a,c=1

a—1 2p

=N (G, 1A X a1, ALY Cas o Eap)

b=1a=1
a—1 2p

_Zzsba QP gla"'7§b—17£a7§b+17"'7LAaK"'a§2p)
b=1a=1
2p 2p

= (& a1, UV X AQ)Y Eaprs o Sop) — D g(AZY, X) f
a=1 a=1

2p
+ > ZQP Giovs€a1,tAdY Cagr, o LALX, L o)

b=a+1a=1
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2p

- Z Zsba QP 617"'7 7"'7§b717§a7§b+17°'~7§2p)
b=a+1a=1

a—1 2p

=3 D P&, AKX, a1, LAY L, o)

b=1a=1
a—1 2p

+Zzsba 517"'7£b—17LAaYa€b+l7'"’Eaa"'7£2p)
b=1a=1
2p 2p

=D P a1, UV X ALY b, o) — D g(AZY, X) f
a=1 a=1

2p
+ Z ZQ fh"'afd-leAaYafa-‘rl?"'7LAbXa"'a§2p)

b=a+1a=1

+ Z Zsba flw")f&a"'7§b—17LALLY7€b+17"'7£2p)'

b=a+1a=1

If M is a totally umbilical submanifold, by (5.1), it follows that

(54) g(gradfv Zpa 517"‘750.717L}/7£a+17"'7£2p)
and
a—1 2p
Q(VX gradfy Y) = Zzpapbﬂp(é-lv ey LX7 o 7§a717LY7 §a+17 CIaE 7521))
b=1a=1
a—1 2p
YD pasba(X)QP (- &1y Y g, Eap)
b=1a=1

_ZXpa gla' a§a717LY'7£a+17' 7€2P (Zpa>

2p
+ Z ZPuPbQP 515“-7§a—1aL’Y7£a+1a"'al’X7"'a€2p)

b=a+1a=1

+ Z Zpasba P&, o1, 0Y St -, E2p)

b=a+1a=1

:_Z Xpa gla' aga—hLnga-‘rlw 7£2p <Zpa)fg X Y)

b12p

+Zzpb5ab QP 517'"aga—leK§a+17"'7€2p)

a=1b=1
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2p
+ Z Zpbsab X)QP (&, 8a—1, Y ag1s - - -5 Eop)

a=b+1 b=1
= —Z Xpa) P (1, €am1,1Y, Ear, oy Eap) — (Zpa)fg (X,Y)
2p 2p
YD san(X)QP (&, a1 Y agrs - Eap),s
a=1 b=1

because of sy, = 0. Thus we have

o(Vx gradf,Y) = (Zpa>ngY)

(55) _Z (Xpa Zpbsab >Qp(€1a"'7€alaLK§a+17"'7€2p)

Hence we obtain

THEOREM 5.1. In an even dimensional totally umbilical submanifold M of a
Kahler manifold, the function f satisfies (5.5). Moreover, if the mean curvature
vector field is parallel with respect to the normal connection, f satisfies

(5.6) 9(Vx gradf,Y (Zpa> Fo(X.Y),

a=1

In connection with the function which satisfies (5.6), Obata [2] proved that in
an n-dimensional complete, connected Riemannian manifold M, if there exists a
function f satisfying

9(Vxgradf,Y) = —k*fg(X,Y),

for some constant k, M is isometric with a sphere of radius 1/k in the Euclidean
(n + 1)-space. Further, it can be easily proved that if the mean curvature vector
field is parallel with respect to the normal connection, then |u| is constant and since
S22 p2 = |ul?, it follows:

THEOREM 5.2. [4] Let M be an even dimensional complete, connected totally
umbilical submanifold of a Kdhler manifold. If the mean curvature vector field is
parallel with respect to the normal connection, then M is isometric with a sphere
of radius 1/|p].

6. Totally umbilical submanifold which is a submanifold of
codimension 2 of a complex submanifold

Here, let M be a submanifold of codimension 2 of a complex submanifold M’
of a Kéhler manifold M. Then, in entirely the same argument which we used to
get Proposition 4.3, it follows that

(61) Qp(LY7 fg,fg,...,{gp) 'Q(LY 52) Qp(thY, 53,...,5211) Zp'Q(gl,LY)
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(62) Qp(€17€27 L3 fafla LK £a+17 LR 7€2p) = Oa (a = 37 ceey 2p)7
where we have chosen orthonormal normals &i,...,£2, to M in such a way that
&, € T(M') and &s,. . . &2, are normal to M.

Since the tangent space of a complex submanifold M’ is J-invariant, for £; and
&5, we have

(6.3) JE = —Ur + AN, J& = —1Us — N1, A=Q(&,E),

(6.4)  g(U1,U1) = g(Uz,Us) = 1= A2, g(U1,Us) =0, Uy =0 (a=3,...,2p),
(6.5) JiX = 1 FX +ul (X)& +u?(X)E,

(6.6) QY &) = g(Us,Y), Q&1,0Y) = —g(Uh,Y).

Now we assume that M is totally umbilical in M. Then, from (6.1), (6.2) and (6.6),
(5.5) becomes
(6.7) g(Vxgradf,Y) = —|ul* fg(X,Y) = p{(Dxp1)g(U2,Y) — (Dx p2)g(U1,Y)}
where Dxp1 = Xp1 — p2s12(X) and Dxps = Xpa — p1s21(X). Since the left-hand
member of (6.7) is symmetric with respect to X, Y, it follows that
(Dxp1)g(Uz,Y) = (Dxp2)g(Ur,Y) = (Dy p1)g(Uz, X) — (Dy p2)g(Uz, X).

Substituting Y in the last equation for U; and making use of (6.4), we have

(1 =X)Dxp1 = (Du,p1)g(Uz, X) — (D, p2)g(Ut, X).
Similarly, we have

(1 =A*)Dxp2 = (D, p2)g(U1, X) = (Du, p1)g(Usz, X).
Hence (6.7) becomes

2
(6.8)  g(Vxgradf,Y) = —|ufg(X,Y)+ Y aijg(Us, X)g(U;,Y),
i,j=1
for some functions a;; such that they vanish when the mean curvature vector field
is parallel with respect to the normal connection. Thus we have a generalization of
the result in [3]:

THEOREM 6.1. Let M be a submanifold of codimension 2 of a complex subman-
ifold M' of a Kéhler manifold M. If M is totally umbilical as a submanifold of M,
the function f satisfies (6.8) for some a;j, 1,5 = 1,2, where a;; are such functions
that they vanish when the mean curvature vector field is parallel with respect to the
normal connection.
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