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Abstract. On an even-dimensional real submanifold of a Hermitian manifold,
making use of the fundamental 2-form of the ambient manifold, we define a
function. In this paper, we investigate the function in detail in some special
submanifold.

1. Introduction

Let M be an even-dimensional real submanifold of a Hermitian manifold M .
Then, making use of the fundamental 2-form of the ambient manifold, we can define
a function f on M . In [4], the present author and Y. Kubo defined the function and
using this function, proved that an even-dimensional extrinsic sphere a of Kähler
manifold is isometric with a sphere. Even though the final result in [4] is correct,
there are some mistakes. In this paper, we correct these as well as investigate more
properties of the function.

In Section 2 we recall some general preliminary facts on real submanifold of a
Hermitian manifold and in Section 3 we define the function f and give a concrete
form of the function. In Section 4 we discuss the function on some kind of real
submanifolds and show that in these cases it takes much simple form.

In Section 5 we consider the function on a totally umbilical submanifold and
give a differential equation which the function should satisfy, from which we con-
clude that if the totally umbilical submanifold has parallel mean curvature vector
field, the gradient of the function defines an infinitesimal concircular transforma-
tion. From this, together with the theorem of Obata [2], we prove that the subman-
ifold M is isometric with a sphere in Euclidean (n+1)-space. This is the correction
of the paper [4]. Finally in Section 6 we consider the case that the totally um-
bilical submanifold is a submanifold of codimension 2 of complex submanifold and
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give a concrete form of the second covariant derivative of the function which is a
generalization of the result in [3].

The author wishes to thank the referee who read the manuscript carefully and
pointed out the author’s many careless mistakes.

2. Even dimensional submanifold of a Hermitian manifold

Let M be a real (n+2p)-dimensional Hermitian manifold with Hermitian struc-
ture (J, g), that is, J is the almost complex structure of M and g the Riemannian
metric of M satisfying the Hermitian condition g(JX, JY ) = g(X, Y ) for any
X, Y ∈ T (M). Let M be an n-dimensional real submanifold of M and ι be the
immersion. Then the tangent bundle T (M) is identified with a subbundle of T (M)
and the induced Riemannian metric g of M is defined by g(X, Y ) = g(ιX, ιY ) for
X, Y ∈ T (M), where we use the same ι for the differential map of the immersion ι.
The normal bundle T⊥(M) is the subbundle of T (M) consisting of all X ∈ T (M)
which are orthogonal to T (M) with respect to g. At each point of M , we choose or-
thonormal local vector fields ξ1, . . . , ξ2p in such a way that they belong to T⊥(M).
For any X ∈ T (M) and for ξa (a = 1, . . . , 2p) the transforms JιX and Jξa are
respectively written in the following forms:

JιX = ιFX +
2p∑

a=1

ua(X)ξa,(2.1)

Jξa = −ιUa +
2p∑

b=1

pabξb,(2.2)

where F , pab, Ua and ua define respectively an endomorphism of T (M), that of
T⊥(M), local tangent vector fields and local 1-forms on M . They satisfy the
relations ua(X) = g(Ua, X) and pab = −pba. If Ua, a = 1, . . . , 2p vanish identically,
the tangent space of M is invariant under J and in this case the submanifold is a
complex manifold with induced almost complex structure.

Applying J to both side members of (2.1) and (2.2), we find

F 2X = −X +
2p∑

a=1

ua(X)Ua,(2.3)

ua(FX) = −
2p∑

b=1

pbaub(X), FUa = −
2p∑

b=1

pabUb, a = 1, . . . , 2p,(2.4)

2p∑
c=1

pacpcb = −δab + ub(Ua), a, b = 1, . . . , 2p.(2.5)

We denote by ∇ and ∇ the Riemannian connection of M and M respectively and
by D the induced normal connection from ∇ to T⊥(M). Then they are related by
the following equations [1]:
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∇ιXιY = ι∇XY + h(X, Y ),(2.6)

∇ιXξa = −ιAaX + DXξa, DXξa =
2p∑

b=1

sab(X)ξb, a = 1, . . . , 2p,(2.7)

where h is the second fundamental form and Aa is a symmetric linear transformation
of T (M), which is called the shape operator with respect to ξa. The last two
equations show that h(X, Y ) =

∑2p
a=1 g(AaX, Y )ξa.

The mean curvature vector field µ of M is defined by

(2.8) µ =
1
n

2p∑
a=1

(trace Aa)ξa,

and it is well-known that µ is independent of the choice of orthonormal normals
ξ1, . . . , ξ2p. The length of the mean curvature vector field is called the mean cur-
vature of the submanifold and it is given by

(2.9) |µ| = 1
n

{ 2p∑
a=1

(trace Aa)2
}1/2

.

Differentiating (2.8) covariantly, we get

nDXµ =
2p∑

a=1

{
X(trace Aa)ξa +

2p∑

b=1

(trace Aa)sab(X)ξb

}
,

from which we know that the mean curvature vector field is parallel with respect
to the normal connection if and only if

(2.10) X(trace Aa) =
2p∑

b=1

(trace Ab)sab(X),

because of the fact that sab = −sba.

3. A function defined by the fundamental 2-form of M

Let Ω be the fundamental 2-form of the Hermitian manifold M , that is, Ω is
defined by

Ω(X, Y ) = g(JX, Y )

for X, Y ∈ T (M). We put

(3.1) f = Ωp(ξ1, ξ2, . . . , ξ2p),

where Ωp denotes p-times exterior product of Ω. Then we have

Lemma 3.1. f is independent of the choice of mutually orthonormal normals
ξ1,. . . ,ξ2p.
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Proof. Let η1,. . . ,η2p be another choice of mutually orthonormal normals to
M . Then we have

(3.2) ηa =
2p∑

b=1

T b
aξb,

for some orthogonal matrix (T b
a) ∈ O(2p). Denoting by S(2p) the symmetric group

of order 2p, we have from (3.2)

f ′ = Ωp(η1, . . . , η2p) =
∑

c1,...,c2p

T c1
1 T c2

2 · · ·T c2p

2p Ωp(ξc1 , ξc2 , . . . , ξc2p
)

=
∑

σ∈S(2p)

T
σ(1)
1 T

σ(2)
2 · · ·Tσ(2p)

2p Ωp(ξσ(1), ξσ(2), . . . , ξσ(2p))

=
∑

σ∈S(2p)

T
σ(1)
1 T

σ(2)
2 · · ·Tσ(2p)

2p sgn σΩp(ξ1, ξ2, . . . , ξ2p)

= det(T b
a)Ωp(ξ1, . . . , ξ2p) = f.

This shows that f is independent of the choice of normals. ¤

Now we discuss the function f more concretely. The number A of the terms in
the expansion of f as a sum of product Ω(ξa1 , ξa2)Ω(ξa3 , ξa4) · · ·Ω(ξa2p−1 , ξa2p) is

(2p

2

)(2p− 2
2

)
· · ·

(4
2

)(2
2

)
=

(2p)!
2p

,

and the number B of different factorization of Ω(ξai , ξaj )’s is (2p−1)(2p−3) · · · 5·3·1.
Hence, in the expansion, there are A/B = p! like terms. Hence we can write

(3.3) f = p!
∑

Ω(ξa1 , ξa2) · · ·Ω(ξa2p−1 , ξa2p),

where
∑

means the sum of all such combinations of a2l−1, a2l ∈ {1, 2, . . . , 2p} that
a2l−1 < a2l.

4. Complex submanifolds, CR submanifolds of CR dimension
n− 2

2

Let M be a complex submanifold of a Hermitian manifold M . Since the normal
space T⊥x (M) of x ∈ M is J-invariant subspace of Tx(M) as well as the tangent
space Tx(M), we can choose an orthonormal basis of T⊥x (M) in such a way that
(ξ2a)x = J(ξ2a−1)x, a = 1, . . . , p and extend them to local fields ξ1, . . . , ξ2p. Then
we have

Ω(ξ2a−1, ξ2b−1) = g(Jξ2a−1, ξ2b−1) = g(ξ2a, ξ2b−1) = 0,

Ω(ξ2a−1, ξ2b) = g(Jξ2a−1, ξ2b) = g(ξ2a, ξ2b) = δab.

Thus in (3.3), Ω(ξa1 , ξa2) · · ·Ω(ξa2p−1 , ξa2p) = 0, except

Ω(ξ1, ξ2)Ω(ξ3, ξ4) · · ·Ω(ξ2p−1, ξ2p) = 1.

Hence, from (3.3) f = p!. Thus we have

Proposition 4.1. For a complex submanifold M we have f = p!.
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Now we consider a CR submanifold M of CR dimension (n−2)/2 in a Hermitian
manifold M . By definition, at each point x ∈ M , the real dimension of the holomor-
phic tangent space Hx(M) = JTx(M)∩Tx(M) is n−2. We choose an orthonormal
basis e1, e2, . . . , en of Tx(M) in such a way that e1, e2, . . . , en−2 ∈ Hx(M). Then
Jιej ∈ Tx(M), (j = 1, . . . , n− 2) and

(4.1) Jιen−1 = λιen + η1, Jιen = −λιen−1 + η2,

where η1 and η2 denote the normal part of Jιen−1 and Jιen respectively. We note
that η1 and η2 never vanish. In fact, if, for example, η1 vanishes at a point x ∈ M ,
from the first equation of (4.1) it follows that Jιen−1 ∈ Tx(M). This shows that
the real dimension of Hx(M) at x is greater than n− 2. This is a contradiction.

We choose orthonormal normal vectors ξ1, ξ2,. . . ,ξ2p to M in such a way that
ξ1 and ξ2 are in the direction of η1 and η2 respectively, that is, ξ1 = η1/|η1|,
ξ2 = η2/|η2|. Then we have for a = 3,. . . ,2p,

g(Jξa, ιX) = −g(ξa, JιX) = 0,

g(Jξa, ξ1) = −g(ξa, Jξ1) = 0,

g(Jξa, ξ2) = −g(ξa, Jξ2) = 0,

because of (4.1). These equations show that the subspace span{ξ3, . . . , ξ2p} of
T⊥(M) is J-invariant and therefore we choose such an orthonormal basis of span{ξ3,
. . . , ξ2p} that ξ2a = Jξ2a−1, a = 2,. . . ,p. By choosing these orthonormal normals,
it follows that, for a, b > 2:

Ω(ξ2a−1, ξ2b−1) = g(Jξ2a−1, ξ2b−1) = g(ξ2a, ξ2b−1) = 0,

Ω(ξ2a−1, ξ2b) = g(Jξ2a−1, ξ2b) = g(ξ2a, ξ2b) = δab,

and for a > 3:

Ω(ξ1, ξa) = g(Jξ1, ξa) = 0, Ω(ξ2, ξa) = g(Jξ2, ξa) = 0.

Hence in (3.3), only the term Ω(ξ1, ξ2)Ω(ξ3, ξ4) · · ·Ω(ξ2p−1, ξ2p) does not vanish and
consequently we have

Proposition 4.2. For a CR submanifold M of CR dimension (n − 2)/2 we
have f = p!Ω(ξ1, ξ2).

Next let M be a real submanifold of codimension 2 of a complex submanifold
M ′ of a Hermitian manifold M . We choose orthonormal normals to M in M in
such a way that ξ1, ξ2 ∈ T (M ′) and ξ3,. . . ,ξ2p ∈ T⊥(M ′). As M ′ is a complex
submanifold, T⊥(M ′) is J-invariant. Hence, in entirely the same argument as in
the case that M is CR submanifold of CR dimension (n− 2)/2, we have

Proposition 4.3. For a real submanifold of codimension 2 of a complex sub-
manifold of a Hermitian manifold we have f = p!Ω(ξ1, ξ2).
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5. Totally umbilical submanifold of a Kähler manifold

Let M be a submanifold of M . If at each point of M there exist differentiable
functions ρa, a = 1, 2, . . . , 2p, satisfying

(5.1) AaX = ρaX

for any X ∈ T (M), we call the submanifold a totally umbilical submanifold. In
this case ρa = (trace Aa)/n, that is,

(5.2) AaX =
1
n

(trace Aa)X.

First we consider the function f on a typical example of a totally umbilical sub-
manifold.

Example 1. Let M be a complex space C(n+2)/2 with complex coordinates
zλ = xλ +

√−1yλ, (λ = 1, . . . , q = (n+2)/2). An n-dimensional sphere Sn defined
by

Sn =
{

(xλ, yλ)
∣∣∣

q∑

λ=1

{(xλ)2 + (yλ)2} = 1, yq = 0
}

is a totally umbilical submanifold of codimension 2 of C(n+2)/2. We choose mutually
orthonormal vector fields ξ1 and ξ2 to Sn as

ξ1 =
q∑

λ=1

(
xλ ∂

∂xλ
+ yλ ∂

∂yλ

)
, ξ2 =

∂

∂yq
.

Then Jξ2 = −∂/∂xq. Since codimension is 2, the function f = Ω(ξ1, ξ2) =
−g(ξ1, Jξ2) = xq. Thus, in this case, f is the level function of the last real co-
ordinate.

From now on we assume that the ambient manifold M is a Kähler manifold.
Then J is covariant constant and therefore ∇XΩ = 0. So, from (2.7):

g(gradf, Y ) = Y (Ωp(ξ1, . . . , ξ2p)) =
2p∑

a=1

Ωp(ξ1, . . . , ξa−1,∇ιY ξa, ξa+1, . . . , ξ2p)

=
2p∑

a=1

Ωp

(
ξ1, . . . , ξa−1,−ιAaY +

2p∑

b=1

sab(Y )ξb, ξa+1, . . . , ξ2p

)
(5.3)

= −
2p∑

a=1

Ωp(ξ1, . . . , ξa−1, ιAaY, ξa+1, . . . , ξ2p),

because Ωp is a 2p-form and sab are skew-symmetric with respect to a and b. Then
it follows that

g(∇X gradf, Y ) = X(g(gradf, Y ))− g(gradf,∇XY )

= −X

( 2p∑
a=1

Ωp(ξ1, . . . , ξa−1, ιAaY, ξa+1, . . . , ξ2p)
)
−g(gradf,∇XY )
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= −
a−1∑

b=1

2p∑
a=1

Ωp(ξ1, . . . ,∇ιXξb, . . . , ξa−1, ιAaY, ξa+1, . . . , ξ2p)

−
2p∑

a=1

Ωp(ξ1, . . . , ξa−1,∇ιXιAaY, ξa+1, . . . , ξ2p)

−
2p∑

b=a+1

2p∑
a=1

Ωp(ξ1, . . . , ξa−1, ιAaY, ξa+1, . . . ,∇ιXξb, . . . , ξ2p)

− g(gradf,∇XY ).

Substituting (2.7) into the above equation and making use of the fact that

g(gradf,∇XY ) = −
2p∑

a=1

Ωp(ξ1, . . . , ξa−1, ιAa∇XY, ξa+1, . . . , ξ2p),

we have

g(∇X gradf, Y ) =
a−1∑

b=1

2p∑
a=1

Ωp(ξ1, . . . , ιAbX, . . . , ξa−1, ιAaY, ξa+1, . . . , ξ2p)

−
a−1∑

b=1

2p∑
a,c=1

sbc(X)Ωp(ξ1, . . . , ξb−1, ξc, ξb+1, . . . , ιAaY, . . . , ξ2p)

−
2p∑

a=1

Ωp(ξ1, . . . , ξa−1, ι(∇XAa)Y, ξa+1, . . . , ξ2p)

−
2p∑

a,b=1

g(AbAaY, X)Ωp(ξ1, . . . , ξa−1, ξb, ξa+1, . . . , ξ2p)

+
2p∑

b=a+1

2p∑
a=1

Ωp(ξ1, . . . , ξa−1, ιAaY, ξa+1, . . . , ιAbX, . . . , ξ2p)

−
2p∑

b=a+1

2p∑
a,c=1

sbc(X)Ωp(ξ1, ..., ξa−1, ιAaY, ..., ξb−1, ξc, ξb+1, ..., ξ2p)

=
a−1∑

b=1

2p∑
a=1

Ωp(ξ1, . . . , ιAbX, . . . , ξa−1, ιAaY, ξa+1, . . . , ξ2p)

−
a−1∑

b=1

2p∑
a=1

sba(X)Ωp(ξ1, . . . , ξb−1, ξa, ξb+1, . . . , ιAaY, . . . , ξ2p)

−
2p∑

a=1

Ωp(ξ1, ..., ξa−1, ι(∇XAa)Y, ξa+1, ..., ξ2p)−
2p∑

a=1

g(A2
aY, X)f

+
2p∑

b=a+1

2p∑
a=1

Ωp(ξ1, . . . , ξa−1, ιAaY, ξa+1, . . . , ιAbX, . . . , ξ2p)
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−
2p∑

b=a+1

2p∑
a=1

sba(X)Ωp(ξ1, . . . , ιAaY, . . . , ξb−1, ξa, ξb+1, . . . , ξ2p)

=
a−1∑

b=1

2p∑
a=1

Ωp(ξ1, . . . , ιAbX, . . . , ξa−1, ιAaY, ξa+1, . . . , ξ2p)

+
a−1∑

b=1

2p∑
a=1

sba(X)Ωp(ξ1, . . . , ξb−1, ιAaY, ξb+1, . . . , ξa, . . . , ξ2p)

−
2p∑

a=1

Ωp(ξ1, ..., ξa−1, ι(∇XAa)Y, ξa+1, ..., ξ2p)−
2p∑

a=1

g(A2
aY, X)f

+
2p∑

b=a+1

2p∑
a=1

Ωp(ξ1, . . . , ξa−1, ιAaY, ξa+1, . . . , ιAbX, . . . , ξ2p)

+
2p∑

b=a+1

2p∑
a=1

sba(X)Ωp(ξ1, . . . , ξa, . . . , ξb−1, ιAaY, ξb+1, . . . , ξ2p).

If M is a totally umbilical submanifold, by (5.1), it follows that

(5.4) g(gradf, Y ) = −
2p∑

a=1

ρaΩp(ξ1, . . . , ξa−1, ιY, ξa+1, . . . , ξ2p)

and

g(∇X gradf, Y ) =
a−1∑

b=1

2p∑
a=1

ρaρbΩp(ξ1, . . . , ιX, . . . , ξa−1, ιY, ξa+1, . . . , ξ2p)

+
a−1∑

b=1

2p∑
a=1

ρasba(X)Ωp(ξ1, . . . , ξb−1, ιY, ξb+1, . . . , ξ2p)

−
2p∑

a=1

(Xρa)Ωp(ξ1, ..., ξa−1, ιY, ξa+1, ..., ξ2p)−
( 2p∑

a=1

ρ2
a

)
g(X,Y )f

+
2p∑

b=a+1

2p∑
a=1

ρaρbΩp(ξ1, . . . , ξa−1, ιY, ξa+1, . . . , ιX, . . . , ξ2p)

+
2p∑

b=a+1

2p∑
a=1

ρasba(X)Ωp(ξ1, . . . , ξb−1, ιY, ξb+1, . . . , ξ2p)

= −
2p∑

a=1

(Xρa)Ωp(ξ1, ..., ξa−1, ιY, ξa+1, ..., ξ2p)−
( 2p∑

a=1

ρ2
a

)
fg(X,Y )

+
b−1∑
a=1

2p∑

b=1

ρbsab(X)Ωp(ξ1, . . . , ξa−1, ιY, ξa+1, . . . , ξ2p)
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+
2p∑

a=b+1

2p∑

b=1

ρbsab(X)Ωp(ξ1, . . . , ξa−1, ιY, ξa+1, . . . , ξ2p)

= −
2p∑

a=1

(Xρa)Ωp(ξ1, ..., ξa−1, ιY, ξa+1, ..., ξ2p)−
( 2p∑

a=1

ρ2
a

)
fg(X,Y )

+
2p∑

a=1

2p∑

b=1

ρbsab(X)Ωp(ξ1, . . . , ξa−1, ιY, ξa+1, . . . , ξ2p),

because of sbb = 0. Thus we have

g(∇X gradf, Y ) = −
( 2p∑

a=1

ρ2
a

)
fg(X,Y )

−
2p∑

a=1

(
Xρa −

2p∑

b=1

ρbsab(X)
)

Ωp(ξ1, . . . , ξa−1, ιY, ξa+1, . . . , ξ2p)(5.5)

Hence we obtain

Theorem 5.1. In an even dimensional totally umbilical submanifold M of a
Kähler manifold, the function f satisfies (5.5). Moreover, if the mean curvature
vector field is parallel with respect to the normal connection, f satisfies

(5.6) g(∇X gradf, Y ) = −
( 2p∑

a=1

ρ2
a

)
fg(X,Y ).

In connection with the function which satisfies (5.6), Obata [2] proved that in
an n-dimensional complete, connected Riemannian manifold M , if there exists a
function f satisfying

g(∇X gradf, Y ) = −k2fg(X, Y ),

for some constant k, M is isometric with a sphere of radius 1/k in the Euclidean
(n + 1)-space. Further, it can be easily proved that if the mean curvature vector
field is parallel with respect to the normal connection, then |µ| is constant and since∑2p

a=1 ρ2
a = |µ|2, it follows:

Theorem 5.2. [4] Let M be an even dimensional complete, connected totally
umbilical submanifold of a Kähler manifold. If the mean curvature vector field is
parallel with respect to the normal connection, then M is isometric with a sphere
of radius 1/|µ|.

6. Totally umbilical submanifold which is a submanifold of
codimension 2 of a complex submanifold

Here, let M be a submanifold of codimension 2 of a complex submanifold M ′

of a Kähler manifold M . Then, in entirely the same argument which we used to
get Proposition 4.3, it follows that

Ωp(ιY, ξ2, ξ3, . . . , ξ2p) = p!Ω(ιY, ξ2), Ωp(ξ1, ιY, ξ3, . . . , ξ2p) = p!Ω(ξ1, ιY )(6.1)
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Ωp(ξ1, ξ2, .., ξa−1, ιY, ξa+1, . . . , ξ2p) = 0, (a = 3, . . . , 2p),(6.2)

where we have chosen orthonormal normals ξ1,. . . ,ξ2p to M in such a way that
ξ1,ξ2 ∈ T (M ′) and ξ3,. . . ,ξ2p are normal to M ′.

Since the tangent space of a complex submanifold M ′ is J-invariant, for ξ1 and
ξ2, we have

Jξ1 = −ιU1 + λξ2, Jξ2 = −ιU2 − λξ1, λ = Ω(ξ1, ξ2),(6.3)

g(U1, U1) = g(U2, U2) = 1− λ2, g(U1, U2) = 0, Ua = 0 (a = 3, . . . , 2p),(6.4)

JιX = ιFX + u1(X)ξ1 + u2(X)ξ2,(6.5)

Ω(ιY, ξ2) = g(U2, Y ),Ω(ξ1, ιY ) = −g(U1, Y ).(6.6)

Now we assume that M is totally umbilical in M . Then, from (6.1), (6.2) and (6.6),
(5.5) becomes

(6.7) g(∇X gradf, Y ) = −|µ|2fg(X, Y )− p!{(DXρ1)g(U2, Y )− (DXρ2)g(U1, Y )}
where DXρ1 = Xρ1 − ρ2s12(X) and DXρ2 = Xρ2 − ρ1s21(X). Since the left-hand
member of (6.7) is symmetric with respect to X, Y , it follows that

(DXρ1)g(U2, Y )− (DXρ2)g(U1, Y ) = (DY ρ1)g(U2, X)− (DY ρ2)g(U1, X).

Substituting Y in the last equation for U2 and making use of (6.4), we have

(1− λ2)DXρ1 = (DU2ρ1)g(U2, X)− (DU2ρ2)g(U1, X).

Similarly, we have

(1− λ2)DXρ2 = (DU1ρ2)g(U1, X)− (DU1ρ1)g(U2, X).

Hence (6.7) becomes

(6.8) g(∇X gradf, Y ) = −|µ|2fg(X,Y ) +
2∑

i,j=1

aijg(Ui, X)g(Uj , Y ),

for some functions aij such that they vanish when the mean curvature vector field
is parallel with respect to the normal connection. Thus we have a generalization of
the result in [3]:

Theorem 6.1. Let M be a submanifold of codimension 2 of a complex subman-
ifold M ′ of a Kähler manifold M . If M is totally umbilical as a submanifold of M ,
the function f satisfies (6.8) for some aij, i, j = 1, 2, where aij are such functions
that they vanish when the mean curvature vector field is parallel with respect to the
normal connection.
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