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Abstract. We investigate Akivis–Goldberg type metrics satisfying some ad-
ditional assumptions.

1. Introduction

Let M be a manifold of dimension n = pq, and let SC(p, q) be a differentiable
field of Segre cones SCx(p, q) ⊂ TxM , x ∈ M . The pair (M, SC(p, q)) is called an
almost Grassmann structure and is denoted by AG(p− 1, p + q− 1). The manifold
M endowed with such structure is said to be an almost Grassmann manifold (e.g.,
see [1, Definition 1.1]). Some additional conditions lead to so-called semiintegrable
almost Grassmann structures [1, Definition 1.2]. The latter were studied in [1] and
examples of such structures, mainly 4-dimensional, are presented there. Certain
semi-Riemannian metrics are related to these structures (see Examples 3.5–3.16 of
[1]). These metrics are called Akivis–Goldberg, in short AG-metrics [20]. Manifolds
admitting AG-metrics will be called AG-manifolds. Curvature properties and, in
particular, curvature properties of pseudosymmetry type of AG-manifolds were
obtained in [20]. For instance, on such manifolds we have [20]

rankS 6 2,(1.1)

(i) S2 = 0, (ii) κ = 0, (iii) S · C = 0.(1.2)

For precise definitions of the symbols used, we refer to Section 2 of this paper. We
note that (1.2)(iii), by making use of (1.2)(i), (1.2)(ii) and the identity

(1.3) S · C = S ·R +
4

n− 2
S +

2
n− 2

g ∧ S2 − 2κ

(n− 2)(n− 1)
g ∧ S,
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turns into S · R = − 4
n−2S. Moreover, on every AG-manifold (M, g) the following

condition of pseudosymmetry type is satisfied [20]

(1.4) R ·R−Q(S, R) = LCQ(g, C),

where LC is some function on UC = {x ∈ M | C 6= 0 at x}. With respect to
the above presentation of curvature properties of AG-manifolds we can define the
following extension of this class of manifolds.

Let (M, g), n > 4, be a semi-Riemannian manifold such that UC ∩ US ⊂ M is
a nonempty set, where US = {x ∈ M | S − κ

ng 6= 0 at x}. The metric g will be
called an Akivis–Goldberg type metric, in short an AG type metric if on UC ∩ US

the following three conditions are fulfilled: (1.4),

S ·R = L1S + L2g ∧ S + L3G,(1.5)

S2 = L4S + L5g,(1.6)

where L1, . . . , L5 are some functions on UC ∩ US . A manifold admitting an AG
type metric will be called an Akivis–Goldberg type manifold, in short an AG type
manifold. Evidently, every AG manifold is an AG type manifold. The converse
statement is not true. In Section 3 we present examples of AG type manifolds. In
particular, we state that every semi-Riemannian manifold satisfying the Roter type
equation [9] is an AG type manifold. Some AG type manifolds satisfy also (1.1). In
Section 2 we prove (see Corollary 2.1) that if an AG type manifold (M, g) satisfies
on UC ∩ US ⊂ M the condition

(1.7) rankS = 2

then (1.6) reduces on UC ∩ US to

(1.8) S2 =
κ

2
S.

In Remark 3.1 (v) and (vi) we present examples of AG type manifolds satisfying
(1.7). These manifolds can be locally realized as hypersurfaces of semi-Euclidean
spaces. In the last section we consider hypersurfaces M in semi-Riemannian spaces
of constant curvature Nn+1

s (c) with signature (s, n+1− s), n > 4, or in particular,
in semi-Euclidean spaces En+1

s , with nonempty set UC ∩ US ⊂ M , satisfying on
this set (1.4), (1.5) and (1.6). It means that the metric g induced on M from
the metric of the ambient space is an AG type metric. Hypersurfaces M , with
nonempty set UC ∩ US ⊂ M , satisfying on this set (1.4), (1.5) and (1.6) will be
called Akivis–Goldberg type hypersurfaces, in short AG type hypersurfaces.

Let M be a hypersurface in Nn+1
s (c), n > 4. We denote by UH the set of all

points of M at which the tensor H2 is not a linear combination of H and g. Using
(2.18) and Theorem 4.1 of [19] we can deduce that UH ⊂ UC ∩ US ⊂ M . AG type
hypersurfaces in Nn+1

s (c), n > 4, are also investigated in [22] and [23]. Among
others things in [22] it was shown that (1.4), (1.5) and (1.6) hold on UC ∩US−UH .
Therefore we restrict our considerations on AG type hypersurfaces M in Nn+1

s (c) to
the set UH ⊂ M . We mention that an extension of the class of AG type manifolds
was introduced in [22] (see also [23]).
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Our main result states (see Theorem 4.1) that if M is an AG type hypersurface
in En+1

s , n > 5, the set UH ⊂ M is nonempty, and (1.7) holds on UH , then the
conditions R · R = 0 and R · S = 0 are equivalent at all points of UH at which
κ 6= 0. An example of a semisymmetric AG type hypersurface, with κ 6= 0, is given
in Section 3 (see Remark 3.1(v)). That hypersurface satisfies

(1.9) R =
2
κ

S.

2. Preliminaries

Throughout this paper all manifolds are assumed to be connected paracompact
manifolds of class C∞. Let (M, g) be an n-dimensional, n > 3, semi-Riemannian
manifold. We denote by∇, R, C, S and κ the Levi-Civita connection, the Riemann-
Christoffel curvature tensor, the Weyl conformal curvature tensor, the Ricci tensor
and the scalar curvature of (M, g), respectively. The Ricci operator S is defined by
g(SX, Y ) = S(X, Y ), where X, Y ∈ Ξ(M), Ξ(M) being the Lie algebra of vector
fields on M . We define the endomorphisms X∧A Y , R(X, Y ) and C(X, Y ) of Ξ(M)
by

(X ∧A Y )Z = A(Y,Z)X −A(X,Z), Y

R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,

C(X, Y ) = R(X, Y )− 1
n− 2

(
X ∧g SY + SX ∧g Y − κ

n− 1
X ∧g Y

)
,

respectively, where X,Y, Z ∈ Ξ(M) and A is a symmetric (0, 2)-tensor. Now the
Riemann-Christoffel curvature tensor R, the Weyl conformal curvature tensor C
and the (0, 4)-tensor G of (M, g) are defined by

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),

respectively, where X, Y, Z, X1, X2, . . . ∈ Ξ(M). Let B(X,Y ) be a skew-symmetric
endomorphism of Ξ(M) and let B be a (0, 4)-tensor associated with B(X, Y ) by

(2.1) B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4).

The tensor B is said to be a generalized curvature tensor if

B(X1, X2, X3, X4) + B(X2, X3, X1, X4) + B(X3, X1, X2, X4) = 0,

B(X1, X2, X3, X4) = B(X3, X4, X1, X2).

For a generalized curvature tensor B we denote by Ric(B), Weyl(B) and κ(B) the
Ricci tensor, the Weyl tensor and the scalar curvature of B, respectively. The sub-
sets UB , URic(B) and UWeyl(B) are defined in the same way as the subsets UR, US

and UC , respectively. Clearly, the tensors R, C and G are generalized curvature
tensors. For symmetric (0, 2)-tensors E and F we denote by E ∧F their Kulkarni–
Nomizu product. The tensor E ∧ F is also a generalized curvature tensor. For a
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symmetric (0, 2)-tensor E we define the (0, 4)-tensor E by E = 1
2E ∧E. In partic-

ular, we have g = G = 1
2g ∧ g. Let B(X,Y ) be a skew-symmetric endomorphism

of Ξ(M) and let B be the tensor defined by (2.1). We extend the endomorphism
B(X, Y ) to derivation B(X, Y )· of the algebra of tensor fields on M , assuming that
it commutes with contractions and B(X, Y ) · f = 0 for any smooth function on
M . Now for a (0, k)-tensor field T , k > 1, and a symmetric (0, 2)-tensor A we can
define the (0, k + 2)-tensors B · T and Q(A, T ) and the (0, k)-tensor A · T . For the
definition of these tensors we refer, for instance, to [2] or [13]. Setting T = R,
T = C or T = S and A = g or A = S we obtain the tensors: S · R, S · C, R · R,
R · C, C · R, C · C, R · S, C · S, Q(g, R), Q(g, C), Q(g, S), Q(S,R), and Q(S,C).
The tensors C · R, C · C and C · S are defined in the same manner as the tensors
R ·R and R · S, respectively.

A semi-Riemannian manifold (M, g), n > 3, is called a quasi-Einstein manifold
if its Ricci tensor S has the form

(2.2) S = αg + εw ⊗ w, ε = ±1,

for some function α and 1-form w on M . We refer to [2] for a review of re-
sults on quasi-Einstein manifolds. AG type quasi-Einstein hypersurfaces in semi-
Riemannian spaces of constant curvature are investigated in [23].

A semi-Riemannian manifold (M, g), n > 3, is said to be pseudosymmetric if
at every point of M the tensors R · R and Q(g,R) are linearly dependent. This is
equivalent to

(2.3) R ·R = LRQ(g, R)

on UR = {x ∈ M | R − κ
(n−1)nG 6= 0 at x}, where LR is some function on UR. We

note that UC ⊂ UR and US ⊂ M . The class of pseudosymmetric manifolds is an
extension of the class of semisymmetric manifolds (R ·R = 0). A semi-Riemannian
manifold (M, g), n > 3, is said to be Ricci-pseudosymmetric if at every point of M
the tensors R · S and Q(g, S) are linearly dependent. This is equivalent to

(2.4) R · S = LSQ(g, S)

on US , where LS is some function on US . We say that (2.3) and (2.4) are certain
conditions of pseudosymmetry type [2], [12]. The class of Ricci-pseudosymmetric
manifolds is an extension of the class of Ricci-semisymmetric manifolds (R ·S = 0)
as well as of the class of pseudosymmetric manifolds. Some geometrical considera-
tions show that (2.3), resp., (2.4), is a more natural curvature condition than the
condition R · R = 0, resp. R · S = 0. For a presentation of facts related to these
statements and, in general, on pseudosymmetry type conditions we refer to [2] and
[12].

Lemma 2.1. Let (M, g), n > 3, be a semi-Riemannian manifold and let A be
a nonzero symmetric (0, 2)-tensor at x ∈ M .

(i) If

(2.5) rank A = 2
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at x, then at x we have

(2.6) A3 = tr(A)A2 +
tr(A2)− (tr(A))2

2
A.

Moreover, if

(2.7) A2 = αA + βg, α, β ∈ R,

at x, then at x we have

(2.8) A2 =
tr(A)

2
A.

(ii) If rankA 6 2 and

(2.9) A = αg + εw ⊗ w, α ∈ R, ε = ±1, w ∈ T ∗x M,

at x and w is nonzero, then at x we have rankA = 1.

Proof. (i) It is clear that (2.5) is equivalent to

Ail(AhkAjm −AhmAjk) + Ajl(AikAhm −AimAhk) + Ahl(AjkAim −AikAjm) = 0.

Contracting this with ghk and gjl we obtain

(2.10) tr(A)(AilAjm −AimAjl) + AjlA
2
im + AimA2

jl −AilA
2
jm −AjmA2

il = 0

and (2.6), respectively. Further, substituting (2.7) into (2.10) we get

(2.11) (tr(A)− 2α)A ∧A = 2βg ∧A.

We suppose that tr(A)− 2α 6= 0 at x. Now (2.11) yields

(2.12) A ∧A =
2β

tr(A)− 2α
g ∧A.

We note that from (2.5) it follows that A is not proportional to g. Thus (2.12),
in view of Lemma 3.1 of [21], implies β = 0 and, in a consequence, rankA = 1, a
contradiction. Therefore 2α = tr(A). Now (2.11) reduces to βg ∧ A = 0 whence
β(A− tr(A)

n g) = 0, and in a consequence, β = 0, completing the proof of (i).
(ii) We suppose that (2.5) holds at x. From (2.9) we have

Aij = αgij + εwiwj ,(2.13)

A2
ij = αAij + εwrAriwj , wr = grsws.(2.14)

(2.14) yields wrAriwj = wrArjwi whence

(2.15) wrAri = λwi, λ ∈ R.

Now (2.14) turns into A2
ij = αAij + ελwiwj , which by making use of (2.8) and (2.9)

gives (α + λ− tr(A)
2 )A = αλg. This implies α + λ = tr(A)

2 and αλ = 0. We suppose
that α 6= 0. Now the last two relations yield

(2.16) (a) λ = 0, (b) α = tr(A)/2.

Evidently, (2.15) by (2.16)(a) reduces to wrAri = 0. Now, contracting (2.13)
with gij and transvecting with wj , respectively, and using (2.16)(b) we obtain
n−2

2 tr(A) + εwrwr = 0 and tr(A) + εwrwr = 0, respectively. These relations imply
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tr(A) = 0, which by (2.16)(b) yields α = 0, a contradiction. Since α = 0, (2.9)
reduces to A = εw ⊗ w, completing the proof. ¤

Corollary 2.1. Let (M, g), n > 4, be a semi-Riemannian manifold.
(i) If (1.6) and (1.7) are satisfied on US ⊂ M , then (1.8) holds on this set.
(ii) If (1.1) and (2.2) are satisfied at every point of US ⊂ M , then rankS = 1 on
this set.

Let M , n > 3, be a connected hypersurface isometrically immersed in a semi-
Riemannian manifold (N, gN ). We denote by g the metric tensor induced on M
from the metric tensor gN . Further, we denote by ∇ and ∇N the Levi-Civita
connections corresponding to the metric tensors g and gN , respectively. Let ξ be
a local unit normal vector field on M in N and let ε = gN (ξ, ξ) = ±1. We can
present the Gauss formula and the Weingarten formula of (M, g) in (N, gN ) in the
form: ∇N

XY = ∇XY + εH(X, Y )ξ and ∇Xξ = −AX, respectively, where X, Y
are vector fields tangent to M , H is the second fundamental tensor of (M, g) in
(N, gN ), A is the shape operator and Hk(X, Y ) = g(AkX, Y ), k > 1, H1 = H
and A1 = A. We denote by R and RN the Riemann–Christoffel curvature tensors
of (M, g) and (N, gN ), respectively. The Gauss equation of (M, g) in (N, gN ) has
the form R(X1, . . . , X4) = RN (X1, . . . , X4)+ εH(X1, . . . , X4), where H = 1

2H ∧H

and X1, . . . , X4 are vector fields tangent to M . Let the equations xr = xr(yk)
be the local parametric expression of (M, g) in (N, gN ), where yk and xr are the
local coordinates of M and N , respectively, and a, b, h, i, j, k, l,m ∈ {1, 2, . . . , n}
and p, r, t, u ∈ {1, 2, . . . , n + 1}.

Let M be a hypersurface in Nn+1
s (c), n > 4, c = τ

n(n+1) , where τ denote the
scalar curvature of the ambient space. Now the Gauss reads (see e.g. [14])

(2.17) Rhijk = εHhijk +
τ

n(n + 1)
Ghijk,

where Rhijk, Ghijk, Hhk and Hhijk = HhkHij −HhjHik denote the local compo-
nents of the tensors R, G, H and H, respectively. Contracting (2.17) with gij we
obtain

(2.18) Shk = ε
(
tr(H)Hhk −H2

hk

)
+

(n− 1)τ
n(n + 1)

ghk,

where tr(H) = ghkHhk and Shk are the local components of the Ricci tensor S of
M . From (2.18) we easily get

S2
hk = gijShiSkj = H4

hk − 2 tr(H)H3
hk + ((tr(H))2 − 2(n− 1)ετ

n(n + 1)
)H2

hk

+
2ε(n− 1)τ tr(H)

n(n + 1)
H +

( (n− 1)τ
n(n + 1)

)2

ghk.(2.19)

Further, on every hypersurface M in Nn+1
s (c), n > 4, we have [19]

(2.20) R ·R−Q(S, R) = − (n− 2)τ
n(n + 1)

Q(g, C).
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Thus (1.4) is satisfied on every hypersurface in Nn+1
s (c), n > 4. Evidently, if

x ∈ UR − UH , then at x we have H2 = αH + βg, α, β ∈ R. The last relation leads
to (cf. [17, Proposition 3.1(ii)])

(2.21) R ·R =
( τ

n(n + 1)
− εβ

)
Q(g, R).

Thus (2.3) holds on UR−UH . Further, if M is a pseudosymmetric hypersurface in
Nn+1

s (c), n > 3, then on UH ⊂ M we have [8, Theorem 3.1]

(2.22) R ·R =
τ

n(n + 1)
Q(g,R).

It is also known [7, eq. (3.8)] that if M is a pseudosymmetric hypersurface in
Nn+1

s (c), n > 3, then on US ⊂ M we have

(2.23) Q
(
S −

(
LR +

(n− 2)τ
n(n + 1)

)
g, R− τ

n(n + 1)
G

)
= 0.

In particular, applying (2.22) into (2.23) we get on UH ⊂ US

Q
(
S − (n− 1)τ

n(n + 1)
g, R− τ

n(n + 1)
G

)
= 0.

From this, in view of Lemma 3.4 of [15] it follows that

R− τ

n(n + 1)
G =

φ

2

(
S − (n− 1)τ

n(n + 1)
g
)
∧

(
S − (n− 1)τ

n(n + 1)
g
)
,

on the set V of all points of UH at which S has no a decomposition of the form
(2.2) and φ is some function on V .

3. Examples

Let (M, g), n > 4, be a semi-Riemannian manifold, with nonempty set UC ∩
US ⊂ M , and let its curvature tensor R satisfies on UC ∩ US

(3.1) R = φS + µg ∧ S + ηG,

where φ, µ and η are some functions on UC ∩ US . According to [9], (3.1) is called
the Roter type equation. We mention that above decomposition of R on UC ∩ US

is unique [16, Lemma 3.2]. From (3.1) we have [15, Theorem 4.2]: (2.3), with
LR = (n− 2)(µ

φ (µ− 1
n−2 )− η),

R ·R−Q(S, R) =
(
LR +

µ

φ

)
Q(g, C),

S2 =
(
κ +

(n− 2)µ− 1
φ

)
S +

µκ + (n− 1)η
φ

g.

Further, as it was shown in [15], (3.1) implies

Sr
mRrijk = (α + µ)(SmkSij − SmjSik) +

(αµ

φ
+ η

)
(gijSmk − gikSmj)

+ β(gmkSij − gmjSik) +
βµ

φ
Gmijk,(3.2)
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where α = φκ− 1 + (n− 2)µ, β = µκ + (n− 1)η. Now (3.2) leads to (1.5), where

L1 = −4(α + µ), L2 = −2
(αµ

φ
+ η + β

)
, L3 = −4βµ

φ
.

Thus we have

Theorem 3.1. Every semi-Riemannian manifold (M, g), n > 4, satisfying the
Roter type equation is an AG type manifold.

Remark 3.1. (i) Semi-Riemannian manifolds satisfying R = φS, i.e. the spe-
cial case of (3.1), were investigated in [24] (see also references therein).

(ii) Examples of warped products satisfying (3.1) are given in [18]. In Example
5.1 of that paper a warped product fulfilling (3.1) is given. That warped product
can be locally realized on a hypersurface in a semi-Riemannian space of constant
curvature.

(iii) Applying Lemma 3.4 of [15] to (2.23) we conclude that the curvature tensor
R of a pseudosymmetric hypersurface M in Nn+1

s (c), n > 4, is of the form (3.1) at
all points of US ∩ UC ⊂ M at which its Ricci tensor is not of the form (2.2).

(iv) Let M1 ×F M2, p = n − 1 = dim M1 > 3, dim M2 = 1, be the warped
product defined in [13, Example 4.1]. This manifold satisfies (1.2) and rank S = 1.
Furthermore, applying the two last relations to (1.3) we get S ·R = 0. The manifold
M1 ×F M2, satisfies R · R = Q(S, R), i.e. (1.4) with LC = 0. Thus we see
that the warped product M1 ×F M2 is an AG type manifold. This manifold is
locally isometric to a hypersurface in a semi-Euclidean space [13, Example 5.1].
We mention that warped products satisfying (1.4) were investigated in [5]. For
instance, in [5] it was shown that any warped product M1 ×F M2, dim M1 = 1,
dim M2 = 3, satisfies (1.4).

(v) Let M1×F M2, p = dim M1 > 3, n−p = dim M2 > 1, be the warped product
defined in Section 4 of [4]. This manifold satisfies R · R = Q(S, R), i.e. (1.4) with
LC = 0, and rank S > n − p + 1. Further, if we assume that n − p = 1 and the
constant ξfξf , defined in Section 4 of [4], is nonzero, then rank S = 2. Moreover,
from (44) of [4] it follows that in this case the scalar curvature κ of M1×F M2 is a
nonzero constant and (1.7) and (1.8) are satisfied. On such manifolds we also have
(1.9) [26, Example 3.1]. Thus, in view of Theorem 3.1, M1 ×F M2 is an AG type
manifold. In addition, this warped product is locally isometric to a hypersurface
in a semi-Euclidean space ( [4]; see also [26, Example 4.2]).

(vi) Let (M, g) be a non-flat 2-dimensional Riemannian manifold. It is easy to
check that the product manifold M × En−2, n > 4, satisfies (1.7), (1.8) and (1.9).
Moreover, the manifold M × En−2, n > 4, can be realized as a hypersurface in
En+1.

Let (M, g), n > 4, be a semi-Riemannian manifold. We define on UC ∩US ⊂ M
the tensor W (R) by

W (R) = R− φS − µg ∧ S − ηG,

where φ, µ and η are some functions on UC∩US . The tensor W (R) will be called the
Roter type tensor. Manifolds satisfying pseudosymmetry type curvature conditions
related to the Roter type tensor will be investigated in subsequent papers.
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We present now an extension of the above definition. Namely, for a generalized
curvature tensors B and symmetric (0, 2)-tensors A and D we define on URic(B) ∩
UWeyl(B) ⊂ M the (0, 4)-tensor W (B,A, D) by

W (B, A, D) = B − φA− µA ∧D − ηD,

where φ, µ and η are some functions on URic(B)∩UWeyl(B). The tensor W (B, A,D)
will be also called a Roter type tensor. For instance, we have the following Roter
type tensors

W (B, A, g) = B − φA− µg ∧A− ηG,

W (B) = W (B, Ric(B), g) = B − φRic(B)− µg ∧ Ric(B)− ηG.

Some results on Roter type tensors W (B, A, g) and W (B, Ric(B), g) are given in
[12] and [25]. For instance, we have

Proposition 3.1. [25] Let (M, g), n > 4, be a semi-Riemannian manifold
admitting a generalized curvature tensor B satisfying W (B, A, g) = 0 on URic(B) ∩
UWeyl(B) ⊂ M . Then on this set we have

B ·B −Q(Ric(B), B) = LQ(g, Weyl(B)), L = (n− 2)
(µ2

φ
− η

)
.

Moreover, if A = Ric(B) on URic(B) ∩ UWeyl(B), then on this set we have

B ·B = LBQ(g, B), LB = (n− 2)
(µ2

φ
− η

)
− µ

φ
.

Proposition 3.2. [12] Let (M, g), n > 4, be a semi-Riemannian manifold ad-
mitting a generalized curvature tensor B and let the conditions B·B = Q(Ric(B), B)
+ LQ(g, Weyl(B)) and B ·B = LBQ(g, B) be satisfied on URic(B) ∩UWeyl(B) ⊂ M .
Then on this set we have

Q
(

Ric(B)− (LB − L)g, B − L

n− 2
G

)
= 0.

Proposition 3.3. [2, Corollary 6.1] Let (M, g), n > 4, be a semi-Riemannian
manifold admitting a generalized curvature tensor B and let

Q(Ric(B)− L2g, B − L1G) = 0

be satisfied on U = URic(B) ∩ UWeyl(B) ⊂ M . Then W (B) = φRic(B) + µg ∧
Ric(B) + ηG on the subset V ⊂ U of all points at which the tensor Ric(B) has no
a decomposition in a metrical term and in a term of rank one, where φ, µ and η
are some functions on V .

4. AG type hypersurfaces satisfying rankS = 2

Let now M be a hypersurface in Nn+1
s (c), n > 4, We set [14, eq. (13)]

(4.1) A = H3 − tr(H)H2 +
εκ

n− 1
H.
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Further, let B be a (0, 2)-tensor with the local components Bhk defined by Bhk =
gijHhiSkj . Using (2.17), (2.18) and (4.1) we obtain

B = −εA +
( (n− 1)τ

n(n + 1)
+

κ

n− 1

)
H,(4.2)

S ·R = −2εH ∧B − 2τ

n(n + 1)
g ∧ S,(4.3)

respectively. Substituting (4.2) into (4.3) and using (2.17) we get

(4.4) S ·R = 2H ∧A− 4
( (n− 1)τ

n(n + 1)
+

κ

n− 1

)(
R− τ

n(n + 1)
G

)
− 2τ

n(n + 1)
g ∧ S.

Let now M be a Ricci-pseudosymmetric hypersurface in Nn+1
s (c), n > 4. On

UH ⊂ M we have [3, Theorem 3.1 and Proposition 3.2]

(4.5) R · S =
τ

n(n + 1)
Q(g, S).

It is known (see Proposition 3.2 and Theorem 3.1 of [3]) that (4.5) is equivalent on
UH to

(4.6) H3 = tr(H)H2 + λH,

where λ is some function on UH . Now (4.1) turns into

(4.7) A =
(
λ +

εκ

n− 1

)
H.

Applying (2.17) and (4.7) in (4.4) we obtain (cf. [11, Theorem 3.1])

(4.8) S ·R = 4
(
ελ− (n− 1)τ

n(n + 1)

)(
R− τ

n(n + 1)
G

)
− 2τ

n(n + 1)
g ∧ S.

If the ambient space is En+1
s , then (2.20) reduces to

(4.9) R ·R = Q(S,R).

Similarly, in this case, (2.17) reduces to

(4.10) Rhijk = εHhijk.

Proposition 4.1. Let M be a hypersurface in En+1
s , n > 4. If at x ∈ UC ∩

US − UH ⊂ M we have R · S = 0, then R ·R = 0 at x.

Proof. Evidently, (2.21) reduces to R ·R = −εβQ(g, R), which implies R ·S =
−εβQ(g, S), and in a consequence, β = 0 at x. This completes the proof. ¤

It is clear that every semisymmetric manifold is Ricci-semisymmetric. The
converse statement is not true. Under some additional assumptions both conditions
are equivalent to each other. This problem, named the problem of P.J. Ryan, was
considered by several authors, see [6], [10] and [11] and references therein. Among
other things, in [6] it was proved that the conditions R · R = 0 and R · S = 0 are
equivalent on hypersurfaces in N5

s (c).



ON SOME AKIVIS–GOLDBERG TYPE METRICS 81

Proposition 4.2. Let M be a Ricci-semisymmetric an AG type hypersurface
in En+1

s , n > 5, and let the set UH ⊂ M be nonempty. In addition, let (1.7) be
satisfied on UH .

(i) The condition R · R = 0 is satisfied at all points of UH at which κ 6= 0.
Moreover, (1.9) holds at such points.

(ii) The condition R ·R 6= 0 is satisfied at all points of UH at which κ = 0.

Proof. Let x ∈ UH . From (2.19), in view of Corollary 2.1(i) and (4.6), we get

(4.11) H4 =
(
2(tr(H))2 − εκ

2

)
H2 +

(
2λ +

εκ

2

)
tr(H)H.

Furthermore, from (4.6) we get

(4.12) H4 =
(
(tr(H))2 + λ

)
H2 + λ tr(H)H.

Comparing the right-hand sides of (4.11) and (4.12) we obtain
(
λ +

εκ

2
− tr(H)

)
H2 +

(
λ +

εκ

2

)
tr(H)H = 0,

whence λ + εκ
2 = tr(H) and (λ + εκ

2 ) tr(H) = 0. These relations yield

(4.13) (a) λ = −εκ

2
, (b) tr(H) = 0.

Now (4.6) and (4.8) turn into

A = −ε(n− 3)κ
2(n− 1)

H,(4.14)

S ·R = −κ

2
R.(4.15)

respectively. Since M is an AG type manifold, (1.5) holds on UH . Now (4.15), by
(1.5), leads to

−κ

2
Rhijk = L1(ShkSij − ShjSik) + L3(ghkgij − ghjgik)

+ L2(gijShk + ghkSij − ghjSik − gikShj).(4.16)

If κ 6= 0 at x, then from (4.16), in view of Theorem 4.2 of [15], it follows that (2.3)
holds at x. Evidently, (2.3) implies (2.4), and in a consequence, we obtain LR = 0
and R ·R = 0 at x. Further, contracting (4.16) with Sl

h and using (1.8) we obtain

−κ

2
Sh

l Rhijk =
(
L2 +

κL1

2

)
Slijk +

(
L3 +

κL2

2

)
(gijSlk − gikSlj).

Symmetrizing this in l and i and using the relation R · S = 0 we get (L3 +
κL2
2 )Q(g, S) = 0, whence

(4.17) L3 = −κL2

2
.

On the other hand, contracting (4.16) with gij and using (1.8) we find
(κ

2
+

κL1

2
+ (n− 2)L2

)
S = −(κL2 + (n− 1)L3)g,
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whence

(4.18) (a) κL2 = −(n− 1)L3, (b)
κ

2
+

κL1

2
+ (n− 1)L2 = 0.

From (4.17) and (4.18)(a) we get L3 = 0. Now (4.17) reduces to L2 = 0. Applying
this to (4.18)(b) we obtain κ(L1 + 1) = 0, whence L1 = −1. Now (4.16) reduces to
(1.9). But this completes the proof of (i).

Let now κ = 0 at x ∈ UH . Thus (4.14) turns into A = 0. This, together with
(4.13)(b), reduces (2.18) and (4.2) to

(4.19) Sjk = −εH2
jk, Bhk = Hj

hSjk = H3
jk = 0,

respectively. We suppose that R ·R = 0 at x. Now (4.9) yields

ShlRmijk + SilRhmjk + SjlRhimk + SklRhijm

− ShmRlijk − SimRhljk − SjmRhilk − SkmRhijl = 0.

This, by transvection with H l
a and Hh

b and making use of (4.10) and (4.19), leads

(4.20) Sim(SbjSlk − SbkSlj) + Sil(SbjSkm − SbkSjm) = 0.

We set Yk = XjSjk, where Xj and Y j are the local components of vectors X, Y ∈
TxM such that Y 2

1 + · · ·+Y 2
n > 0, where Yk = gjkY j . Transvecting now (4.20) with

X l and Xm we obtain Yi(YkSbj − YjSbk) = 0, whence it follows that rank S = 1 at
x, a contradiction. Thus if κ = 0 at x ∈ UH , then R ·R 6= 0 at x. Our proposition
is thus proved. ¤

The last proposition implies

Theorem 4.1. Let M be an AG type hypersurface in En+1
s , n > 5, satisfying

(1.7) on nonempty UH ⊂ M . The conditions R ·R = 0 and R ·S = 0 are equivalent
on the subset of UH of all points at which κ 6= 0.
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