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ABSTRACT. We use the saddle-point method (due to Hildebrand—Tenen-
baum [3]) to study the asymptotic behaviour of 3>, . p(,)¢y Th(R) for
any k > 0 fixed, where P(n) is the greatest prime factor of n and 7 is
Piltz’ function. We generalize all results in [3], where the case k = 1 has
been treated.

1. Introduction

Let f(n) be a multiplicative function. It seems interesting to investigate the
mean value of f(n) over integers free of large prime factors, i.e. to study the
asymptotic behaviour of

Sy = S fn)

n<z, P(n)<y

in domain of (x,y) as large as possible, where P(n) is the greatest prime factor
of the integer n > 1 with the convention P(1) = 1. The most interesting case is
f(n) = 1(n) = 1. As usual we write ¥(z,y) for Si(z,y), which is the number
of positive integers < z and free of prime factors > y. This function appears
in diverse areas of number theory and has been received much attention. For a
detailed description, we refer the reader to two excellent surveys ([5], [4]). Here we
only mention two main results on ¥(z,y).

In the sequel, we set systematically v := logz/logy and use € to denote a
sufficiently small positive number. Let p(u) be the Dickman function, i.e. the
unique continuous solution of the differential-difference equation

(1.1) up' (u) = —plu—1) (u>1), plu)=1 (0<u<l).
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By introducing a new type of identity, Hildebrand [2] has proved that the asymp-
totic formula

(1.2) U(z,y) = »’Cﬂ(“){l + O<log(2u) >}

logy

holds uniformly in the range
(H.) T >3, exp{(loglog x)5/3+5} <y<az.

The error term in (1.2) is best-possible and the lower limit in the range (H.) is the
limit of what can be reached unconditionnally. In fact Hildebrand [1] has shown
that (1.2) in the form U(x,y) = zp(u)exp{O(log(2u)/logy)} holds uniformly in
the range y > 2,1 < u < y'/?7¢, if and only if the Riemann Hypothesis is true.

In aim of seeking estimate for ¥(z,y) in a larger range, Hildebrand and Tenen-
baum [3] have introduced a new method. They start from the Perron formula
and use the saddle-point method in the process of estimating the complex integral.
This method has many other applications and is now known in analytic number
theory under the title of the saddle-point method. For an excellent description on
this method, we refer the reader to the paper of Tenenbaum [9]. Applying the
saddle-point method, they have obtained an approximation for ¥(z,y) uniformly
for all x > y > 2 and some short interval results for ¥(z,y). Define

C(s,y) = H(l —p9)7 L, 7 = min {u, %}

PSY d
©(s,y) :=1log((s,y), ©i(s,y) = @w(say)-

Let a(x,y) be the unique positive solution to the equation logz 4+ ¢1 (o, y) = 0.
Thus the main result of Hildebrand and Tenenbaum can be stated as follows: one
has uniformly for = > y > 2,

(1.3) wcuy)z(%jgjg;Zzﬁ{14-o(i)},

which yields an symptotic formula whenever u,y — oo.
Another interesting multiplicative function is the Piltz function 7,(n) (z € C),
defined by

(o= = (Res 1),
n=1

n

where ((s) is the Riemann function. Clearly 7,(n) is a natural generalization of
1(n) (2 = 1) and of k-multiple divisor function 74(n) = 1 * 7,_1(n) (z = k € N).
For simplicity, we write S, (z,y) for S._(z,y). For any k > 0 fixed, Smida [8] has
shown that one can adapt the saddle-point method to deal with Si(z,y). By using
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the saddle-point method in the version of Saias [6] with some new ideas, she [8] has
proved, in the range (H.),

(1.4) Sula,y) = w(1ogy)* " pr(w) {1+ 0 (liifﬁ = <log1 7))

where pg(u) is the unique continuous solution of the differential-difference equation

upl(u) = (k = Dpr(u) — kpr(u—1), if u>1,

(1:5) pr(u) = w1 /T (u), if0<u<l,

and I'(u) is the usual I-function. Note that, in the case of integer values of k,
Xuan [12] has obtained the same formula in the same range, by induction on k.
Obviously (1.4) contains Hildebrand’s result (1.2).

The aim of this paper is to apply the method of Hildebrand-Tenenbaum [3]
to investigate S (z,y) for any k > 0 fixed as in [8]. This work seems interesting:
On the one hand we could give a complementary study on Si(z,y) and, on the
other hand we could generalize the results of [3]. Before stating our results, we first
introduce some notations. Define

Le(y) = exp{(log y)**~}, Y2(y) := exp{(logy)*/*~¢},
l
6(5,1) = Klog ((s,), bils,) = (s, ).

For u > 1, let £(u) be the unique real nonzero root of the equation e¢(*) = 14ué(u).
By convention, we set £(1) = 0. We put £ := £(u/k). For s € C, we define

s v 1 .
I(s) ::/ c dv, oj:=kIV(E) (jezt).
0 1)
Let ag(x,y) be the unique positive solution to the equation logx + ¢1 (g, y) = 0.
Finally we use ¢; = ¢;(k) to denote some positive constants depending on & only.
The constants implied in the symbols O, <, < depend on ¢, k at most.
Our main result is as follows.

THEOREM 1. Let k > 0 be fixred. For x >y > 2, we have

2% (o, y)*

This yields an asymptotic formula whenever u,y — oco.
The next Theorem 2 gives a smooth approximation for the main term in The-
orem 1.



40 NYANDWI

THEOREM 2. Let k > 0 be fixed.
(1) For x >y > 2, we have

log(1 + y/log x) loglogy
1.6 = =" 2 14+ 0(——==
(16)  axley) o7 {1+0( e )}

log 9 1 1
1.7 =14+ —= ! 1+0(———+—) 7.
(A7) dalany) = (1+ =7 Jullogy)*{1+ (log(gu) ioas))
(ii) Fory > 2 and 1 < u < y'~¢, we have
« k k—1

(18) T kC(Oék,y) _ ‘T(logy) 6kw+007u§+0(u/L5(y)+log(2u)/logy)

o/ Zrbalan,y) | V2Zros ’

where v is the Euler constant. Further in the range (H.), we have

xakC(aka y)k

g/ 2T (ag, y)

Combining Theorem 1 and Theorem 2(i), we immediately obtain the follow-
ing corollary, which shows that the behaviour of Si(z,y) has a radical change as
y/logx — 0 or y/logz — 0.

(1.9)

= z(log y)kilpk(u){l + O(% + L:zy) lol;g)(ngu)) }

COROLLARY 1. Let k > 0 be fixed. For x >y > 2, we have

B xakg(ak,y)k - L
Sk(z,y) = \/27ru(1 Flogz/y)log(l +y/ logx){l + O(log(2u) + logy)}-

In particular we have

’ V2my/logy
xakC(alw y)k
Sk(@.9) V2mulog(y/ log x)

From Theorem 1, we can derive the following simple formula, which describes
the local behaviour of Si(x,y) quite precisely.

(y/logz — 0, y — o0),

(y/logx — 00, u — 00).

THEOREM 3. Let k > 0 be fizxed. Forx >y > 2 and 1 < r <y, we have
Se(rz,y) = S(z, y)r = {1 + 0(1/m)}.

Combining Theorem 3 and (1.6), we easily get the following result.

COROLLARY 2. Letk > 0 be fized and let u,y — co. Then S (2x,y) ~ Sk(z,y)
if and only if logy < {1+ o(1)}loglogx, and Si(2z,y) ~ 2Sk(x,y) if and only if
logy/loglogz — oo.

Finally we prove a short interval result on Si(z,y).
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THEOREM 4. Let k > 0 be fixed. Forx >y > 2 and z > 1, we have

ag(T, 1 1
Siat /)~ Silw0) = “OD g5 firo(L+ D o pre.y),
where R(z,y) = Ye(y)~t 4+ e—c1#/(0820)° Jg 4.
By Theorem 4 and (1.6), we easily obtain the following result.

COROLLARY 3. Let k > 0 be fired. For x > 2, (loglogz)?/3ts < logy <
(log )%/® and z < Y.(y), we have

log(1+ y/logx 1 loglo
Su(o+a/200) — Silay) = ELEIED g )14 01 4 PEUEY),

2. Technical preparation

This section is devoted to establishing some preliminary lemmas, which will be
needed in the proofs of Theorems 1-4.

LEMMA 2.1. Let k > 0 be fixred. We have uniformly for y > 2 and o > 0,

ey el = {1+0(o ) [T o,

logy/J1—y=° to
B 1 k Ylogt
(2.2) gbg(a,y)—{1+O<logy>}(1_y_g)2/l 2edt+ 0(1).

Moreover, for any fized positive constants € and oy, the error terms O(1/logy) can
be replaced by O¢ 4, (1/Lc(y)) in the case o = op.

Proof. This is Lemma 13 of Hildebrand and Tenenbaum [3]. For a more detailed
proof, we refer the reader to the Exercise IIL.5.1 of [11]. O

LEMMA 2.2. Let k > 0 be fivred. We have

1
(2.3) ak<1+0< ) fory>=2andu > ¢,
logy

log 2
(2.4) ap <1-— loe g fory = yole, k) and u > k/log2 + ¢,
(2.5) ap = ¢e/2 fory > wo(e, k) ande <u < y' ™,

Y Y
2.6 = >2 andu > ,
(2.6) Qg w(og )2 fory and u Togy

1 Y
2. = Z22ande <u< )
(2.7) ay Tlogy fory ande < u Togy

ylfouC -1

(2.8) =7 fory>2andu > e,

(1 —ay)logy
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where yo(e, k) is a sufficiently large constant depending on e,k only, and the ex-
pression on the left-hand side of (2.8) is to be interpreted as 1 if oy, = 1.

Proof. By (2.1) in Lemma 2.1, we have

1
(

for y > 2 and u > ¢ with a sufficiently large constant ¢ = ¢(g, k); and

—p1(1+¢/logy,y) = {1 +O(L y))}k(l —Ce_c) logy +O0(1) < ulogy

1 klo
~61(1 ~log2/logy,y) = {1 +O(L (y))} logg2y +O(1) < ulogy

for y > yo(e, k) and u > k/log2 + ¢; and

1—e/2 _
—$1(e/2,y) = {1 + O(L:(y))}k(yl 5 Dy O(1) > y'“logy > ulogy

for y > yo(e, k) and e < u < y'=¢. Since —¢;(0,y) is a decreasing function of o,
we immediately deduce (2.3), (2.4) and (2.5).
For y > 2 and u > €, we have

klogp 10ky
2. 1 == DR ’
(2:9) ulogy =) o= Zak 2 Toss
p<y
k1
(2.10) ulogy = E aogp E logp > ai'
pr —1 P=1)
PY p<y

It is easy to see that (2.9) implies the upper bound of (2.6) and that (2.10) implies

o log(1 + ky/5ulogy)
k = logy

from which we deduce the lower bound of (2.6) if u > y/logy, and (2.7) if e < u <

y/logy.

Finally we prove (2.8). If u > y/logy, the right-hand side of (2.8) is y/logy.
By (2.6), we have aj, < 1/logy and easily see that the left-hand side of (2.8) is
= y/logy. If e < u < y/logy, by (2.7) we have oy > 1/logy. Thus (2.1) in
Lemma 2.1 implies

Yodt vodt  yltter —1

This completes the proof. (I
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LEMMA 2.3. Fory > 2, u > € and any fized positive integer l, we have

0 < (=1)'¢r(ak,y) =i (ulogy)'a' .
Proof. Let f(t) :=1/(e' —1) =327 e~ ™, then

oo . —t
(z i,—nt _ ,—t N4\ _ e
O = Yot e S (e =

n=0

Thus (—1) ¢y (g, y) > 0 and

(211) (~D'ér(any) =~k S S (ag logp) logp)! = 3 WBD P

1 _ ak)l
Py Py ( p )

If u > y/logy, by (2.6) we have ay, < 1/logy. Thus we deduce

logp y ——
= E = =; (ul
(-1 ¢l > Y) =1 (a, log p) ! ozfc log y (ulogy)a

If e <u<y/logy, by (2.7) we have ai > 1/logy. Thus from (2.1) in Lemma
2.1, we deduce that the last sum on the right-hand side of (2.11) is

log logp )l—l log p ( 1\
_ . | )
=P (g YT 3 (1, L

Qg
p<y p<yp
1 Yodt
logyllz og (logy)'~ 1(/ T—i—l)
p<y B L
1— ak _ 1
- (1 1—1y7x 1 gl
(logy) T (ulogy)'u

In addition the last sum on the right-hand side of (2.11) is

(1 Y (logt)! v
/Z ng / (Oifz dtx(logy)l_l/ 2

<y yl/2 yl/2 tok
[V dt Lyt -1
= (logy)' 1/ ﬁx(logy)l 1ﬁx 1 (ulogy)'a' .
1

where we have used (2.8) and the inequality

1/2
[ [t
1 ok y1/2 ok y1/2 toe

This completes the proof. (I
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LEMMA 2.4. Let k > 0 be fized.
(i) For x =5 and 2 < y < (logz)?, we have

o (2y) = M{HO( L ).

logy logy
(ii) For x > 2 and (logz)'*® <y < x, we have
E(u/k) 1 1
ag(z,y)=1-— ( + )
() logy Le(y)logy  u(logy)?

Proof. Clearly the results desired are trivial if y is bounded. Next we suppose
y = yo(e, k). We introduce the function ay ,, := oy (y",y) and, define v, w by

log(1 1
Ay = —Og( + y/ ng), A w = 1-— f .
logy logy
It is easy to verify 0 < ay, < % for y < (logx)?, g < 1 for y > (logx)!*e and
y' e —1 _ y{1+0 )} ulogy {1+ 0@}
(1—y=*r)(1— O‘k,v) (y*er —1)(1 — akﬂ)) I —agw ’

L=ak,w 1—ak,w
Yy T 1 Yy w o 1{ 1 .
= 1+O(—>}:u10 14Oy,
A= )i -an) - 1-arm )} = utosy {1+067)

Thus (2.1) in Lemma 2.1 allows us to write

viogy = {1—1—0( ! )}M +0(1),

logy/ )1 — oy
wlogy:{l—i—O( )}ulogy—i—Ol,
Le(y) W
which imply
(2.12) v =X U, v —u| < u(ag, +1/logy),
(2.13) w = u, |w—u| < u/L:(y) +1/logy.

On differentiating ulogy = —¢1 (a4, y) with respect to w and by using Lemma
2.3, we get

logy 1
2.14 A = — =
214 = o) ulogy

(u > e).

From (2.12)—(2.14), we immediately deduce, for some n; € (v,u) and some 7y €
(w, u),

b = ] = a0 = 1] € (g + ) =

Rou = Skl = 1%m ulogy \" " T logy) " logy’

| = fofpllr—u] € (D Yy
— = | w—Uu = .

Mo ™ Wk e ulogy \Lc(y) wulogy/ ~ Lc(y)logy u(logy)?

This completes the proof. O
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LEMMA 2.5. Lety 22, 0< 8 <1, |7 < Yo(y), s=1—F+ir and § :=
Tlogy — Arctg(7/3). Let A(n) be the von Mangoldt function. Then we have

3 A snlrlog ) _ 2y DT et

This is Corollary of Hildebrand and Tenenbaum [3, page 274].

ny

LEMMA 2.6. Fory > yo(e, k), u > k/log2+e and s = oy + iT with 1/logy <
7] < Y(y)?, we have

2

| ((5,9) "f - exp { - #} if 1/logy < |7| < Ye(y)?,
¢(ox:y) cay 2ho(0n,y)\ |
exp{—logylog <1+W>} if |7] < 1/logy.

Proof. A simple calculation shows

1—p~

—cos(7lo —1/2
_ (1+ 2;1%(1 _(p_lof)r;))) .

Using the inequality {1 + 2v/t(1 — 1/t)2}7Y/2 < 7/t (0 < 2v < 1 < t) with
v =1—cos(tlogp) and t = p**, we find

(2.16) C(s, ) < Clan,y) e ™,

where

U Zl—COb Tlogp)
Py

We need to study the lower bound for U. For this we write

1 A 1- 1
(2.17) Vo= 3 ()il = cos(rlogn)} ) oy
logy <y nek
where
1 I 1
e we LY SR ey
Y o D p
v22pYy P<VY

By (2.4), Lemma 2.5 is applicable with 8 = 1 — «a, and with /2 in place of e. Thus
we find

-«
YTk (1 —ayg)cosd —(log )/ 1
219) V= 1- 4 OBt |
(2.19) (1—ak)logy{ (1—ap)?tr2 ( Yy )}
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where § := 7logy — Arctg{7/(1 — ay)}.
Firstly we consider the case 1/logy < |7| < Y2(y). We need to prove

€

ur?

2.2 —_—
(220) U>>(1—ak)2+72

If u > y/logy, (2.6) implies oy, < 1/logy. Thus from (2.17)—(2.19), we deduce

Yy 1 —ag —(log y)=/*
U > 1-— + O(e\'o8Y
logy{ (1—ag)?+712 ( )}
2
Yy { T (lo )5/4 }
1o} gy
logy L(1 — ay)? + 72 + ( ) ’

which implies (2.20).
When k/log2+ ¢ < u < y/logy, by (2.17)-(2.19) and (2.8), we have

I {1 _ d-aeosd O(e—(logyf“ + W)}
“(1—ag)lo _ 2 2 I—ou
( k) logy I—ap)+7 Y
oy > VUL e e [ adllogyy
(1 —ax)logy (1—ap)? + 72 yl—ar — 1
7—2 e/4 1
- O( (logy) ,) }
>>u{(1—ak)2+72+ t3
Since |7] > 1/1o we have (7/(1 — ag))? > (lo 2 If1< 1-¢ Lemma
gY, gy <y )

2.4 1mp11es (1 — ax)logy < log(2u). Thus (7/(1 — ag))? = {(1 — ak) logy}=2 >
{log(2u)}=2. When y'=¢ < u < y/logy, we have (7/(1 — ax))? > (logy)~2 >
{log(2u)}~2. Therefore we have

{7/(1 = ar)}? > max{(logy) >, (log 2u)~*},
which implies

T2

a2 e {0 () b e (e o

Hence the error term in (2.21) can be absorbed by the main term and we get (2.20).
Secondly we consider the case |7| < 1/logy.
The following inequalities are easy to verify:

(2.22) 2t 72 g 1—cost <t?/2  (|t| <),

(2.23) clogt <t? —1< ot logt (t>2,0>0),
(2.24) log(1+ (4/72)t) = (4/72) log(1 +t) (¢t =0),
(2.25) e(l—e?>1* (teR).
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From (2.15) and (2.22)—(2.24), we deduce, for p < y,

47210g? p )}
’/T2(]. _ pfak)2pozk
2

<o { = Jos (14 im )} <o { - Sos (14 )
<expy — = lo ——— )¢t <exp{ — = lo —— ) ¢
P 98 T2y P w2 %8 Yok

If u > y/logy, then (2.6) and Lemma 2.3 imply

1 1 w?(logy)* _ galaw,y)

~

afyr a2 T (y/logy)

Taking the product over p < y yields the second desired inequality for u > y/logy.
If u < y/logy, then (2.22), (2.25) and (2.7) yield, for |7| < 1/logy,

2(1 — cos(7 log p)) < ( Tlogp )2 _ ( T

2
= [ — <
(1 — pox)2pos aylogp ak) S G

where ¢4 = c4(k) is sufficiently large constant. By (2.15), (2.22), and the inequality
(1+1)"12 L emt/204e0) (0 <t < ¢q) we deduce, c5 := 2/7%(1 + ¢4),

1—po < e {_ 1 — cos(7log p) } < exp {_ cs72(log p)? }
1—p=s |~ (14 ca)(1 —pmon)2per J = (1 — p=on)2po
2 2 3
and |§(s,y)|k < C(ak’y)ke—c&—,r%z(amy), Since T ¢2£ak’y) = 7 u(logy) < 1, the
preceding inequality implies the desired result. (y/logy) y (I

LEMMA 2.7. Fory > yo(e, k), u > k/log2+¢ and 1 < z < Y-(y), we have

Ak(m7y7 Z) = Z Tk(n) < xakC(akay)k(l/z + 6_066)'
z<n<z+a/z
P(n)<y

Proof. Noticing that 7,(n) > 0 and 1 < ef1=="108"@/m)}/2 for o < n <z + /2,
we have
Ag(z,y,2) < Z Tk(n)e_{Zlog(‘”/”)}z/Q.
P(n)<y

By the Laplace inversion formula, we easily see, for o,v € R,

o+ico 0'2/270'1/ +oo
€7v2/2 _ 1 / 652/2711st _ € 67T2/2+7L7‘(07'u)d7_'
o—100

2T V2T — o

Using this relation with v = —zlog(z/n) and o = ay,/z, it follows that
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“+oo i
eiakr/z77'2/2<f) k lZTdT
n

(226) Apla,y,z) < /2 Y m(n)/

P(n)<y e

+oo
<</ eiakr/z—72/2xak+izrg(ak+iz7_’y)k:d7_

— 00

xak +oo )
<5 [ e oy v iny)la,

— 00

In order to bound the last integral, we split the interval of integration into three
parts: |7] < 1,1 < |7] < 2% or |7| > 22, and use I3, I, I3 to denote the correspond-
ing contributions. Clearly I, < ((ag,y)* and I3 < ((ag,y)*. In addition the first
inequality in Lemma 2.6 implies

2

z
L < C(ak,y)ke’c‘ﬁ/ e T2 qr < 2C(ay, y)Fe o,
1

Inserting these estimations into (2.26), we obtain the required result. g

3. Proof of Theorem 2

Since &(u/k) = logu+ O(loglog u), we easily see that Lemma 2.4 implies (1.6).
Now we prove (1.7). In view of Lemma 2.3, we can suppose y > yo(e, k) and
u = ug(g, k). By integration by parts and by (2.8), it follows

Y logt l—ar _ 1 1 I—ar 1
/ og dt = logy Y Loy Y !
1 ].—Ckk 1—ak (l—ak)

(3.1)

1o _
:bgy%{“()(mﬂ

1— (09
ylon 1 1 1
LA Qg + log(2u) + logy

where we have used Lemma 2.4 in the last estimate. Thus Lemma 2.1 allows us to
deduce

d2(e,y) = {1 + O(log(12u lo;y)} = l{yk 2 yll_ika—k ! +0(1)
N {1+0(10g(12u lo;y>} logy { o1(an,y) +O(1)} + O(1)
(3.2) = {1+0(1Og12u 1Ogy)} log:c logy) +0Q).

If y > u(logy)?, then by using (1.6) we easily see that y~** < 1/logy. Thus

(3:3) # (1 loix){1+0(lo;y)}'
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If y < u(logy)?, then Lemma 2.4(i) implies

y = (1 + 102x)1+0(1/10gy) - (1 + lon)il{l +O<@>},

from which we easily see that (3.3) also holds in this circumstance. Now inserting
(3.3) into (3.2) yields the desired estimation (1.7).
Finally we prove (ii) of Theorem 2. By using Lemma 2.4(ii), we have

(34) % — xe—uf—&-O(u/LE(y)—&-l/logy)’ i — 1+ O(log(2u)>

eOlog(2u)/logy)
Qg logy

In order to evaluate ((ag,y), we write

1
(35) (o) =)o {~ [ oo},
ag
The Mertens theorem implies
(3.6) ((Ly)" = (logy)rerr+Ott/ioen),

In view of (2.5), (2.1) in Lemma 2.1 allows us to deduce

(3.7) —/al 61 (0, y)do = {1+O(L:(y)>}k/al yll_iigldtf%-@ﬂl—ak”

By change of variable (1 — o) logy = v and Lemma 2.4, we have

1, l-0c §+0(1/Le(y)+1/ulogy) v
Y -1 / e’ —1 U 1
 —do = dv=1 +O( +—),
/ak l-0o 0 v © Le(y)  logy

where we have used the estimate I(£) =< u. Inserting into (3.7) and using Lemma
2.4 yield

1

U 1
(38) _/ak(bl(my)da_ao—i_O(LE(y)_'_logy)
Combining (3.6) and (3.8) with (3.5) yields
(3.9) Clo, y)F = (logy)FekrtootO/Le(y)+1/logy)

Finally we evaluate ¢o(ay,y). Define oy, =1 —&/logy. From Lemma 2.4,
we deduce

Y logt logt Y logt Y logt
’/ ( ogt log )dt‘ < / &Hl)ﬂc,w—ak —1]dt < |agw — ak|logy/ 0og dt
1 1 !

tok 1ok, w 1ok, w 1ok, w

<<( 1 n 1 )/ylogtdt
L(y)  ulogy/ Jy toww
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In addition by the first estimate in (3.1), we have

/y logt 1y _jogy Yt =1, logy e —1_ op(logy)®
| tokw 1— o w L—apw (1 —agw)? k .

By using (2.2) and these estimations, we obtain

o) = {b+ O( ) M [ 1hae+ [ (80— it} +0q)

1 1
3.10 - {1 o( 7)} log1))? = 0y (log y) 2600/ L) +1/ulogy)
( ) + () +ulogy oa(logy) aa(logy)’e

Now (1.8) follows from (3.4), (3.9) and (3.10); and (1.9) from (1.8) and Théoreme 1

of [7]: R
() = = {1t +o(3)}

This completes the proof.

4. Proof of Theorem 1

By Theorem 2 and Smida’s asymptotic formula (1.4), it is easy to see that
Theorem 1 holds for 1 < u < (loglogy)?. In addition (2.6) and Lemma 2.3 imply

Vulogy, if u<y/logy,
Vy/logy, ifu>y/logy.

Thus the conclusion of Theorem 1 is a simple consequence of Rankin’s method
if y < yo(e, k). Next we shall prove Theorem 1 for the range y > yo(e, k) and
u > (loglogy)? in two steps which we formulate as lemmas. For simplicity, we
write Ag := ¢(ayg,y) and N := ¢y(ag,y) (I = 1).

LEMMA 4.1. Fory > yo(e, k) and u > k/log2 + ¢, we have

(4.1) cr/Balany) < {

1 ag+i/logy kxs .
Se(@,y) = — / C(s.p)F s + O(a* ¢ (. y)* Rolz, ),
211 an—i/logy S

where Ro(x,y) = Yo(y)~! + e~crv/(og 20°  Ip particular for u > (loglogy)?, we
have

Ro(z,y) < 1/{ax/ A2}

Proof. Applying the Perron formula (cf. [10, Théoréme 11.2.2]), we have

1

ag+iT s
4.2 =— R
(42) S =g [ Ce s o),
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where T := Ro(x,y) 2 and

Ok Tk(n)
e 2 S Tl

In order to bound R;, we split the range of summation into two parts: |log(z/n)| >
1/VT or |log(x/n)| < 1/V/T, and easily see that

R, < (o, y)* L, Z k(1)

+x .
VT nek
|log(x/n)|<1/VT

Since |log(z/n)| < 1/VT = |z — n| < cgx/V/T, Lemma 2.7 shows that the second
member on the right-hand side is

1 _ ag k
< Z Tk(n) < xa’“@(amy)k (ﬁ + 6—09u) < xC(\/OéT}:ny)
|z—n|<csz/VT

P(n)<y
Consequently
(4.3) Ry < 2% (o, y)*/VT.
From the first inequality in Lemma 2.4, we deduce
s T —cour?/{(1—ay)?+712%}
@ [ o) s < aron)t [ dr.
5

o=ay 1/logy o + T
1/logy<|T|<T

Let n, = max{|1 — ay|, 1/logy}, then log{(ar + ni)/(cx + 1/logy)} < logy.
In addition (2.8) implies (1 — az)logy < log(2uw). Thus the last integral on the
right-hand side of (4.4) is,

T
< /nk o2 /2(1— )’ dr + / o—C21/2 dr
1/logy Ty, g+ 7T

ag + Nk

< e e2T/2((1=ax)logy)* 1 (
& ap +1/logy

) +e % 2log T

< e~ 0/ (10820)* 1oy 4 o=C2T/2 o0 T  o=c108/(10820)° g0 P 1/VT.

Hence

(4.5) C(s,y)k%sds < 2% (g, y)* /VT.

O=Q}
1/logy<I|TILT
Now the desired result follows from (4.2), (4.3) and (4.5).
Finally by using (4.1), we easily verify Ro(z,y) < 1/{arpv/ 2u} provided u >
(loglogy)2. This completes the proof. O
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LEMMA 4.2. Fory > yo(e, k) and u > k/log2 + €, we have

ot s = 225 o ()}

1 ag+i/logy

2mi ai—1i/logy

Further the same formula also holds for

1 ag+i/logy

— kxj‘d
= ¢ )" sl

ap—i/logy

Proof. We first write, for s = ay + i,

x® xrk ) .
4.6 , k< _ o(ap+iT,y)+it logy.
(4.6) C(s,9) S o + 2'76

Developing ¢(ay + i7,y) at 7 = 0, we have for |7| < & :=w*/3/(ulogy)
A A3 -
dlag +it,y) = Ao + M T — ?27'2 - %7’3 + O(M\7?),

where we have used the trivial estimation |p4(ay + i7,y)| < ¢a(ag,y) = Mg for
7 € R. Since |7] < §, Lemma 2.3 implies that A\37% and A\47% and, (2.6) and (2.7)
imply 7/ay < @~ /3. Thus we can write, for |7| <4,

e OONT) =1 RS L O + M),

1 1 j 2
__ L io(D))
ap + T g g ay,

Inserting these into (4.6) and noticing that A\; + logz = 0 yield

R’

a k ; i\
(o = ZEEO) iy L g o000 4ty o),

s Qg Qay, 6

from which

1 ap+id kxs
— —d
2mi o C(s,y)"—ds
A k 0
=T Sy ¢(ax ) / e_MTQ/Q{l + O8Nyt + a2272)}d7.
27TOék _5

A simple calculation shows

5
/ o724y = 2114 0(e /) = 2T 11 4 o(emen ™)
_s A2 A2
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and

/6 T 2(0200 4 N r o e dr € —— (AT AN+ 2ATY) < —m
e T AT+ “17)dT — 4 « —.

s 3 k o 372 2 k72 o T

This proves

Lot R0 C(ak, y)" 1
Py Tas="2R 0 L o(2)
270 Joy,—is () S s apV/2m A { + (H)}

It remains to verify

xakC(O‘ka y)k

1
oAy T

C(S,y)k%ds <

O=0QL
3<|7T|<1/ log y

By using the second inequality in Lemma 2.6, the left-hand side is

1/10gy .o k Mo721 —c3y/logy
<</ e Clon )t (), darlogyy
5

-
aE + T Y
ag k. ptoo 2] —c3y/logy
<® C(ak,y) / (1+T Ogy) 3 dr.
oV A2 5v/a Y

In order to bound the last integral, we split [6v/A3, 00) into two parts: [6v/ A2,

Vy/logy] and [\/y/logy,oo), and use I;,I5 to denote the corresponding contri-
butions. Clearly we have

\Vy/logy R 6—0352)\2 6—01251/3
I <</ e 2dr < = — < o,
5vAz 0V A\ u / u
o0 2 _ oo
I < / (27’ logy> c3y/ logydT < Y / Feny/logy g o logy.
Vy/logy Y 1Ogy V2 Y

This completes the proof. [

5. Proof of Theorem 3

For each y > 2 fixed, we consider two functions of u € [1, 00):

u yuak’uc Ay Y k
O i= ), S o= log (Lt )
ak,u 27T¢2(ak,u; y)

Then Theorem 1 can be written as S (z,y) = exp{f(u) +O(1/w)}. Thus it suffices
to show

(5.1) flu+1t) = f(u) +tag,, logy + O(1/7) (u>1,0

N

t<1).
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For this we first write, for u > 1 and 0 <t < 1,

(5.2) flu+t) = flu)+tf (u) +O( sup |[f"(u+t)]).

0<t<1
From the definition of f(u), a simple calculation gives us

/ /
A o ¢3(ak,u7 y)ak w
f(u) = agqlogy — —= — :
( ) “ (07X 2¢2(ak,uay)
"

ak,ua;’,u - Oéﬁu ¢4(ak,u) y)aﬁu + ¢3(04k,u, y)%,u

"(u) = o), ,logy — -
f ( ) k, gY aiyu 2¢2(ak7u7y)
_ 1(¢3<ak,u> y)a;f,u)Q
2\ ga(aku,y) .
where we have used the relation ulogy = —¢1(a 4, y) for simplifying. On dif-

ferentiating the preceding equation with respect to v and by using Lemma 2.3, it
follows

log y _ b3(hus ),
o=~V witlogy),  af, = Y% gy
h b2(u, y) / ko d2(u, y)

From these estimations and (2.6)—(2.7) in Lemma 2.2, we easily deduce
f'(u) = apulogy + O(1/7), f'(w) <1/
Inserting into (5.2) leads to the formula (5.1). This completes the proof. O

6. Proof of Theorem 4
Similarly to Lemma 4.2, we can prove the following result.

LEMMA 6.1. Fory > yo(e, k) and u > k/log2 + ¢, we have

L s ey o(L))
2 ag—i/logy ’ V2 i

Further the same formula also holds for

1 ak+i/logy

o C(s,)*a s

ap—i/logy

Clearly the desired result is trivial if u < k/log2 + . Next we suppose u >
k/log2+e. Put 2’ := z+x/z and Gy := ag(z’,y). On differentiating the equation
—é1(ag,y) = logx with respect to z, it follows Oay(z,y)/0x = —1/xA2. By using
Lemma 2.3, we immediately see

Oay, [ [ 1

0<——— = Tiiloagz  V<ar—a '
o (z,y) z(ulogy)?’ Q= O << z(ulogy)? < u(logy)?
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From these we easily deduce, for 7 € R and § € [ag, ag],
(6.1) 28 + i )| = 2 [¢(an + i)

Lemma 4.1 allows us to write

. 1 ag+i/logy kxls X
©2) Sl =5 | (o) s + O (2 (on ) Ro(.0),
T Jap—i/logy s
1 ap+i/logy kxs .
03) Silen) =5 [ (5,0 s + 02 (o) Ro(,0),
UG ap—i/logy S

where Ro(x,y) 1= Ye(y) ! 4 ec1su/(log w* and we have used (6.1) with 7 = 0 in the
error term of (6.2). We deform the segment of integration [ay —i/logy, & +1i/logy]
into the line breaked ay — i/logy, ar —i/logy, ag +i/logy, ay + i/logy. With
the help of (6.1) and the second inequality in Lemma 2.6, we easily see that the
contribution of horizontal segments is

x| (o i/ logy, y)

|* - k
6.4 < ar — ap| < %% ((ag,y)" Ro(x,y).
(6.4) an +1/logy |, K C(ak, y)"Ro(z,y)

According to the residue theorem, we obtain

1 ak+i/logy X ' A
Sk(x',y) = 7/ ((s,y)" —ds + O(z**¢(ar,y)* Ro(x,y)).
2mi an—i/logy s

Combining with (6.3), we deduce

(6.5) Sk y) — Se(w,y) = Prla,y) + O(x** (o, y)* Ro(x,y)),
where i1
1 powti/logy (1+1/2)*—1
P = Fos i —ds.
w(@y) = 5 i on C(s,y) . s

Observing that

(1+1/2)°—1

1 1
S +o(f) (z>1, |s] < 1),
S z

22
Lemma 6.1 and Theorem 1 imply

(6.6) Pp(z,y) = W{1+O(i+i)} — Msk(m,y){l—&-O(%—i—%)}.

Finally by using Lemmas 2.2-2.3 and Theorem 1, we easily verify
(67) xakC(akv y)kRO(I7 y) < Sk(zv y)ak V )\2R0(I, y) < Sk(gjv y)R(ZE, y)
Now the desired result follows from (6.5), (6.6) and (6.7).
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