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Abstract. In a system of sequents for intuitionistic predicate logic, deriva-
tions without a special kind of cuts (maximum cuts) will be considered. The
following be shown: in a derivation without maximum cuts there are paths of
the same form as paths in a normal derivation of natural deduction, i.e., these
paths have the E-part, the I-part, and one minimum part which corresponds
to a minimum segment in a normal derivation.

1. Introduction

In the papers [2, 4, 5, 6, 8] (in which the similarities and differences between
natural deduction systems and systems of sequents for some fragments of intu-
itionistic logic were studied) the cut-free derivations and normal derivations were
compared. In [1], normal derivations from natural deduction were compared with
sequent derivations which can have some cuts. More precisely, firstly a special kind
of cuts, maximum cuts, was defined, and it was shown that maximum cuts cor-
respond to maximum segments in natural deduction. In fact, it was shown that
the natural deduction image of a derivation without maximum cuts is a normal
derivation, and vice versa.

In this paper we will do the next step. Namely, we will study some simi-
larities between forms of sequent derivations without maximum cuts and normal
derivations from natural deduction. We will consider the system of sequents δ for
intuitionistic predicate logic which was introduced in [8]. The notion of a path for
a formula of the end sequent of a derivation will be defined. The formulae from the
left-hand side of the end sequent of a sequent derivation correspond to top formulae
of a natural deduction derivation, so a path in a sequent derivation will correspond
to a path in a derivation from natural deduction. It is well-known that in natural
deduction each path from a normal derivation is a sequence of formulae which has
the special form: it consists of (i) one E-part whose formulae are subformulae of the
formulae before them in that part; (ii) one I-part whose formulae are subformulae
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of the formulae after them in that part. Between these parts there is one part (min-
imum segment), whose all formulae are of the same form, and they are the simplest
formulae in that path (see Theorem 2 in IV§2 from [6]). Here we will prove that
in the system of sequents δ a path from a derivation without maximum cuts has
the same form as a path from a normal derivation, and it contains a part (which
will be called minimum component) which corresponds to a minimum segment in
a normal derivation.

In Section 2 the system of sequents δ for intuitionistic predicate logic from [8]
will be defined. In Section 3 the definition of maximum cuts of a derivation of the
system δ (from [1]) will be repeated. The notion of a path of a formula from the
left-hand side of the end sequent of a derivation in the system δ, which corresponds
to a path of a not discharged top-formula in a natural deduction derivation, will be
defined in Section 4. The main result of the paper, the theorem about the form of
paths in derivations without maximum cuts will be proved at the end of Section 4.

2. The system δ

In this section we will present the sequent calculus δ for the intuitionistic pred-
icate logic, which was introduced by Zucker in the paper [8]. (That system was
presented in the paper [1], too.)

The language is the language of the first order predicate calculus (it will have
the logical connectives ∧, ∨ and ⊃, quantifiers ∀ and ∃, and a propositional constant
⊥ (for absurdity)). Bound variables will be denoted by x, y, z, . . ., free variables by
a, b, c, . . ., and individual terms by r,s,t, . . . . Letters P, Q,R, . . . will denote atomic
formulae and A,B, C, . . . will denote formulae.

Sequents of the system δ will be of the form Γ → A, where Γ is a finite set
of indexed formulae and A is one unindexed formula. Indices will be formed in
the following way: a finite non-empty sequence of natural numbers will be called
symbol, and will be denoted by σ, τ ,. . . ; and a finite non-empty set of symbols will
be called index, and will be denoted by α, β,. . . α will denote the cardinality of an
index α. There are two operations on indices:

(i) the union of two indices α and β, α ∪ β, is again an index and it is simply
a set-theoretical union;

(ii) the product of α and β is α × β =df {σ ∗ τ : σ ∈ α, τ ∈ β}, where ∗ is the
concatenation of sequences.

An indexed formula will be denoted by Aα, and a set of indexed formulae
will be denoted by Γα. (However, the indices of sets of formulae will usually be
omitted.) For a set of indexed formulae Γ we will make the set Γ×α in the following
way Γ×α = {Cγ×α : Cγ ∈ Γ}. A sequent representation such as “Aα, Aβ , Γ” implies
that α 6= β, Aα /∈ Γ and Aβ /∈ Γ, but possibly Aγ ∈ Γ for some γ 6= α and γ 6= β.

Postulates for the system δ are:
Initial sequents (i.e., axioms)

logical initial sequents (i.e., i-axioms): Ai → A.
⊥-initial sequents (i.e., ⊥-axioms): ⊥i→ P , where P is any atomic
formula different from ⊥.
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Inference rules
structural rules:

(contraction)
Aα, Aβ , Γ → B

Aα∪β ,Γ → B
(cut)

Γ → A Aα, ∆ → B

Γ×α,∆ → B

logical rules (i.e., operational rules)
left rules: right rules:

(⊃ L)
Γ → A Bβ , ∆ → C

Γ×β , A ⊃ Bβ ,∆ → C
(⊃ R)

(Aα), Γ → B

Γ → A ⊃ B

(∧L1)
Aα, Γ → C

A ∧Bα, Γ → C
(∧L2)

Bα, Γ → C

A ∧Bα, Γ → C
(∧R)

Γ → A ∆ → B

Γ, ∆ → A ∧B

(∨L)
(Aα),Γ → C (Bβ),∆ → C

A ∨Bi, Γ, ∆ ` C
(∨R1)

Γ → A

Γ → A ∨B
(∨R2)

Γ → B

Γ → A ∨B

(∀L)
F tα,Γ → B

∀xFxα, Γ → B
(∀R)

Γ → Fa

Γ → ∀xFx

(∃L)
(Faα),Γ → C

∃xFxi, Γ → C
(∃R)

Γ → F t

Γ → ∃xFx

The indices i (i.e., Zucker’s unary indices from 2.2.1 in [8]: for any number
i, the index {i} (containing the single symbol i of length 1) is called an unary
index, and is denoted just by i) in the initial sequents and the rules ∨L and ∃L are
called initial indices, and they have to satisfy the restrictions on indices: in any
derivation, all initial indices have to be distinct.

In the rules ∀R and ∃L the variable a is called the proper variable of these rules,
and, as usual, has to satisfy the restrictions on variables: In ∀R: a /∈ Γ ∪ {∀xFx}.
In ∃L: a /∈ Γ ∪ {∃xFx, C}.

The notation (Cγ),Θ → D, which is used in rules ⊃R, ∨L and ∃L is interpreted
as Cγ , Θ → D, when γ 6= ∅ and Θ → D, when γ = ∅ (see 2.2.8(b) in [8] for details).
The rules ∨L and ∃L in which the index of one formula from () is the empty set
will be called rules r-∨L and r-∃L, respectively.

The well-known definitions of the principal formulae, side formulae and passive
formulae of inference rules in systems of sequents (see for example p. 87 in [3]) will
be used in the rules above.

D, E ,F ,D′, D1. . . . will denote derivations in the system δ. By

D
Γ → A

or (D : Γ → A), and

D
Γ′ → A′

Γ → A
r

we shall denote the derivation D with the end sequent Γ → A, and the derivation
F with the last rule r and the end sequent Γ → A, respectively. All formulae (with
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indices and without them) making up sequents in a derivation D will be called
d-formulae of the derivation D. By this we intend to indicate that we are not
considering a formula by itself, but as it appears in sequents of the derivation.

A derivation D of the system δ has the proper variable property (PVP) if every
occurrence in D of a proper variable of an inference ∀R or ∃L is above that inference.

Remark 1. The proper variable property is a well-known property of deriva-
tions of systems of sequents from [2]. Moreover, each derivation can be effectively
transformed into one with PVP (see for details the part III, 3.10 in [2]). Then we
assume that our derivations in δ have PVP.

Remark 2. It is important to note that we will not make a distinction between
derivations just on the basis of how their initial indices were chosen (see for details
the part 2.2.12. in [8]).

3. Normal derivations

Our goal is to show minimal segments of normal derivations from natural de-
duction in sequent derivations. In this section we will make the first step, i.e., we
will define derivations from the system of sequents δ which correspond to normal
derivations from natural deduction. In fact, in this section we will use results from
[1]. In [1] the connection between a system of sequents and a natural deduction
system, Zucker’s systems δ and N , was studied. The main results of the paper
[1] are the definition of the special kind of cuts of a sequent derivation D, maxi-
mum cuts of D, which correspond to maximum segments of a derivation in natural
deduction, and the following theorem:

The natural deduction image of a derivation D without maximum cuts from the
system δ is a normal derivation in the system N .

We now repeat the definition of maximum cuts of a derivation D in the system
δ. First we need to introduce some notions by which a precise connection between
d-formulae in a derivation can be made. More precisely, some of the notions below
will be well-known notions from systems of sequents (see Remark 5 below).

We consider a formula A. One of its subformulae will be called a d-subformula of
A, when its form and the place of its appearance in the formula A will be important.
For example, the formula A ≡ (C ⊃ D) ∧ C has two different d-subformulae C.
We note that the relation “. . . is a d-subformula of. . . ” is reflexive and transitive.
A d-subformula of a formula A will be called a proper d-subformula, when it is not
A. We also note that in a derivation, two d-formulae of the same form have the
same d-subformulae which constitute them. (In the definition of a d-branch below
we will use the following convention: the indices of d-formulae will denote their
place in a sequence of d-formulae where these formulae can or cannot be indexed
formulae.)

Let D be a derivation, and A be a d-formula from D. A d-branch of the d-
formula A in the derivation D will be a sequence of d-formulae F1, F2, . . . , Fn,
n > 1, where F1 is that d-formula A, and for each i, i > 1 if Fi is

(i) either a passive formula in the lower sequent of a rule, or a principal formula
of a contraction, then Fi+1 is the corresponding passive formula from one of the
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upper sequents of that rule or one of the corresponding side formulae from the
upper sequent of that contraction, respectively;

(ii) a principal formula in the lower sequent of an operational rule, then Fi+1 is
one of the side formulae (if they exist) from the upper sequents of the rule (which
need not be on the same side of → as Fi);

(iii) a d-formula from an axiom, or the principal formula of a rule which does
not have any side formula, then i = n.

bA : A ≡ F1 . . . Fn will denote a d-branch of a d-formula A in a derivation D.
Moreover, b, b′, b1, . . . will denote d-branches in a derivation.

Example 1. In the derivation D

A ∧ Ck → A ∧ C

∃xFxl, A ∧ Ck → A ∧ C
∃ L

Ai → A

A ∧ Ci → A Bj → B

A ∧ Ci×j ,A ⊃ Bj → B
⊃ L

∃xFxl×i×j , A ∧ Ck×i×j ,A ⊃ Bj → B
cut

the emphasized d-formulae ∃xFxl×i×j and A ⊃ Bj from the end sequent have the
following d-branches:
b∃xFxl×i×j

: ∃xFxl×i×j ,∃xFxl;
bA⊃Bj : A ⊃ Bj , A ⊃ Bj , A, A and b′A⊃Bj

: A ⊃ Bj , A ⊃ Bj , Bj .

Remark 3. If b : A ≡ F1 . . . Fn is a d-branch of a d-formula A in a derivation
D, where Fn is one indexed formula, then the index of Fn is an initial index.

If in a derivation D the d-branch b : A ≡ F1 . . . Fn is not a part of any other
d-branch, then b will be called a long d-branch of A in D.

Remark 4. If in D the d-branch b : A ≡ F1 . . . Fn is a long d-branch, then the
d-formula A is either a cut formula or a formula from the end sequent of D.

In Example 1 d-formulae from the end sequent ∃xFxl×i×j , A ∧ Ck×i×j , A ⊃
Bj → B have the long d-branches:

bA∧Ck×i×j
: A ∧ Ck×i×j , A ∧ Ck, A ∧ Ck;

bA⊃Bj : A ⊃ Bj , A ⊃ Bj , A, A and b′A⊃Bj
: A ⊃ Bj , A ⊃ Bj , Bj ;

b∃xFxl×i×j
: ∃xFxl×i×j , ∃xFxl

bB : B, B, B.

In a derivation D, the part A ≡ F1 . . . Fk of a d-branch b (b : A ≡ F1 . . . Fn,
1 6 k 6 n) whose all d-formulae have the same form (i.e., they are equal to A) and
the d-formula Fk+1 from b (if it exists) is different from A, will be called a branch
of the d-formula A in the derivation D. Moreover, if k < n, then that branch will
be called a proper branch of the d-formula A.

In Example 1 the branch of the d-formula A ⊃ Bj from the end sequent is
the part A ⊃ Bj , A ⊃ Bj of both d-branches bA⊃Bj and b′A⊃Bj

. Moreover, the
branch A ⊃ Bj , A ⊃ Bj of the d-formula A ⊃ Bj from the sequent ∃xFxl×i×j , A∧
Ck×i×j , A ⊃ Bj → B is its proper branch.
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Remark 5. In a derivation all the branches of a d-formula form Gentzen’s
cluster of that d-formula (see p. 267 in [3]). In a derivation each d-branch of a
d-formula A consists of branches of several d-subformulae of the d-formula A, and
all d-formulae of one branch (if they are on the left side of →) have the same index.
The last d-formula of a proper branch of a d-formula A is a principal formula of an
operational rule.

Now we define the notion of an o-tree of a d-formula. It will be a sequence of
d-formulae which contain that d-formula as their d-subformula. By the form of one
o-tree of a d-formula A o-tree, more precisely, by the last d-formula of its o-tree,
we will be able to conclude whether the d-formula A is introduced, i.e., whether
a d-formula whose form is A, which is connected with that d-formula A, is the
principal formula of an operational rule.

First, for a d-branch b : F1 . . . Fn of a d-formula A and one of its d-subformula
C we define the following notions: (i) the sequence of d-formulae b−1 : Fn . . . F1;
(ii) the d-branch b is a part of C when Fn is a proper d-subformula of C; (iii) C is
a part of the d-branch b when C is a d-subformula of Fn.

Let D be a derivation and A be a d-formula from D. An o-tree of the d-formula
A in the derivation D will be a sequence t1t2 . . . tn (n > 1), where t1 is a branch
of the d-formula A in D, and ti, i > 1, are some sequences of d-formulae from D
which are made in the following way.

− If the last d-formula of t1 is a principal formula of an operational rule (i.e.,
t1 is a proper branch of the d-formula A), then n = 1.

− If the last d-formula of t1 is a d-formula A from an axiom, then n > 1 and
for each k, k > 1:

If the last d-formula of t2k−1 is
(i) one d-formula of an i-axiom and Cm is the other d-formula of that axiom,

then t2k is b−1, where b : C1 . . . Cm is a long d-branch which ends in Cm;
(ii) a d-formula from a ⊥-axiom, then t2k is the other d-formula from that

⊥-axiom and n is 2k.
If the last d-formula of t2k is
(i) a d-formula from the end sequent of D, then n is 2k;
(ii) the d-formula C1, which is a cut formula of a cut whose other cut formula

is C (C1 and C have the same form), then t2k+1 can be
(a) only the d-formula C, when there is a d-branch of C which is a part of A

and n = 2k + 1;
(b) a d-branch of C which ends in an axiom and whose part is A (if it exists);
(c) one empty sequence, i.e., n = 2k, and t2k has to be changed, it becomes

only its first d-formula, otherwise.

Remark 6. We note that the case (c) from the definition of an o-tree above is
the following: there is a d-branch of C whose part is A, but its end is the principal
formula of a rule which does not have any side formula, i.e., the principal formula
of one r-∨L or r-∃L (which contains A). That case corresponds to the redex of the
reduction for elimination redundant applications of ∨E or ∃E in natural deduction
(see p. 254 in [7]).
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trA : t1 . . . tn will denote an o-tree of a d-formula A in a derivation D, i.e., D-tree
of that formula A. Moreover, tr, tr′, tr1, . . . will denote o-trees in a derivation.

Example 2. We consider the derivation D

Cl→C

C∧El→C

→(C∧E)⊃C

C∧Ep→C∧E Cq→C

C∧Ep×q , (C∧E)⊃Cq→C

C∧Ep×q→C
cut

Ai→A Aj→A

A∨Bk, Aj→A Cm→C

A∨Bk, Aj , Cm→A∧C Dn→D

A∨Bk×n, Aj×n, Cm×n, (A∧C)⊃Dn→D

C∧Ep×q×m×n, A∨Bk×n, Aj×n, (A∧C)⊃Dn→D
cut

One o-tree of the emphasized d-formula C ∧Ep×q×m×m from the end sequent, tr1,
consists of the emphasized d-formulae in D. The o-tree tr1 is t1t2t3, where:

t1 : C ∧ Ep×q×m×m, C ∧ Ep×q, C ∧ Ep×q, C ∧ Ep (from C ∧ Ep → C ∧ E),
t2 : C ∧ E (from C ∧ Ep → C ∧ E),(C ∧ E) ⊃ Cq

t3 : (C ∧ E) ⊃ C (from → (C ∧ E) ⊃ C).

Remark 7. If a d-formula A has an o-tree tr : t1 . . . tn in a derivation D, where
n is an odd number, it means that in D there is an introduction of a d-formula of
the same form as A which is connected with the d-formula A by several cuts whose
cut formulae belong to tr.

In a derivation D an o-tree tr : t1 . . . tn of a d-formula A is solid if n is an even
number, otherwise the o-tree tr is not solid.

In Example 2:
(i) the d-formula Aj×n from the end sequent has the following solid o-tree tr:
t1 : Aj×n, Aj×n, Aj , Aj , Aj ,
t2 : A (from Aj → A), A,A ∧ C, (A ∧ C) ⊃ Dn, (A ∧ C) ⊃ Dn;
(ii) the o-tree tr1 of the d-formula C ∧ Ep×q×m×m mentioned above is a not

solid o-tree of that d-formula.

Lemma 1. Let A be a d-formula in a derivation D and tr : t1 . . . tn be an o-tree
of the d-formula A. Then

(1) n is an even number iff the last d-formula of tr belongs to either the end
sequent of D, or an axiom.

(2) n is an odd number iff the last d-formula of tr is either a principal formula
of an operational rule or a cut formula whose one d-branch contains the principal
formula (of an operational rule) equal to A.

Proof. By the definition of o-trees of a d-formula in a derivation. ¤
By the following notion we want to make complete information about connec-

tions of a d-formula A with principal formulae which are of the same form as that
d-formula A (and which are made from their subformulae).

All possible o-trees of a d-formula A in a derivation form the origin of the d-
formula A in the derivation. A d-formula A has the safe origin in a derivation if
all its o-trees are solid; otherwise that d-formula A has not the safe origin in that
derivation.
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Lemma 2. A d-formula A has the safe origin in a derivation D if and only if
the last d-formulae of all o-trees of A in D belong to either the end sequent of D,
or one axiom.

Proof. ⇒: By the definition of the safe origin, all o-trees of A are solid. By
the definition of solid o-trees, all o-trees of A have the following form tr : t1 . . . tn,
where n is an even number. By Lemma 1(1), the last d-formula of each o-tree of A
belongs to either the end sequent of D, or one axiom.

⇐: By Lemma 1(1), each o-tree of A has the following form tr : t1 . . . tn, where
n is an even number. Then, all o-trees of A are solid. Thus, by the definition of
the safe origin of a d-formula, the d-formula A has the safe origin in D. ¤

Now we can define the notion of a maximum cut (m-cut) of a derivation. Let

D1

Γ → A

D2

Aα, ∆ → D

Γ×α, ∆ → D
cut

be a subderivation of a derivation D. That cut, the last rule of that subderivation,
will be called a maximum cut of the derivation D if neither the d-formula A from
Γ → A nor the d-formula Aα from Aα, ∆ → D has safe origin in the derivation D.

In Example 2 the lowest cut is not a maximum cut, and the other cut with cut
formula (C ∧ E) ⊃ C is one maximum cut of the derivation D.

4. Minimum segments of normal derivations

In this section we will prove that sequent derivations without maximum cuts
and normal derivations from natural deduction have similar forms.

We consider a derivation D with the end sequent Γ → B, and for each d-formula
from Γ we will define its path in the derivation D. That notion will correspond
to the notion of the path of a not discharged top formula in a natural deduction
derivation. In the system δ, for a derivation without maximum cuts we will prove
the theorem which is analogous to the theorem about the forms of paths in a normal
derivation from natural deduction (Theorem 2 in IV§2 from [6]).

First we need the definition of the f-path of a d-formula in a derivation.
Let D be a derivation, and A be a d-formula from D. An f-path of the d-formula

A in the derivation D will be a sequence of d-formulae A1, . . . , An, n > 1, where
A1 is that d-formula A, and for each i, i > 1 if Ai is

(i) a passive formula of the lower sequent of a rule, then Ai+1 is the correspond-
ing passive formula from the upper sequent of that rule;

(ii) a principal formula of an operational rule or a contraction, then Ai+1 is a
side formula of that rule on the same side of → as Ai (if such formula exists).

The d-formula An is either a d-formula from an axiom, or the principal formula
of one r-∨L or r-∃L rule (the rule ∨L or ∃L which do not have side formulae).

fA : A ≡ A1 . . . An will denote a f-path of a d-formula A in a derivation D.
Moreover, f, f ′, f1, . . . will denote f-paths in a derivation.
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In Example 1 d-branches b∃xFxl×i×j
: ∃xFxl×i×j ,∃xFxl, and b′A⊃Bj

: A ⊃
Bj , A ⊃ Bj , Bj are f-paths of the d-formulae from the end sequent of the derivation
D, ∃xFxl×i×j and A ⊃ Bj , respectively. However, bA⊃Bj : A ⊃ Bj , A ⊃ Bj , A,A
is not an f-path of the formula A ⊃ Bj .

The f-path of a d-formula A which does not belong to any other f-path as its
part will be called a long f-path of that d-formula A.

Lemma 3. If in a derivation D the sequence A1, . . . , An is a long f-path, then
the d-formula A1 is either a d-formula from the end sequent of D, a cut formula,
or the left side formula of a ⊃L rule (i.e., principal formula of that ⊃L is of the
form A1 ⊃ B, for some formula B).

Proof. By the definition of the f-path of a d-formula. ¤
Long f-paths of left side formula of one ⊃L rule will have the special name,

⊃-long f-paths.
The following lemma shows the connection between d-branches and f-paths of

a d-formula from a derivation.

Lemma 4. Let A be an arbitrary d-formula in a derivation D. Then
(1) Each f-path of the formula A is its d-branch.
(2) Each long f-path of the formula A, which is not ⊃-long f-path, is its long

d-branch.

Proof. By the definition of the long f-path and the long d-branch. ¤
In a derivation (D: Γ → B) we define the path of a d-formula A from the

sequence Γ. We know that the d-formulae from the sequence Γ correspond to top-
formulae which are not discarged in natural deduction image of D, thus the path
of a d-formula from Γ corresponds to a path of a top-formula from that image of
D.

In the definition below f−1 will denote the sequence of d-formulae An . . . A1,
where f : A ≡ A1 . . . An is an f-path of the d-formula A.

Let (D: Γ → B) be a derivation and A be a d-formula from Γ. A path of
the d-formula A will be a sequence p1 . . . pn, n > 1, where p1 is an f-path of the
d-formula A, and for each k > 1:

If the last formula of p2k−1 is
(i) the left d-formula of an axiom and f is a long f-path which ends in the right

d-formula of that axiom, then p2k is f−1;
(ii) the principal formula of r-∨L or r-∃L, then 2k − 1 = n.
If the last formula of p2k is
(i) either a d-formula of the end sequent Γ → B, or the first formula of a ⊃-long

f-path, then n = 2k;
(ii) one cut formula of a cut, then p2k+1 is an f-path of the other cut formula

of that cut.
In a derivation D, phA : p1 . . . pn will denote a path of a d-formula A from the

sequence Γ, where Γ → B is the end sequent of D. Moreover, ph, ph′, ph1, . . . will
denote paths in a derivation.
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In Example 2
(i) the d-formula Aj×n from the end sequent has the path ph : p1p2, where
p1 : Aj×n, Aj×n, Aj , Aj , Aj ; p2 : A,A,A ∧ C;
(ii) the d-formula A ∨Bk×n from the end sequent has the path ph : p1, where
p1 : A ∨Bk×n, A ∨Bk×n, A ∨Bk, A ∨Bk. We note that the path ph : p1 is one

not solid o-tree of the d-formula A ∨Bk×n.
In the following lemmata we will show some properties of paths of d-formulae

in a derivation.

Lemma 5. Let (D: Γ → B) be a derivation. Let p1 . . . pn, n > 1, be a path of
a d-formula A from Γ, and an arbitrary pi, 1 6 i 6 n, be of the form A1, . . . , Am.

(1) If i is an even number, and
(1.1) 1 6 i < n, then Am is a left cut formula of a cut;
(1.2) i = n, then Am is either a d-formula from the end sequent of D or the

first formula of a ⊃-long f-path.
Moreover, A1 is the right formula of an axiom.
(2) If i is an odd number, and

(2.1) i = 1, then A ≡ A1;
(2.2) 1 < i 6 n, then A1 is the right formula of a cut;
(2.3) 1 6 i < n, then Am is the left formula of an axiom;
(2.4) i = n, then Am is the principal formula of one r-∨L or r-∃L rule.

Proof. By the definition of the path of a d-formula from the end sequent of
a derivation. ¤

Lemma 6. Let (D: Γ → B) be a derivation, and let p1 . . . pn, n > 1, be a path
of a d-formula A from Γ. If i is an odd number and j is an even number from
{1, 2, . . . , n− 1}, then each pi is a long f-path and each p−1

j is a long f-path which
is not a ⊃-long f-path.

Proof. A consequence of Lemma 5. ¤
Let A and B be two d-formulae. A ≺ B or B Â A will denote that the formula

A is a proper subformula of the formula B, and A 4 B or B < A will denote that
either A ≺ B, or A and B are of the same form. Finally, A⊥ ≺ B or B Â⊥ A will
denote that either A ≺ B, or B ≡⊥ and A is an atomic formula.

Lemma 7. Let p1 . . . pn, n > 1, be a path of a d-formula A in a derivation D,
and an arbitrary pi, 1 6 i 6 n, be of the form A1, . . . , Am. If i is an odd number
then A1 < A2 < · · · < Am. If i is an even number, then A1 4 A2 4 · · · 4 Am.

Proof. By the definition of the path of a d-formula from the end sequent of
a derivation. ¤

When we consider a path ph : p1 . . . pn as a sequence of d-formulae, then it
consists of sequences of d-formulae of the same form. The sequence of consecutive
d-formulae from ph, A1, . . . , Am, will be called one component of the path ph if all
d-formulae Ai, 1 6 i 6 m, are of the same form A and the formulae from ph which
are immediately before A1 and after Am are not of the form A.
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A component of a path ph : p1 . . . pn will be denoted by Ci, Ci ≡ Ci
1 . . . Ci

ji
,

so each path can be presented by its components C1 . . . Ck, where Ci ≡ Ci
1 . . . Ci

ji
,

1 6 i 6 k. For two components, Ci and Cj , Cj Â Ci (Cj Â⊥ Ci) will denote that
the relation Â (Â⊥) holds for the formulae from Cj and Ci.

Finally, the most important result of this paper is the following theorem.

Theorem. Let (D: Γ → B) be a derivation without maximum cuts. Let A
be an arbitrary d-formula from the sequence Γ. Each path ph of the d-formula A,
ph : p1 . . . pn, presented by its components C1 . . . Cm, contains one component Ci,
for one i from {1, 2, . . . , m}, such that C1 Â C2 Â · · · Â Ci−1 Â⊥ Ci ≺ Ci+1 ≺
· · · ≺ Cm. Moreover, if Ci ≡ Ci

1 . . . Ci
ji
, then

(1) Ci
1 is either the side formula of one left operational rule or the right d-

formula of one ⊥-axiom, when i 6 m, i 6= 1; and Ci
1 ≡ A, when i = 1;

(2) Ci
ji

is the side formula of one right operational rule, when 1 6 i, i 6= m; and
Ci

ji
is either the principal formula of r-∨L or r-∃L, the first formula of a ⊃-long

f-path, or Ci
ji
≡ B, when i = m.

From Theorem above we have the following: in the system of sequents δ each
path ph of a d-formula from a derivation without maximum cuts has two parts (may
be empty) which are connected with one component that consists of the simplest
formula, the component Ci. That component will be called minimum component
of the path ph, and it corresponds to minimum segment of the path in a normal
derivation from natural deduction. Moreover, that minimum component and the
parts of ph before and after it are connected as the minimum segment and the
E-part and the I-part in a path of a normal derivation from natural deduction.
Thus, Theorem above is analogous to Theorem 2 (from IV§2 in [6]) about forms of
normal derivations from natural deduction.

Proof of Theorem. We consider an arbitrary d-formula A from Γ, and one
its path ph : p1 . . . pn, n > 1.

If n = 1, then (by the definition of paths) ph is one long f-path p1 whose last
formula is the principal formula of one r-∨L or r-∃L. By Lemma 7, for the d-formulae
A1, . . . , Ak which constitute ph ≡ p1 we have A ≡ A1 < A2 < · · · < Ak. If A 6= Ak,
then components of ph ≡ p1 are C1 . . . Cm, 1 < m 6 k and C1 Â C2 Â · · · Â Cm.
Thus, i = m. It is easy to see that the first formula of Cm is the side formula of
a left operational rule and the last formula of Cm is the principal formula of one
r-∨L or r-∃L. If A = Ak, then ph ≡ p1 has only one component C1, so i = m = 1.
Thus, C1

1 is A and C1
j1

is Ak i.e., the principal formula of one r-∨L or r-∃L.
If n > 1, then we have the following cases.
(I) All d-formulae of ph : p1 . . . pn are of the same form. Thus, i = m = 1, ph

has only one component, C1. C1
1 is the first d-formula of ph, i.e., C1

1 is A. C1
j1

is
the last d-formula of ph. So, by Lemma 5, C1

j1
is: the principal formula of r-∨L or

r-∃L (when n is odd); either the first formula of a ⊃-long f-path, or B from the end
sequent Γ → B (when n is even).

(II) The path ph : p1 . . . pn has the d-formulae of the different forms. Thus,
components of ph are C1 . . . Cm, m > 1, and Cl ≡ Cl

1 . . . Cl
jl

, 1 6 l 6 m. There
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is one component with the simplest d-formula, the component Ck, for one k from
{1, 2, . . . ,m}. Moreover, by the definition of a path, for all l from {1, 2, . . . ,m},
l 6= k: either Cl Â Ck or Ck Â Cl. We prove that i = k, i.e., the component Ck

has properties from the formulation of the theorem.
(II.1) First we suppose that k is a member of {2, . . . ,m−1} (k 6= 1 and k 6= m).
(II.1.1) Let the first formula of Ck, the formula Ck

1 , belong to one p2u−1, for
some u. Ck

1 has to be a side formula of a left operational rule, the last formula
of Ck−1 is the principal formula of that rule, and by the definition of a path and
Lemma 7, Ck−1 Â Ck. The last formula of Ck, the formula Ck

jk
, has to belong

to one p2q, for some q. (If Ck
jk

belongs to one p2q−1, for some q, then the first
formula of Ck+1 is simpler than Ck

jk
, which is not possible.) Thus, jk > 1. By

the definition of a path and Lemma 7, Ck
jk

is a side formula of a right operational
rule, and Ck ≺ Ck+1. So, we have Ck−1 Â Ck ≺ Ck+1. Now we consider the
components C1 . . . Ck−1, and we want to show that C1 Â C2 Â · · · Â Ck−1.

If k = 2, then Ck−1 ≡ C1 i.e., we already have C1 Â C2.
If k > 2, then we suppose that C1 Â C2 Â · · · Â Ck−2. We will prove that

Ck−2 Â Ck−1. From Ck−3 Â Ck−2 we have that Ck−3
jk−3

is the principal formula and
Ck−2

1 is the side formula of a left operational rule. So, Ck−2
1 belongs to one p2q−1,

for some q. Now we prove that the last formula of Ck−2, Ck−2
jk−2

, cannot belong
to one p2r, for some r. If we suppose that, then it cannot be the last formula of
p2r. (The last formula of p2r (i.e., the left cut formula of a cut) is equal to the
first formula of p2r+1 (i.e., the right cut formula of that cut). It means that the
d-formula Ck−2

jk−2
is equal to Ck−1

1 , which is not possible.) Thus, the last formula of
p2r has to belong to the component Ck−1. (That cut formula can belong neither
to Ck (because Ck

1 belongs to p2u−1), nor to Ck+1 (because we have Ck ≺ Ck+1)).
We consider the cut whose left cut formula is the last formula of p2r. By Lemma 6
and Lemma 4, p−1

2r is one long d-branch of the last formula of p2r. By the properties
above and the definition of o-trees, that d-branch contains one no solid o-tree of
that cut formula, so it has not safe origin in D. Moreover, from Ck−1 Â Ck and
the fact that both Ck−1

jk−1
and Ck

1 belong to p2u−1 we can similarly conclude that
the right cut formula of that cut does not have safe origin in D, too. It means that
D has a maximum cut, which is not possible. Thus, Ck−2

jk−2
cannot belong to one

p2r, for some r. So, Ck−2
jk−2

belongs to one p2s−1, for some s, and Ck−1
1 has to be

a d-formula of p2s−1, too. (Ck−2
jk−2

cannot be the last formula of one p2s−1, i.e., it
cannot be the left formula of an axiom because of the following: if Ck−2

jk−2
is the left

formula of (i) an i-axiom, then the right formula of that i-axiom is equal to Ck−2
jk−2

,
which is not possible; (ii) an ⊥-axiom, then Ck−1

1 is an atomic formula simpler than
formulae of Ck, which is not possible.) Thus, by Lemma 7 and the definition of
components, we have that Ck−1

1 is a proper subformula of Ck−2
jk−2

, so Ck−2 Â Ck−1.
The property Ck+1 ≺ · · · ≺ Cm can be proved completely similar as the prop-

erty C1 Â C2 Â · · · Â Ck−1 above.
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(II.1.2) Let the first formula of Ck, the formula Ck
1 , belong to one p2u, for

some u. If Ck
1 is the first formula of p2u, then it has to be the right formula of

one ⊥-axiom i.e., an atomic formula. (Ck
1 cannot be the right formula of one i-

axiom because it is the first formula of the component Ck of ph.) So, Ck
1 is an

atomic formula, Ck ≺ Ck+1, and the formulae from Ck−1 are ⊥. Thus, we have
Ck−1 Â⊥ Ck ≺ Ck+1. We proceed completely analogous as in the case (II.1.1) to
prove that C1 Â C2 Â · · · Â Ck−1 and Ck+1 ≺ · · · ≺ Cm.

(II.2) If k = 1, then C1
1 ≡ Ck

1 ≡ A and that d-formula belongs to p1. By the
property that C1 ≡ Ck has the simplest formulae, Lemma 7 and Lemma 5, we have
that all formulae of p1 have to belong to C1, and C1

j1
has to belong to one p2s, for

some s. Thus, C1 ≺ C2. We proceed completely analogous as in the case (II.1.1)
above to prove that C2 ≺ C3 ≺ · · · ≺ Cm.

(II.3) If k = m, then Cm
jm

is the last formula of ph, so by the definition of
paths it can be either the principal formula of r-∨L or r-∃L, the first formula of
a ⊃-long path, or the formula B. If Cm

1 belongs to one p2q, for some q, then it
has to be the first formula of that p2q. By Lemma 5 Cm

1 is the right formula of
an axiom. That axiom has to be a ⊥-axiom because Cm

1 is the first formula of the
component Cm. Thus, Cm

1 is an atomic formula and Cm−1
jm−1

is ⊥. So, Cm−1 Â⊥ Cm.
If Cm

1 belongs to one p2q−1, for some q, then Cm−1
jm−1

is the principal formula and
Cm

1 is the side formula of a left operational rule, thus Cm−1 Â Cm. The property
C1 Â · · · Â Cm−1 can be proved analogously as the property C1 Â · · · Â Ck−1 in
the case (II.1.1) above. ¤
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