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ON SYLOW SUBGROUPS OF Sn
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Communicated by Žarko Mijajlović

Abstract. We give a new approach to description of p-Sylow subgroup nor-
malizers in the groups Sn (symmetric group on n letters).

1. Sylow subgroup normalizer in Sn

Let Pn(p) = Pn and Nn(p) = Nn denote p-Sylow subgroup in Sn and its
normalizer respectively. For α, β ∈ Sn, the product αβ will mean β(α(x)).

We shall briefly repeat the construction of Pn, which goes inductively. The set
of letters will be the set of first n natural numbers. If n = p, where p is a prime, then
Pn = (12 . . . p). Let n = pk. Set Ti = {(i− 1)pk−1 + 1, (i− 1)pk−1 + 2, . . . , ipk−1}
for 1 6 i 6 p. Let K = 〈π〉, where π ∈ Sn is such that π(Ti) = Ti+1 for i < p, and
π(Tp) = T1, and π is increasing on each Ti, i.e., x < y ⇒ π(x) < π(y). Obviously,
K ∼= Cp. Further on, we define H1 = Ppk−1 and Hi = π1−iPpk−1πi−1. We take Hi

as a permutation from Sn in natural way, fixing all the letters that are not in Ti.
The subgroup K normalizes the group H = H1H2 · · ·Hp = H1 × H2 × · · · × Hp,
and finally we have Pn = HK. We are now going to describe Nn for n = pk. Note
that Pn is transitive on the set {1, 2, . . . , pk} and has Ti as a block system.

Lemma 1. Let {Bi | 1 6 i 6 p} be a partition of {1, 2, . . . , pk} such that
|Bi| = pk−1 for each i. Let α ∈ Spk have Bi as its block system. Then for 0 6 i 6 p
there exists unique αi with the following properties:

1) if x /∈ Bi, then αi(x) = x, for i 6= 0,
2) α0 has Bi as a block system and is increasing on each Bi, α = α1α2 . . . αpα0.

Proof. Let α(Bi) = Bα(i). Then there exists a unique increasing bijection
βi : Bi → Bα(i), and let α0 be the “union” of βi. If we define αi(x) = α−1

0 (α(x))
for x ∈ Bi and αi(x) = x elsewhere, then we obtain the desired factors. The
uniqueness follows easily since αi and αj commute for i, j > 0. ¤
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If α, β ∈ Sn both have the same block system Bi, then Bi is also a block
system of αβ. So, if Bi is the block system as in the lemma above and if α =
α1 . . . αpα0 and β = β1 . . . βpβ0 are corresponding factorizations, then how can we
get factorization of αβ? If αβ = (αβ)1 . . . (αβ)p(αβ)0 one can easily check that
(αβ)i = αi α0βα(i)α

−1
0 , where α(i) is defined by α(Bi) = Bα(i), and (αβ)0 = α0β0.

Lemma 2. Let Bi, 1 6 i 6 p, be a block system for Pn and |Bi| = pk−1. Then
for each i there exists j such that Bi = Tj.

Proof. Set Ci,j = Ti ∩ Bj . Then, for α ∈ Pn the following holds: α(Ci,j) =
α(Ti) ∩ α(Bj) = Tα(i) ∩ Bα(j) = Cα(i),α(j) so Ci,j is also a block system for Pn.
Suppose that T1 6= Bj for all j. Then we can assume that C1,1 and C1,2 are not
empty. Since |C1,1| < |B1| then Cm,1 has to be also nonempty for some m > 1.
Since H1 < Pn for x ∈ C1,1 and y ∈ C1,2, there exists an α ∈ H1 such that α(x) = y
as H1 is transitive. From C1,1 ⊆ B1 and C1,2 ⊆ B2 it follows that α(B1) = B2,
since α(B1) = Bi. Let c ∈ Cm,1. Since Cm,1 ∩ T1 = ∅ and α ∈ H1 it follows that
α(c) = c. That means that α(c) ∈ B1, contradicting α(B1) = B2. ¤

Lemma 3. If α ∈ Nn, then Ti is a block system for α.

Proof. Consider the set {α(Ti) | 16 i6p}, which is a partition of {1, 2, ..., pk}.
For every β ∈ Pn there exists γ ∈ Pn such that βα = αγ, since α ∈ Nn. Then we
have β(α(Ti)) = α(γ(Ti)) = α(Tj), and this shows that α(Ti) is a block system for
Pn. By Lemma 2, it follows that Ti is a block system for α, as required. ¤

Now, let α ∈ Sn having Ti as its block system. So, by Lemma 1, we have
α = α1 . . . αpα0. We want to characterize α ∈ Nn in the terms of αi. We say that
α1 is connected with αi if αi = π1−iα1π

i−1. The condition α ∈ Nn is equivalent to
αKα−1 ∈ Pn and αHiα

−1 ∈ Pn for all i. Hence, for arbitrary βi ∈ Hi the following
should hold:

απsα−1 = α1 . . . αpα0π
sα−1

0 α−1
p . . . α−1

1(1)

=
( p∏

i=1

αiα0π
sα−1

0 α−1

(απsα−1
0 )(i)

α0π
−sα−1

0

)
α0π

sα−1
0 ∈ Pn

αβiα
−1 = αα−1

0 (i)α0βiα
−1
0 α−1

α−1
0 (i)

∈ Pn.(2)

In the conditions above we applied factorization rule for a product of permutations.
If L is a subgroup of Sn consisting of permutations having Ti as a block system

and being increasing on each Ti, then L is isomorphic to Sp and has K as its p-Sylow
subgroup. By well-known fact then |NL(K)| = p(p− 1).

If we analyze the conditions 1) and 2), then it is not difficult to see that α ∈ Nn

iff α0 ∈ NL(K), α1 ∈ Nn/p as a permutation of T1 and each αi, i > 0, is connected
with some β ∈ Nn/p such that βα−1

1 ∈ H1. From previous conditions we get a
recurrent formula for |Npk |:

|Npk | = p(p−1)ppk−1−1|Npk−1 |, and hence |Npk | = (p−1)kp
pk−1
p−1 = (p−1)k|Ppk |

Before considering the general case for Pn, we state a lemma.
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Lemma 4. Let R = {a1, . . . , apk} be an increasing sequence of natural numbers,
and T = {1, 2, . . . , pk}. There are |Npk | bijections Θ : T → R such that Θ−1PpkΘ =
P , where P is a p-Sylow subgroup of Spk constructed on R, in the same way as Ppk

was constructed on T .

Proof. The proof follows immediately since for every such Θ and some Ω ∈
N(P ), we have Ω(ai) = Θ(i), for all i, 1 6 i 6 pk. ¤

We return now to the general case for Sn and Pn. In the general case the
construction of Pn goes as follows. Let

n = a0 + a1p + a2p
2 + · · ·+ akpk

be p-adic decomposition of n. Now we make a partition Ti,j of the set {1, 2, . . . , n}
such that 0 6 i 6 k, 1 6 j 6 ai and |Ti,j | = pi. In that partition T0,j = {j},
T1,1 consists of the next p not taken numbers, while next p numbers are T1,2 and
so on. Let Pi,j ∈ Sn be equal to the p-Sylow subgroup on the set Ti,j constructed
in the same way as Ppk was on the set {1, 2, . . . , pk}, with P0,j trivial group and
Pi,j(x) = x elsewhere. Then, as it is well known, Pn is the internal direct product
of all Pi,j .

Let h ∈ Nn. If f ∈ Pn, then f(h(Ti,j)) = h(f1(Ti,j)) = h(Ti,j) for some
f1 ∈ Pn. Suppose now that for some Ti,j and Tm,l we have h(Ti,j)∩Tm,l 6= ∅. Then
it must be h(Ti,j) ⊇ Tm,l. On the contrary, there would exist x ∈ Tm,l \h(Ti,j) and
y ∈ Tm,l ∩ h(Ti,j). Because Pm,l is transitive on Tm,l, there exists f ∈ Pm,l with
f(y) = x, contradicting f(h(Ti,j)) = h(Ti,j). Therefore, h(Ti,j) is a union of some
Tm,l. If h(Ti,j) contains at least two distinct Tm,l (and of course |Tm,l| < |h(Ti,j)|),
then we have pi 6 a0 + · · ·+ ai−1p

i−1 and this is false since, in general, aj < p. So,
it follows h(Ti,j) = Ti,l and hPi,lh

−1 = Pi,j . Let hi,j be the restriction of h to Ti,j .
Hence, Hi,j : Ti,j → h(Ti,j). A permutation h ∈ Nn is uniquely determined by its
Hi,j . By Lemma 4, for each Hi,j we have |Npi | possibilities. We can conclude that

|Nn| =
k∏

i=0

|Ni|aiai!

Finally let us just notice that using the above description, Nn can be recursively
generated.
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