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ABSTRACT. We obtain a relationship between Matuszewska-Orlicz indices, Se-
menov indices and Simonenko indices. The main results are:
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1. On Matuszewska-Orlicz Indices of ¢-functions

A @-function @ is defined to be even, continuous, increasing on [0, +00), sat-
isfying ®(0) = 0, ®(c0) = oo. Further, a ¢-function ®(u) is called an N-function
P(u)

u

=0, lim ¥ = o00. The concept of indices
uU—r 00

of p-functions has become a powerful tool in the study of Orlicz spaces, particu-
larly in the interpolation and extrapolation theories(see [2] and [8]),as well as in
the geometric theory of Orlicz spaces (see [11, 14]). Maligranda [8] systematically
studied certain types of (especially Matuszewska-Orlicz) indices of both yp-functions
and N-functions and obtained a group of properties. Recently, Fiorenza and Kr-
bec [3] studied a formula for the Boyd indices which is tightly connected with
Matuszewska-Orlicz indices. In this paper we shall establish the relationship be-
tween Matuszewska-Orlicz indices and Semenov indices of ¢-functions and make
further investigation of the relationship between Semenov indices and Simonenko
indices of N-functions. Formulae for Semenov indices are shown. Calculation of
Simonenko indices for some classical N-functions is also discussed.

The definitions and notations in this paper will follow mainly Maligranda [8].

if ® is convex, satisfying lim
u—0
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For a p-function ®, define

. D (tu) . D (tu) D (tu)
My (t,®) =limsup ———, My(t,P) =limsup ——=, M (t,P)=-su .
e T R T R X 1)
All the functions above are non-decreasing submultiplicative, and are equal to 1 at
the point 1. Then the limits

i In M;(t, @) In M;(t, @)
ap = lim ————= = sup ————,
t—0+ Int 0<t<1 Int
i o InM(t,®) . InM;(t,®)
Pa = tlggo Int o t1r>1§ Int ’

exist for ¢ = 00,0,a. These numbers are called Matuszewska—Orlicz indices and
were introduced in 1960 [9]. The following propositions were given by Maligranda
[8] and will be used for the main results of this paper.

PROPOSITION 1. [8] If o-functions &1 ~ ®o at co (at the point 0 or for all u),
i.e., there exist C; > 0 (1 < i < 4) and ug > 0 such that C1®1(Cau) < ®3(u) <
C3®1(Cyu) for u > ug (for u < ug or for all u > 0, respectively), then

(1) aﬁpl :aﬁp2; ﬂél :ﬂéz. (i = 00,0,a)

PROPOSITION 2. [8] Let @1 be the inverse function of a p-function ®, then
we have

. 1 . 1
(2) Qg1 = =, Bp-1=—- (1 = 00,0,a)
P Oy
PROPOSITION 3. [6, 8] Let &,V be a pair of complementary N -functions, then
1 1 1 1
3) Tt slmarty  =w00)
PROPOSITION 4. [8] Let ® be an N-function; then
(4) Po <ap <Py <. (i=00,0,0)
where p& and ¢% (i = 00,0,a) are Simonenko indices [13], i.e.,
L ug(u) : ug(u)
e = liminf ——=, o = limsu ,
Y2 U 00 @(U) ') u—)oop (U)
0 _ oo uo(u) o _ 1 ug(u)
pe = liminf B(u) do = hﬂ?j}}p B(u)
o u(u) ug(u)
a — f a — X
Pe= 803w @730 3w

Proposition 4 reveals the relationship between Simonenko indices and Matusz-
ewska—Orlicz indices for N-functions. In 1967, Semenov [12] introduced another
type of indices on @-functions which were greatly used by Rao and Ren [11] and
the author [14] to estimate the geometric constants of Orlicz spaces:

' (u) ' (u)
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The relationship between Semenov indices and Matuszewska-Orlicz indices for
p-functions is as follows.
THEOREM 1. For a @-function ®(u) we have

(5) 2V Cwh < ply <27V (i = 00,0,0)

PrOOF. We first prove that ug < 2-1/63" By Proposition 2 and the definition
of a3, (note that ® *(u) is a p-function),

WMo (L8 1
T hl ST

which implies In Moo (3, @) > In271/0 ie., My (3, ®71) > 27Y/5%. Then by
the definition of MOO(%, ®1), for any given £ > 0, there exists a vy > 0, such that

31(Lo)
' (v)
for v > vy. Let v = 2u; then for any u > ug = vg/2, we have
! (u)
O—1(2u)
Take the upper limit for u — oo, one gets ug < 2-1/6¢" 4¢, and hence py < 2-1/8¢"
since ¢ is arbitrary.
Next we show that vg® > 2-1/23"  Also by Proposition 2 and the definition of
B31 we have

<278 4 ¢

< 27VBT 4e.

In Moo (2,® ! . 1
( ) s ﬁ@—l =—
In2 ag

It follows that In M. (2,®") < In2Y%% ie., M, (2,®!) < 2'/%%. By the
definition of My, (2,®1), for any & > 0, there is a up > 0, such that

&1 (2u) 1/
- 7 2 /g
31 (u) < +e
for u > ug, that is

O 1(u) 1

O—1(2u) ~ 2T 4
Take the lower limit for u — oo and since € > 0 is arbitrary, one gets that vg® >
271/0@0 )
The other inequalities cab be proved analogously. The proof is completed. O

COROLLARY 1. Let ®(u) be an N-function; then
(6) 271/Pe  97/eh ik < 27MPe 270 (i = 00,0, a)

The proof can be deduced from Proposition 4 and Theorem 1.
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REMARK 1. For an N-function ®, Corollary 1 links the above three types of
indices with inequalities.

COROLLARY 2. Let ® be an N-function. If ® ~ |ul? at co (at the point 0 or for
all u), then vP = uP =277 (VY = pY = 277 vg = pg = 2717, respectively).

Proor. In view of Proposition 3, one has a§ = % = p when ® ~ |u/?. O

REMARK 2. Generally speaking, to calculate vi and pé for i = 00,0, a, one
must first find the inverse function of ®(u), which is usually not practical. By
Corollary 2 we can easily obtain v% and p% from the equivalent functions of ®. For
example, for the N-function ®(u) = el*l — |u| — 1, we have v = ug = 27'/2 since
® ~ |u|? at the point 0.

2. On Simonenko and Semenov Indices

Recall the equivalents between the Simonenko indices (parallel to Proposition
3):

PROPOSITION 5. [6, 10] Let ®,¥ be a pair of complementary N -functions;
then

7 1 1 1 1

Py % [ Y
Now we show the equivalents for Semenov indices:
THEOREM 2. Let ®(u), ¥(v) be a pair of complementary N -functions; then

(®) Wiy =1 =2wgpy. (i =00,0,a)
PROOF. We only show that 2v3u3 = 1 since the other equalities can be ob-

tained analogously. In fact, for any 0 < € < 1/2, by the definition of v$, there
exists a ug = ug(e) > 0, such that

o (u)

B 1 (2u)

ie, u> @[V — )@ (2u)] for u < up. Put t = ®7'(2u), or u = 1 ®(t), then
B(t) > 28V — 2]

for t < top = ® (2up). By the properties of complementary N-functions (cf. [4,
pp. 11 and 14)]), there is an sp > 0, such that

>1/2>—5,

)y < 5o —sy- Denote by v = 13U (s), then

2

for s > s, i.e., U71(

U—1(v) < 1
TU-1(20) 203 —e¢)

WU(sp). Take the upper limit for v — 0, one has u3 <

1
2
namely, 2(v§ — &)uY, < 1, and hence 20§y, < 1, since ¢ is arbitrary.

for v < vg = IEDE
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On the other hand, by the definition of u3, for any € > 0, there is a vy =
vo(€) > 0, such that
()
T—1(20)
for v < vy, i-e., v < ¥[(py + )T~ (2v)]. Let s = ¥~1(2v); then ¥(s) < 2¥[(ud, +
g)s] for s < so = ¥=1(2vp). Thus there exists a to > 0 such that

<py +e

t
B(t) > 2¢(m) (t < to).

Therefore, "

L/ B(t t

e ( 2 )>2(,u91,+5)'

Put u = 1 ®(t), so that

O~ (u) 1

5 12u) 20 +9)
for u < up = 1®(tp). Take the lower limit; one has that v > 2(_u°1+—s)’ ie.,

203 (1Y, +¢) > 1. It follows that 2v3uy, > 1 by the arbitrariness of . The proof is
finished. a

Corollary 1 indicates that the indices p%, gi are “farthest” to each other among
the three types of indices. The following result shows that they are estimated by
the “nearest” pair v}, u.

THEOREM 3. Let ® be an N-function; then

1 : : B .
9 <P < < - = 00,0,
( ) 2(1 . V}p) DPa dp 1— pr (Z & a)
PrOOF. We only show the case for i = oo, i.e.,
2(1 — I/ff)o) X PP XY X 1— 'u%o

If pg =1, then _?; = oo and the inequality ¢g° < g obviously.
Let pg < 1. By the definition of pg’, given 0 < € < 1 — g, there exists a

uo = ug(g) > 0, such that

! (u)
& 1(20)
ie., u < ®[(ug + &)@ 1(2u)] for u > ug,. Let t = ®1(2u); then
B(1) < 28 (43 + <)
for t > to = ®7'(2up). Define (u3 + &)t = s; we have

<1>( i ) < 20(s)

py +e

<pug +e

for s > so = (U + €)to. Since

s s/(ng +e)
_ /0 o(r)dr + / B(r)dr > B(s) + o(s)

<I>( = —s),
Ko +€ py +e
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we deduce that

s 1
2> (ug’+5) 1 (ug"Jre - 1)S¢(8)
o(s) 7 o(s) ’

that is,

S(f(s) <—

(&) " a1
and hence . -
hey +E
WS "I —1:1—EI>OO+E)

ng +e P

by taking the upper limit for s — oo. Therefore, ¢g° < 7 £ :{m since € is arbitrary.
By the arguments above and Theorem 2 as well as Proposition 5, one has
1 1 1 1 1
1_ﬁ I_T\'I,‘;I’ Q—E 2 - 203 21 -vg)

Consequently, the theorem is proved. a

COROLLARY 3. If ® is an N-function, then
(10)  ph=1<=vh=1/2, g =00 =k =1. (i =00,0,a)
Corollary 3 is directly derived from Theorem 3 and Corollary 1, independent
of Ay or Vs conditions of N-functions (see [10]).
3. Examples
EXAMPLE 1. [7, 8] Let

a(u) = up (1+ %sin(pln W), k>V2 kp-1)- - D F1>0

Then ®(u) is an N-function. Since
ud'(u) cos(pln |u|)
b (u) -P pk+sin(p1n|u|)’

we know that

min uj(’l(z)t) :p(l — %1), max% :p(l +

k2 — 1)’
so that
pcb:p(l_i]&_l)’ Q¢:P(1+7k2_1)
for i = 00,0, a. However, observing that ®(u) ~ u? for all u, we have by Proposition
2 that

aﬁp:ﬂé:p, (i = 0,0,a),

and hence we deduce from Theorem 2 that

v = pl = 271/P (i = 00,0,a).
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REMARK 3. Example 1 implies that for an N-function ®(u), when a pair of
Semenov indices is equal, the Simonenko indices need not be equal, and that for a
pair of equivalent N-functions ®; and ®; their Semenov indices p} and ph, (g,
and qu2) (for i = 00,0,a) need not be equal although their Matuszewska—Orlicz
indices must be the same (see Proposition 1).

EXAMPLE 2. [5, 8] Suppose for |u| > 1+ 0 with § > 0, the N-function M can
be expressed as:

M(’LL) — |u|p+ksinln1n|u\’ k>0, k>1+ \/iki
It is easy to check that M (u) is the main part of an N-function. We show that
(11) Pii =~ V2k, 457 = p+ V2k.
(12) vig =27 PV s = g 2k

Indeed, observing that
p(u) = M'(u) = yp~tTksinlnlnu 1, 4 pginInlnu 4 & cosInln u]
for u > 0, one gets

up(u)

M (a) =p+k[ksinlnlnu + kcoslnlnu] = p+ V2ksin(Inlnu + 7/4).
u

Therefore, we have by the definition
PR =p—V2k,  ap=p+V2k

To calculate p37, we need to find a sequence {u,} — 0o and a proper constant
0 < C < 1 such that
M~ (uy)

Ty > C

(13)

For the inequality
M~ (w)
M 1(2u)
let M~1(u) =t; then u = M(t), and hence M (t/C) > 2M (t), i.e.,

> C,

+ksinlnint
> otP smnn’

( t )erksinlnln%
c

or equivalently,
(14) tk(sinInln & —sinlnlnt) ~ 9(CP+ksininin &

The left-hand side of the above inequality is

- 1 i .sin L i _
L(t) — t2k cos 5 (Inln & +Inlnt)-sin 3 (Inln & —Inlint)

1(lnln L+Inl
_ 2k-sin =(lnln 5 —Inlnt cos2(nnc+nnt)
— (42ksin 3(Inln & —Inl
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Note that InC < 0, and Int — +00 (t = 00), and one has that

lim $2ksin[3(nln&—Inlnt)] _ 15, ,2kIntsin[z(nln & —Inlnt)]
t—o0 t—o0

—  im e2kmtsin[3In(1+(=5F))] _ |3y e2kInt-Esin 3 In[14(=1nC-s)]
t—o0 s—0

[ . ( — —k —
— ek( InC) :elnC =C k,

and that
inln Lt +Inlnt 1+%
lim z(nln & tnn): lim — mnt-InC) _
t—00 lnln6 t—00 2

Therefore, given £ > 0, there is a tp, such that the left-hand side L(¢) of (14)
satisfies
(C_k)coslnln &—¢ < L(t) < (C_k)coslnln &+e
for ¢ > to. In order that (14) holds, it suffices that
(ka)coslnln &= > 2cp+k sinlnln &

ie.,
Cp+k sin In In %+cos InIn %—E < 1/2
)

and hence,
C’P+\/§k sin(lnln %-‘,—%)—g < 1/2

Thus, we obtain a sequence {t,,} — oo (and hence a corresponding sequence u,, —
00), such that

tn _ s
lnlnE—F —2k:7r+2, (keN).

T
4
Then CP+VZk—= < 1/2, 50 that

(15) C <2 Vo+V2h—e)

It follows that
/J’% > 271/(P+\/§k75) .

(Otherwise, if u$g < 2-1/(P+V2k—<) 'then there exists an £o > 0 such that pirt+eo <
-1
2-1/(r+V2k—2) apq ]S[/[T((Q’;)) < pqy +eo for all u > ug with some sufficiently large
up. This contradicts (13) since pS7 +€o satisfies (15) and can be taken as some C.)
Thus, we have uS3 > 271/ (#+V2k gince ¢ is arbitrary.
On the other hand, it is clear from Corollary 1 and (11) that

psy < 2710 = 9=1/(p+V2k)

Finally, we obtain that

pp =2 M@V,

and analogously,
3o = 271/ (=V2k)
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There are a few counterexamples showing that a pair of Semenov indices can
be indeed different. Example 2 indicates that the gape between v, and u}, can
be any interval in the whole interval (1/2,1) as soon as we choose properly the
parameters p and k.

ExXAMPLE 3. Krasnoselskii and Rutickii [4, p. 25] give an example that M (u)
is determined by its derivative

u, ifuel0,1)

PU=Vk dfue(k—DLE)  (k=2.3--)

Then p3; =1, ¢33 = +00, and hence v§} =1/2, u3; =
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