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QUADRATIC FUNCTIONAL EQUATION

Hark-Mahn Kim

Communicated by Stevan Pilipovié

ABSTRACT. We obtain a general solution and solve the Hyers—Ulam stability
problem for the general quadratic functional equation

f@ty+2)+f@-y)+flz-2)=flz—y—2)+ flz+y)+ flz+2)

1. Introduction

In 1940, Ulam [16] asked a question concerning the stability of group homo-
morphisms:

Let Gy be a group and G2 a metric group with the metric d(-,-). Given e > 0,
does there exist a § > 0 such that if a function h : G1 — G4 satisfies the inequality
d(h(zy), h(x)h(y)) < & for all z,y € Gy, then there exists a homomorphism H :
G1 — Gy with d(h(z), H(x)) <€ for all x € G, ¢

In other words, we are looking for situations when the homomorphisms are
stable, i.e., if a mapping is almost a homomorphism, then there exists a true ho-
momorphism near it.

It is easy to see that the quadratic function f(z) = cz
the following functional equations:

(1.1) flx+y)+ flz—y) =2f(x) +2f(y),
(1.2) fler+ty+2)+f@)+fly)+f2)=flz+y) + fly+2)+ flz+),

So, it is natural that each equation is called a quadratic functional equation. In
particular, every solution of the quadratic equation (1.1) is said to be a quadratic
function. It is well known that a function f between real vector spaces is quadratic
if and only if there exists a unique symmetric biadditive function B such that
f(z) = B(z,z) for all z (see [1], [11]). The functional equation (1.2) was solved
by Pl. Kannappan. In fact, he proved that a functional on a real vector space is

2 is a solution of each of
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a solution of the equation (1.2) if and only if there exist a symmetric biadditive
function B and an additive function A such that f(z) = B(z,z) + A(z) for any z
(see [11]).

A Hyers—Ulam stability theorem for the quadratic functional equation (1.1)
was proved by Skof for the functions f : Fy — FEs, where F; is a normed space
and E, a Banach space (see [15]). In [3], Czerwik proved the Hyers-Ulam-Rassias
stability of the quadratic functional equation (1.1). Grabiec [6] generalized the
results above. Jun and Lee [9] proved the Hyers—Ulam—Rassias stability of the
pexiderized quadratic equation (1.1). The stability problems of several functional
equations have been extensively investigated by a number of authors [3, 8, 10, 13,
14].

Now we introduce the following quadratic functional equation, which is some-
what different from (1.1), (1.2),

(13) flat+y+2)+fle—y)+fle—2)=Fflz-—y-2)+fle+y)+flz+2)

We will find out the general solution of the functional equation (1.3) and consider
the stability problem of it in the sense of Hyers, Ulam, Rassias and Gévruta.

2. Main Results
In the following theorem, we find out the general solution of the functional
equation (1.3).

THEOREM 2.1. Let X and Y be real vector spaces. The function f : X —
Y satisfies the functional equation (1.3) if and only if there exist a symmetric
biadditive function B : X2 — Y, an additive function A: X — Y and an element
beY such that f(x) = B(x,z) + A(z) + b for all z € X.

ProOF. We first assume that f is a solution of the functional equation (1.3).
If we put g(z) = f(z) — f(0), then we get that g is also a solution of (1.3) and
g(0) = 0. So we may assume, without loss of generality, that f is a solution of (1.3)

and f(0) = 0. Let fe(x) = (f(2) + f(-%))/2, fo(z) = (f(z) — f(-2))/2 for all

xz € X. Then f.(0) =0 = f,(0), fe is even and f, is odd. Since f is a solution of

(1.3), fe and f, also satisfy (1.3). Replacing z by —z and f by f. in (1.3), we have
fe(y) + felz —y) + fe(22) = fe(2x —y) + fe(x +y).

Putting z = z and f by f. in (1.3), we obtain
fey) + fe(z +y) + fe(22) = fe(22 + y) + fe(z —y)-
Summing the above two relations, we get

fe(2z +y) + fe(22 —y) = 2f.(27) + 2fc(y),

which shows that f.(z) = B(z,z) for some symmetric biadditive function B : X2 —
Y.
Replacing z by —z and f by f, in (1.3), we have

fo(y) +fo(x _y) +f0(21') = f0(21' _y) +fo(x+y)-
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Putting z = and f by f, in (1.3), we obtain
—fo(y) + folz +y) + fo(22) = fo(2z +y) + fo(z —y).

Summing the above two relations, we get

fo(2z +y) + fo(22 —y) = 2fo(22),
which implies that f, is a Jensen function and thus f,(z) = A(z) for some additive
function A : X — Y. That is, f(z) = fe(x) + fo(x) = B(z,z) + A(z) for all z € X.
Conversely, if there exist a symmetric biadditive function B : X2 = Y, an
additive function 4 : X — Y and an element b € Y such that f(z) = B(z,z) +
A(z) 4+ b for all z € X, we may easily check that f satisfies the equation (1.3). O

From now on, let X be a real vector space and Y a Banach space unless stated
otherwise. Let ¢ : X3 — R*, § : X — RT be given functions and let the induced
function ® : X? — R be defined by ®(z,y) := é(x/2,y,7/2) + ¢(z/2,y, —x/2) +
d(y). In the following theorem, the Hyers—Ulam stability of (1.3) is proved under
approximately even condition.

THEOREM 2.2. Let ¢ : X® — Rt be a function such that

o(2'x, 2"y, 2"z i (T Y 2 .
E % E 4 gb(?, 20 5), respectively
i=0 =1

converges for all z,y,2 € X; let § : X — R" be a function satisfying:

S (Sea(z))

converges for all x € X. Suppose that a function f : X =Y satisfies
Ifle+y+2)+fle—y)+fla—2) - fl@a-y—2) - flz+y) - flz+2)]
< (2,9, 2),
(2.1) If(2) = f(==2)|| < 6(x)

for all x,y,z € X —{0}. Then there ezists a unique quadratic function @ : X — Y
satisfying the equation (1.3) and the inequality

(22) 17 - F0) - Q)i < § 3 22D
i=0
(15 - 10 - @il < ;> 42(5.57))

for all x € X. The function Q is given by

23 Q@ =1m {ZD Q@) = m #"[f@/2) - £(0)]).

n—oo 4n n—00

PROOF. Replacing = and z by x/2 in the first condition of (2.1), we get
24) If(z+y)+f(2/2=y)+ F(0) = f(=y) = f(z/2+y) = f(2)| < ¢(z/2,y,2/2)
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for all z,y € X —{0}. If we put /2, —z/2 in (2.1) instead of z, z, respectively, we
obtain

25) If) + fx/2—y)+ f(@) = fle—y) = f(&/2+y) - FO)| < d(x/2,y, —2/2)
for all z,y € X — {0}. By (2.4) and (2.5), we get the relation

(2.6)

1f(@+y)+f(2—y)+2f(0)=f(¥)—F(=y)=2f (@)I| < D(2/2,y,2/2)+d(x/2,y, —2/2)
for all z,y € X — {0}. It then follows from the second condition of (2.1) and (2.6)
that the inequality

(2.7)

1f(z+y) + flz—y) +2f(0) — 2f(z) — 2/ (y)]

1f(z+y) + flz—y) +2f(0) = f(y) = f(=y) = 2f (@) + I () = F(=v)ll
¢(@/2,y,2/2) + ¢(x/2,y, —x/2) + 6(y) = ®(z,y)

holds for all z,y € X — {0}. We now define a function F' : X — Y by F(z) =
f(z) = f(0) for all z in X. Then from (2.7) we arrive at the following inequality

NN

|1F(z +y) + Fz —y) = 2F(z) = 2F (y)[| < @(z,y)

for all z,y € X. According to [6, Corollary 2], there exists a unique quadratic
function @ : X — Y satisfying (2.2) and (2.3). To show that @ satisfies the
equation (1.3), we replace z,y, and z by 2"z, 2"y and 2"z, respectively, in (2.1)
and divide by 4™; then we get

ARz +y +2) + fFRMz —y) + 2%z - 2))

—f2" -y —2) - fQ"(x+y) - fFQ"(x+2)| <47"$(2"2, 2"y, 2"2).
Taking the limit as n — oo, we find that ) satisfies (1.3) for all z,y,z € X. This
completes the proof of the theorem. a

From the main Theorem 2.2, we obtain the following corollary concerning the
stability of the equation (1.3).

COROLLARY 2.1. Let X and Y be a real normed space and a Banach space,
respectively, and let p,q (# 2) be real numbers. Let H : Rt x RT x Rt — RT be a
function such that H(tu, tv,tw) < t?H(u,v,w) for all t (£ 0), u,v,w € RT. And
let E:RT — RT be a function satisfying E(tx) < tYE(x) for all t (#0), x € RT.
Suppose that a function f: X — Y satisfies

If@e+y+2)+flz—y+flo-2-fle-y—2) - fle+y) - flz+2)

< H([l]], [lyll, lI21D),
1 () = f(=2)|l < E(]|=[])
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for all xz,y,z € X —{0}. Then there ezists a unique quadratic function @ : X — Y
satisfying the equation (1.3) and the inequality

2H ([l]l/2. [l=]l, 111/2) | E(ll=]])

1£(2) = £(0) - Q@) < o o ipa<2
(1161 - 0 - o < ZEQRI /D | PO o)

forallz € X.

As a consequence of the above results, we have the following.

COROLLARY 2.2. Let X and Y be a real normed space and a Banach space,
respectively, and let €,0 > 0, p,q (# 2) be real numbers. Suppose that a function
f: X =Y satisfies

Ifz+y+2)+fle—y)+flz—2) - fle-y—2)—flz+y) - flz+2)]

<e(llll” + [yl + [1=117),
If () = f(=2)|| < oll||®

for all x,y,z € X —{0}. Then there ezists a unique quadratic function @ : X — Y
which satisfies the equation (1.3) and the inequality

I£0) = £0) = QI € LIl + 900 i pa <2
25(24—2”) by 5||:n|| .
(1@ - 70 - @)l < ZZE 2 alp + S g >2)
for all x € X. The function Q is given by
Q(z) = lim_ f(i:m) if p,q <2

(Q@) = lim 4"(f(x/2") = FO)] i pq>2).

n—o0

COROLLARY 2.3. Let X and Y be a real normed space and a Banach space,
respectively, and let €,6 > 0 be real numbers. Suppose that a function f: X — Y
satisfies

Ilfx+y+2)+flx—y)+flx—2)—flr—y—2)— flz+y) - flz+2)] <,
If(z) = f(=2)l| <0

for all xz,y,z € X —{0}. Then there ezists a unique quadratic function @ : X — Y
satisfying the equation (1.3) and the inequality

17(2) - 7(0) - Qo)) < 2272

2

forallz € X.

In the following theorem, the Hyers—Ulam stability of (1.3) is proved under
approximately odd condition.
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THEOREM 2.3. Let ¢ : X® — Rt be a function such that:
N (20, 2y, , 2tz = i (T Y 2 .
Z% 22 ¢(§,§,§),respectwely
i=0 =1

converges for all z,y,z € X, and let § : X — R" be a function satisfying:

> ((3)

i=0

converges for all x € X. Suppose that a function f : X =Y satisfies
Ifle+y+2)+fle—y)+fla—2) - fl@a-y—2) - flz+y) - flz+2)]
< (2,9, 2),
(2.8) If () + f(==z) = 2f(0)|| < 6(=)

for all x,y,z € X. Then there exists a unique additive function A : X — Y which
satisfies the equation (1.3) and the inequality

(29 I£(e) ~ 0) - Al < 3 Y TELED
i=0

(1761 - 10 - Al < 20 (£, 2))

i=1
for all x € X. The function A is given by

(2.10) Az) = lim 120 <A(a:) = lim 2"[f(z/2") — f(O)])

n—oo on n—oo

ProOOF. We now define a function F : X — Y by F(z) = f(z) — f(0) for all =

in X. Replacing « and z by /2 in the first condition of (2.3), we get
211) [|[F(z+y) + F(z/2-y) - F(-y) - F(z/2+y) = F(2)[| < ¢(2/2,y,2/2)
for all z,y € X. If we put /2, —x/2 in (2.3) instead of z, z, respectively, we obtain
(212) [|F(y) + F(z/2—y) + F(z) - F(z —y) = F(z/2 +y)|l < ¢(=/2,y, —z/2)
for all z,y € X. By (2.11) and (2.12), we get the relation
2.13
|(|F(9€)+ y)+F(z—y) - Fly) - F(-y) - 2F(z)|| < ¢(x/2,y,2/2) + d(x/2,y, —2/2)
for all z,y € X. It then follows from the second condition of (2.3) and (2.13) that
the inequality

(@ +y) + F(z - y) - 2F ()|
(214) <|F(z+y)+F(z—y) - F(y) — F(—y) —2F(@)[| + [|F(y) + F (=)l

< o(x/2,y,%/2) + ¢(x/2,y, —x/2) + 6(y) = ®(z,y)
holds for all z,y € X. The relation (2.14) for y = x yields ||F(2z) — 2F(z)|] <
®(z,x), which implies

127 F(2z) — F(z)|| < 27 '®(x, z).
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Applying an induction argument to n, we obtain that

n—1 ; ; fe'e) . .
_ 182 ®(2iz,21z) 1N ®(2x, 20)
(2.15) [27"F(2") - ()l < 5 > ——i S5 ) —
i=0 i=0

(Ir - Foll < 5 Y20 (5. 5) <5 20 (5.5))
=1 i=1

for any positive integer n. We have the corresponding inequality in (2.15) under
the condition expressed by parentheses in the theorem. Thus by the same way as
that of Theorem [5] there exists a unique additive function A : X — Y, defined by

. F(an) 1 n n
Aw = Jim =5 (A0 = fim 27 (e/2)
for all x € X, satisfying (2.9) and (2.10). O

From the main Theorem 2.3, we obtain the following corollary concerning the
stability of the equation (1.3).

COROLLARY 2.4. Let X and Y be a real normed space and a Banach space,
respectively, and let p,q (# 1) be real numbers. Let H : Rt x Rt x Rt — R be
a function such that H(tu,tv,tw) < t*H (u,v,w) for all t(# 0),u,v,w € R*. And
let O : Rt — RT be a function satisfying O(tx) < t70(z) for all t(#£ 0),z € RT.
Suppose that a function f: X — Y satisfies

lfe+y+2)+fle—y)+fla—2)—flea-—y—2)— fle+y) - flz+2)|

< H((lz(ls lyll, 121D,
17(2) + F(~2) ~ 27(0)]| < O]
for all x,y,z € X. Then there exists a unique additive function A : X — Y
satisfying the equation (1.3) and the inequality

2H (ll[l/2, |z, ll=[l/2)  O(l=]]

1£(2) = £(0) = A@)] < L Y ifpa<i
(1566) - 10 - o) < 22, OUsl) )

forallz € X.

As a consequence of the above results, we have the following.

COROLLARY 2.5. Let X and Y be a real normed space and a Banach space,
respectively, and let €,6 > 0, p,q (£ 1) be real numbers. Suppose that a function
f: X =Y satisfies

Ifle+y+2)+ fle—y)+fla—2)—fle—y—2)— fle+y) - fla+2)|

L e(lll1” + [lyl1* + [1211°),
1f(2) + f(=z) = 2f(0)]| < &|=[|*
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for all z,y,z € X. Then there exists a unique additive function A : X — Y
satisfying the equation (1.3) and the inequality

0
@) = £0) = Aol < el + 50 ifpa <1
v 5
(170~ 10 - 4@ < 5252 alp + 375 i7p0>1)
for all x € X. The function A is given by
A(z) = nhﬁrr;()% ifp,g<1

(A(@) = lim 2"[f(@/2") = J(O)] ifp,a>1).

COROLLARY 2.6. Let X and Y be a real normed space and a Banach space,
respectively, and let €,8 > 0 be real numbers. Suppose that the function f: X — Y
satisfies

Ilfx+y+2)+flx—y)+flx—2)—flr—y—2)— flz+y) - flz+2)] <,
I f(z) + f(—2) —=2f(0)[| <0

for all z,y,z € X. Then there exists a unique additive function A : X — Y
satisfying the equation (1.3) and the inequality

1/ (z) = £(0) — A(x)|| < 2e + 6
forallz € X.
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