PUBLICATIONS DE L'INSTITUT MATHEMATIQUE
Nouvelle série, tome 72(86) (2002), 63-80

POISSON RANDOM FIELDS
WITH CONTROL MEASURES. 1

Ljuban Dedié

Communicated by Slobodanka Jankovié

ABSTRACT. A simple universal construction of Poisson random fields with
control measures, indexed by a lattice, is given. Distributions of such fields
are found.

1. Introduction

In this paper we give a simple universal construction of Poisson fields with
control measures indexed by a lattice, dual Poisson fields and Poisson bridges. The
construction is appropriate for any topological lattice with finite positive Borel
measure, but we prefer separable Hausdorfl lattices, in order to avoid topological
pathologies. Such a construction simplifies dealing with Poisson fields, unifies cal-
culations and makes stochastic analysis of such fields more transparent. We follow
the ideas of [4].

Let us start with some basic notions. Let T be a nonempty partially ordered
set, with partial ordering < and the operations of minimum A and maximum V, such
that (T, <, A, V) is a lattice. Let ¢(T") be the family of all subsets of T of the form
[s,t], (-,t] and [s,-), where [s,t] = {s' € T; s < &' < t}, (,t]={s € T; ¢ <t}
and [s,-) ={s"€T; s <&} for s,t € T. Let T be a topology on T such that the
family of its closed sets T¢ = {T'\ A : A € T} is generated by ¢(7T). It is clear that
such a topology exists, is unique, and we call it the interval topology on 7. Using
this topology we introduce the Borel o-algebra B(T'). If 1 is a finite Borel measure
on T we introduce notations

A(t) = (1)) and ju(t) = p(t,-)), teT.

DEFINITION 1. Let (T, <, A, V) be a lattice. If T is a separable Hausdorfl space,
with respect to the interval topology, then T is called measurable lattice. Tf T is a
measurable lattice and A a finite positive Borel measure on T, then (7', A) is called
measure lattice.
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DEFINITION 2. Let (T, A) be a measure lattice, (Q, F, P) a probability space
and X = {X, :t € T} a family of random variables X, : @ — R.
1) X is called Poisson random field with control measure A if
a) X, is a Poisson random variable in R, t € T, with EX; = A(t) (i.e., the
distribution p of X; in R is given by

>

>/<

o A®)

=0
where d; is the Dirac measure at k € N, and the series converges in the norm
topology on the Banach space of all finite Borel measures on R)
b) EX; X, = At As)+At)A(s), s,t €T,
c) Lmear combinations of elements of X, with real coeflicients, are general
Poisson random variables in R.. (See Definition 6).
2) X is called centred Poisson random field with control measure X if

X+A={X;+\(t):teT}
is a Poisson random field with control measure A.
3) X is called dual Poisson random field with control measure A if
a) X; is a Poisson random variable in R, t € T, with EX; = A(¢),
b) EX: X, = AtV s) + ADA(s), s,t €T,
c) Lmear combinations of elements of X, with real coefficients, are general

Poisson random variables in R.
4) X is called dual centred Poisson random field with control measure A if

X+A={X; +At):teT}
is a dual Poisson random field with control measure A.
5) X is called Poisson bridge with control measure X if
a) X; is a Poisson random variable in R, ¢ € T, with EX; = A(#)A(¢),
b) EX. X, = At A $)A(EV s) + NOMON$)A(s), 5.t € T,
c) Lmear combinations of elements of X, with real coeflicients, are general

Poisson random variables in R.
6) X is called centred Poisson bridge with control measure \ if

X+M={X, +\OA@) :teT}

is a Poisson bridge with control measure A.

2. Measure lattices

Let (T, A), (T1, A1) and (T2, A2) be measure lattices. We will need some stan-
dard operations involving measure lattices. Let us introduce them here.

1) Let T be the dual lattice of T i.e., the same set and the lattice structure
is defined by replacing <, A, V by >, V, A respectively. Then (T, \) is a measure
lattice called the dual measure lattice of (T, ).

2) The lattice structure on Ty x T is defined by coordinates: (s1,s2) < (¢1,2)
iff S1 < tl and 59 < tz, (51,52) A (t17t2) = (51 A 527t1 A t2) and (51,52) vV (t17t2) =
(s1V sa,t1 Vo), for all s1,¢; € T1 and sg9,ts € To. Since elements of (T} x Ty) are
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products of elements of 4(T7) and i(T3), it is easily seen that the interval topology on
T1 x T is the product of the interval topologies on 17 and 7. The same is valid for
the Borel g-algebrae. Therefore, the product (T1, A1) X (To, A2) = (T1 X T, A1 X Ag)
is a measure lattice.

3) Define Cartesian exponent by (T, A\)™ = (T, \"), n € N where the opera-
tions on 7™ are defined by coordinates, as in 2). Then (7, A)™ is a measure lattice
and

AV (t1, o tn) = A1) - Mtn), and (\Y(tr, .. tn) = A(t1) -+ AMtn)

for t1,...,t, € T, n € N. We also define (T, \)? = (T°,\"), where T° = {0} is
a single element set and A° = &, is the Dirac measure at 0. The measure lattice
({0}, do) is called trivial measure lattice.

4) We define disjoint union of measure lattices

(T, A ) U (T2, A0) = (TA U T, Ap + Ag)

in the following way: the set Ty U T% is the disjoint union of T3 and 7. The
operations on 77 and T, are the old ones and

t1 Kto, L1 Nta =11, 11 Vs =to, tleTl: to € Th.

Therefore, any open set in Ty U T5 is a disjoint union of open sets in Ty and Tp,
and such a representation is unique. The same is valid for Borel sets. Extend
A1 and Ao on Ty UTs by A (T2) = 0, A2(T1) = 0, and now define A; + Ay by
(A +X2)(B1UBg) = A1 (B1) + A2(B2). Analogously define disjoint union of a finite
number of measure lattices, and also countable disjoint union of measure lattices.
It is easily seen that these unions are measure lattices, provided that, in the case of
countable union, the measure 3 \; is finite, where the sum converges in the norm
topology i.e., > Ay (By) is finite.

DEFINITION 3. Let (T, ) be a measure lattice and 7f = | | 7™. Further, let
Af be a measure on TF defined by n=0

3 = 30 2 exp(-A(T) = exp(A — A(T)io).

n>0

where the sum converges in the norm topology on the Banach space of all finite
Borel measures on T%. Then the measure lattice

() = (5 = L (17 55 exp(oa) )

n=0
is called quantum lattice of the measure lattice (7', A).

From the definition follows that the quantum lattice (7', \) is a measure lattice
and a probability space and that A™ is concentrated on 7" for every n > 0. The
point 0 € T (where 70 = {0}) is called vertex of 7* and the indicator function
of the vertex is called vacuum. The isomorphism between lattices is defined in a
natural way.
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EXAMPLE 1. 1) N, Ng = NU{0}, Z and R are measurable lattices with respect
to the usual operations. Every interval or segment in R is a measurable sublattice
of R.

2) N, N7, Z™ and R™, n € N, are measurable lattices.

3) Let

n
A =expla(d —dy)) =e @ Z %571
nz0
be the Poisson measure in R with parameter > 0. Then the support of X is Ny,
and the measure lattice (Np, A) is isomorphic to the quantum lattice of ({1}, ady).
The lattice (Ng, A) is called trivial quantum lattice.

4) Let X be a compact metric space and C'(X) the Banach space of continuous
real functions on X. With the natural operations C{X) becomes a lattice, the
interval topology on C(X) becomes the weak topology and, therefore, C{X) with
the weak topology, is a measurable lattice.

5) Real L,-spaces, under natural assumptions, become measurable lattices.

DEFINITION 4. Let (7, A) be a finite measure space and a € L1(A\) = L1 (T, A).
The element a is called locally analytic if the function o — [exp(aa)dA, a € R is
analytic in a neighborhood of 0. It is called analytic if this function is analytic in
R. The set of all locally analytic elements a € L1 (A\) we denote by L'(A\) = L'(T, ),
while the set of all analytic elements a € Li(A) we denote by L”(X) = L"(T, A).

It is easily seen that L'(A) and L (A} are vector spaces and
Loo(A) C L"(N) C L'(X) C L,(X), p€[l,00)
and the inclusions are strong, in general, which can be seen by looking at Gaussian
variables and their exponents.

DEFINITION 5. Let p be a finite positive Borel measure on R. Then p is called
locally analytic if the identity function belongs to L'(1s). The measure p is called
analytic if the identity function belongs to L"(p).

DEFINITION 6. Let i be a finite positive Borel measure on R and

i
v =exp(u — p(R)dp) = e R Y l;—,
n20
where the sum converges in the norm topology on Banach space of all finite Borel
measures on R. Then v is called general Poisson measure on R. If the integral
m = [ tdu(t) exists, then the convolution measure v *§_,, is called centred general
Poisson measure.

PROPOSITION 1. Let u and v be from Definition 6. Then v is (locally) analytic
if and only if p is (locally) analytic. Moreover,

/t”du(t) ~y, (/tdu(t),...,/t"du(t)), n € N,

if the left-hand side (or equivalently, the right-hand side) integrals exist, where Y,
is the classical Bell polynomial of n variables.
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ProoF. Of course, this proposition is simple, but we will provide a proof in
order to introduce the Bell polynomials, the Stirling polynomials and the Bell
numbers. These polynomials and numbers are important in our theory and will be
used often.

We define the Bell polynomials Y,,, n € Ng as follows: Y5 = 1 and Y, is a
polynomial of n variables defined by the generating function

a™ a™
ZYn(yh...,yn)H :eXpZynH: a€R, y, € R.
n>0 nz1

Specially, we have

YVily) = y1, Yo(yi,y2) =y + o, Ya(y1,v2,93) = 45 + 3192 + 3

and
mn

n
Yn+1(y17 s ,?Jn—f—l) = ];0 <k>yk+1Yn—k(91, s 7yn—/~2): n 2 0.
The polynomials P,(y) = Y, (y,...,y), n € Ng, are called the Stirling polynomials.
For them we have the generating function

n

81
> Paly) 7 =exply(e® — 1), a €R. y €R.
n>0 ’

The numbers B,, = P,(1), n € Ng, are called the Bell numbers.
Now, for our measures p and v, we have

/exp(at) dv(t) = exp/(e”‘t — 1) du(t)

This identity proves the first assertion. If the integrals y, = [t du(t), n > 0,
exist, then

a’]’L
exp [ (e = Ddu(t) = exp Y-
n>1
which becomes the generating function of the Bell polynomials. Developing both
sides in series up to n, in the variable ¢, and equating the coeflicients at a™, n > 0,

we have
/t”du(t) ~y, (/tdu(tL 3 .7/1:” du(t)) . neNo.

Specially, we see that [tdu(t) = [tdv(t), if these integrals exist, of course. O

DEFINITION 7. Let X be a real Banach space and y a finite positive Borel
measure on X. Then p is called (locally) analytic if @ o f=1 is (locally) analytic,
for every continuous linear functional f € X*. Further, the measure

v =exp(u — p(X)d) = e #X >~ %
n>0

where the series converges in the norm topology on the Banach space of all finite
Borel measures on X, is called general Poisson measure on X. If the Gelfand
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integral m = [axdup(z) exists, then the convolution measure v * 6_,, is called
centred general Poisson measure on X.

COROLLARY 1. Let X be a real Banach space and v = exp{u — u(X)do) a
general Poisson measure on X. Then v is (locally) analytic if and only if pu is
(locally) analytic and

/exp(af(x)) dv(z) = exp/[exp(af(x)) —1]dp(z), a€R, fe X"
Also

/f Y du(z (/f ) dpl /f dua;)),neNofeX"

if the left-hand side (or equivalently, the right-hand side) integrals exist, where Y,
is the classical Bell polynomial of n variables.

3. Chaos development

Let (T, \) be a measure lattice and (T, A\)F its quantum lattice. If f € Ly (7%, \P)
then f can be written as f = >_ o, fn where fy(w) = f(w) for w € T™ and
folw) = 0 for w ¢ T™ Therefore, the series f = Zn>o fn converges simply

on T%, namely it reduces to a single term at every point w € T%. Further, for
f,9 € Li(T% \%) we have

|f|::§E:|fnL fg:: zzjfhgn:

n>0 n>0

_ | n X
Ef—/fdA > /fndA exp(=A(T)),

||f||1=E1f|=/f|dAt > /mw exp(=A(T))

n>0

(Fl9) =Bfg =Y o [ Fugndx" -exp(-X(T)
ns0 "
for f, g € Lo(T%, AF). The Hilbert space Ly(T", \) is the orthogonal sum of Hibert
spaces Lg(% exp(—A(T))), n > 0.

Let K, () be the closed subspace of La(2; — exp(—\(T))) consisting of all sym-
metric functions. Then K, (A) is called n-th protochaos of Lo (T, AB). Let us denote
by L(A) the orthogonal sum of all protochaoses. The space Lo (T, A?) is not suit-
able for our purposes and we do not use it. Its role is played by the smaller space
Ls(AF). Therefore, we have

H=2 KaW)

n>0

If f € Ly(A\Y) and f = Zn>o fns then f, € K,(\), n > 0. Specially, we have
Ko(A) = R - 7(0), where 7(0) = x{o; is the vacuum i.e., the indicator function of
the vertex.
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Let @, L2(A) be the tensor k-th power of La(A) and (O, L2(A) the symmet-
ric tensor k-th power of Ls(A). Then ), Lo(A) is isomorphic to Lo(A™) and
Oy, L2(A) is isomorphic to the closed subspace of all symmetric functions. The
space (O, L2()) is generated by all symmetric powers a®*, a € (O, L2()\) and we
have

(@®F[b¥%) = (alb)*, a,b € Ly(A)
where a®* defines symmetric function on 7% by a®(t1,...,tx) = a(t1)---a(ty).
Because of this property we identify (), L2()) with the closed subspace of all
symmetric functions on T%. Now we have a®* € K (\) and
(a[b)*

Okok _
Ea™"bv" = i

exp(—=A(T)), k>0
which means that K () is, up to a coefficient, isometrically isomorphic to (), La(A).

PROPOSITION 2. Let (T, A) be a measure lattice and a € L1(\). Define nw{a) =
ST a®* € Li(\Y). Then we have

k>0
1) |n(a)] = n(la|), a € L1(A) and w(1) = 1.
2) w(a)m(b) = w(ab), a,b € La(A).
3) Ex(a) = exp((a|l) — MT)), a € L1(\).
4) En(a)m(b) = exp((alb) — A1), a,b € La(N).
5) Lao(A%) is generated by {m(a); a € Ly(\)}.

Proor. Elementary calculations. |

REMARK 1. The variable 7(a) can be represented as a Radon-Nikodym deriv-
ative of exponential measures. In fact, if we denote by aA the measure on T having
density a with respect to A, then for every bounded Borel function f: 7f = R we
have

/ fdexp(ad) = — X / fr - a®F dNF = N f-7m(a)dexp A
E>0
which means that 7(a) is the Radon-Nikodym derivative of exp(a)) with respect
to exp A.

PROPOSITION 3. Let (T, A} be a measure lattice and a € L1(X\). Define random

variable J(a) : T — R by

J@)(0) = ~(al1) = - [ adx
J(a)(t1,... tp)=alti) +---+alty)—(a|ll), k=1, t1,...,tp, €T.
Then we have
1) J(a) € Li(\") and EJ(a) = 0.
2) EJ(a)J(b) = (alb), a,b € La(}).
3) Ifa € Li(\) and expa € Li1(N), then w(expa) = exp(J(a) + (a|l)).
4) J{(a) + (a|l) is a general Poisson variable in R, with distribution

exp(Ag — MT)8g) = e~ NT) Z

n>0

-1

where A\, = Aoa

(Aa)"
n! 7
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5) J{a) is (locally) analytic iff a is (locally) analytic.
6) J(a) is a centred general Poisson variable in R.
7) a — J(a) is a linear isometry from La(\) to La(A).

ProoOF. We have

E(J(a) + (a|ll)) = e~ T)Zn‘/ 1)) dA™

n=0

,Amzn‘/ / (1) + -+ a(ta)] dA(tr) - - dA(t)

_ o= ND) Z:l a(a|1)A(T)”—1 = (al1)

which proves 1). Further

E(J(a) + (al1))(J(b) + (b]1)
*“T’Zn! / / () + -+ alt)]b(t) -+ b(tn)] dA(t) -+ dA(E)

= ST (@AD" 0 — 1)@l ) DAT) )

n21
= (a[b) + (al1)(b]1)
which proves 2), and
mlexpa)(ti,... tn) = ()2™(t1,. .., tn) = *(t1) - e*(t,)
=expla(ty) + -+ a(ty)] = exp(J(a) + (a|]1))(t1,. .., tn)
which proves 3). Further

E expliaJ(a) + ia(a]l)] = e D) Z p {/ expliaa(t)] dA(t)

n=1

n

— exp / (€190 — 1)d)
~ exp /R (€% — 1)dA, (z)

which proves 4). Assertions 5) and 6) follow from 4) and Proposition 1. Assertion
7) follows from 2) and the definition of .J. O

PROPOSITION 4. 1) J(a) and J(b) are independent iff ab =10, X a.e.
2) If a is locally analytic i.e., a € L'(X), then

Eexpla(a)] = exp/(e‘m —1—aa)dA

for o € R and |a| small enough.
3) Ifa e L'(N\), then

E(J(a) + (al1))" = Yn((all),. .., (a"[1)), n > 0.
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Also
EJ(a)" = Y, (0, (a®[1),...,(a"™|1))

where Y, is the Bell polynomial.

PRrROOF. We have ab =0, A a.e. iff exp(ia + ib) = exp(ia) + exp(ib) — 1, X a.e.
Hence

EexpliJ(a) +1J(b)] = Eexpl[iJ(a + b)]

= exp /[exp(ia +ib) — 1 —ia —ib] dA

:exp[/(em - 1—ia)d)\+/(eib—1—ib)d/\}
= EexpliJ(a)|E exp[iJ(b)]

since .J is a linear isometry.
Assertion 2) follows from the proposition above, while 3) follows from 2) by
Proposition 1 O

COROLLARY 2. For a Borel set B € B(T) define random variable A(B) by
A(B) = J(xB) where xg 1s the indicator function of B. Then
1) EA(B) = 0.
2) EA(Bl) (Bg) = /\(Bl ﬂBg), BLBQ S B(T)
3) A(B1) and A(Bs) are independent iff A(B1 N By) = 0.
4) B = A(B) is a random measure in Ly(\).
5) J(a) = [adA, a € Ly(N).

PROOF. Assertions 1), 2) and 3) follow from the proposition above. Let us
prove 4). A is additive since .J is linear. Let B = UB,, be a disjoint union of Borel
sets. Then

A(B)=A(By) + -+ A(By) +A< U Bk>

)

H k>n

and we have

AB)-SaB)| =
k=1

:A<U3k>:ZA(Bk)—>O,n—>oo.

k>n k>n
Assertion 5) follows from 4) and the definition of A. O

COROLLARY 3. Random variable A(B) is a centred Poisson variable in R. with
parameter A(B), while A(B) + A(B) is a Poisson variable in R with parameter
A(B), and we call it the number of jumps inside B.

We are now ready to state our main existence theorem.
THEOREM 1. Let (T, A) be a measure lattice and

(L t]={seT:s<t}, [t,)={seT:s>t},

€t = X(1]: & =X[t,): t€T.
Then we have
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1) Let Xy = J(e)) + A(t), t €T, and X = {X,:t € T}. Then X is a Poisson
random field with control measure X defined on the probability space (T%,\F).

2) LetYi=J(e), t €T, andY ={Y; : t € T}. Then'V is a centred Poisson
random field with control measure X defined on the probability space (T%,\F).

3) Let Xy = JE)+At), t € T, and X = {X; : t € T}. Then X is a
dual Poisson random field with control measure A defined on the probability space
(T8, \b).

4y Let Yy = J(@E), t €T, andY ={Y; : t € T}. ThenY is a dual cen-
tred Poisson random field with control measure A defined on the probability space
(T8, \b).

5) Let Cy = J(e, @ F) + A0A@), t €T, and C = {Cy : t € T}. Then C is a
Poisson bridge with control measure \ defined on the probability space ((T?)8, (A?)8).

6) Let By = J(e: @), t € T, and B ={B; : t € T}. Then B is a centred
Poisson bridge with control measure \ defined on the probability space ((T?)8, (A?)8).

Proor. Follows from Propositions 3 and 4 and Corollaries 2 and 3. |

PROPOSITION 5. Let (T, A) be a measure lattice and a € L1(X). Define Poisson
exponential £(a) by £(a) = 7 (1 + a) exp(—(a|1}). Then we have
1) £(a) € L1(A%) and E&(a) =
2) £(a)€(b) = {(a + b+ ab)exp(alb), a,b € La(N).
3) m(a) = {(a — 1) exp(a — 1[1).
4) E¢(a)¢(b) = exp(alb), a,b € La(N).
5) Ly(AY) is generated by {5( Y:a € La(M)}.

Proor. Follows from Proposition 2. |

REMARK 2. The Poisson exponential can be represented as a Radon—Nikodym
derivative. In fact, by remark 1 we see that £(a) is the Radon-Nikodym derivative
of the measure ((1 4 a)\)f with respect to Al

THEOREM 2. Let (T, \) be a measure lattice. Then there exists a unique unitary
operator U on La(\Y) such that Ur(a) = &(a) exp(—M(T)/2), a € La()).

ProoF. Define U by the formula above on the set {w(a) : @ € La(\)}. Now,
extend U by linearity on linear combinations. Because both of the sets {m(a) : a €
Ly(A)} and {&(a) : a € Ly(\)} generate Lo(\f) and

(Un(a)|Um (b)) = (x(a)|x(b), a,b € La(X)

we conclude that U is an isometry defined on a dense set with dense range. There-
fore, I/ can be extended uniquely on Ly(A\!) as a unitary operator. We denote the
extension again by . O

DEFINITION 8. The unitary operator U from the theorem above, is called chaos
development isometry. If a € La()\) and n > 0 define J,(a) = nlUa®" exp(MT)/2).
Evidently, we have

=> %Jn(a), a € Ly(N)

n>0
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and similarly

f(aa)zZ%Jn(a), a€ Ly()), acR.

Specially Jy(a) =1 and Ji(a) = J(a), a € La(A) and £(0) =
Let H,()\) be the closed subspace of Ly(\f) generated by {.J,(a) : a € Ly(\)}.
Then H,()) is called n-th chaos in Ly (A%).

COROLLARY 4. Ly(A\Y) is an orthogonal sum of the chaoses i.e., Lo(\B) =
27@0 H, (X). Further, the chaos development isometry maps the n-th protochaos
onto the n-th chaos i.e., UK,(X) = H,(A), n > 0.

PROPOSITION 6. Let a,b € Loo(A) and oo € R. Then
1) For |a| small enough we have

¢(aa) = exp [/ log(1 + aa)d(A + X) — a(a|1}].
2) It holds
Jn(a) = Yo (J(a), =J(a®) = (@®[1),..., (=1)""H(n = DI(J(a") + (a"]1)))
where Y, is the Bell polynomial and n > 1. Specially

Ji(a) = J(a), Jola) = J(a)? — J(a®) — (ala).

3) Jn(a) is a polynomial in variables J(a), J(a?),. .., J(a™).

4) &(a) is a function of {J(a™) :n € N}.

5) §(a) and £(b) are independent iff ab =0, X a.e.

6) If 1+ a >0 and o > 0 then E{(a)* = exp [[(1 + a)* — 1 — aa] dX.

Proo°r. To prove 1) let & € R be such that 1 + aa > 0, A a.e. Then by
Proposition 3 we have

§(aa) = 7(1 + aa) exp(—a(all))
= 7(explog(l + aa)) exp(—a(all))
= exp[J(log(1 + aa)) + (log(1 + aa)|l) — a(all)]

= exp {/ log(1 + aa) d(A + X) — af(a|l)
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To prove 2) we use 1) for a € R such that |a - ||aljee < 1. We have

£(aa) = exp {Z %w / ahd(A + ) — a(a|1)}

= exp [aJ(a) + Z % (=) n - 1)!/a”d(A + /\)}
= Z C:T:LYn(J(a)7 —/a2d(A +A), .., (D) - 1)!/a"d(A +A))
= Z %YH(J(CL), —J(@®) — (@®|1),....,(=1)" (n — DI(J(a™) + (a™[1)))

and the formula follows. Assertions 3) and 4) follow immediately from 2), while 5)
follows from 4) and Proposition 4. The last assertion follows from 1) and Proposi-
tion 4. O

COROLLARY 5. Leta € R, a > —1 and B € B(T). Then
Elaxs) = (1+ )2 exp(—aA(B))

and

Jalxs) = (ni!k)!(—l)”—k/\(B)n—k (A(B) /_: /\(B))

k=0
Further, £(xB,) and &(xB,) are independent iff A(B1 N By) = 0.

Proor. The first relation follows from the proposition above. Develop both
sides of the first relation in Taylor series and equate coeflicients to get the second
relation. |

4. Distributions of Poisson fields

TLEMMA 1. Let (T, \) be a measure lattice and Vy the operator of indefinite
integral on La(A) i.e.,

Vaa(t) = (ale) :/ a(s)dN(s), t€ T, a € Lo(\)
("t]
where €, s the indicator function of (-,t]. Then we have
1) Vi is a Hilbert-Schmidt operator and Via(t) = (alg:), where & is the indi-
cator function of [t,-).
2) If Dy = W\V then Dy is a positive nuclear operator and

Dya(t) = /5\(15 A s)a(s) dA(s).
3)IfDy = ViV then D, is a positive nuclear operator and
Dya(t) = /X(t V s)a(s) dA(s).

PRrROOF. Follows easily from definitions. O
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LEMMA 2. Let (T, X) be a measure lattice. There exist orthonormal sequences
(en) and (€,) in La(A) and a sequence () in R such that:

1) We have ay Z aa = --- 20 and Zn>1 ap =trDy =tr Dy < 00.

2) For Vy and V| we have the representations Vi = Zn>1 ay, - €n @ €, and
Vi = 27@1 Qo - €n ® e, where a ® b is a rank one operator on Lo(A) defined by
(a @ b)x = (z|b)a, a,b,x € La(A) and the series above converge uniformly i.e., in
the norm topology.

3) For Dy and Dy we have the representations Dy = Zn>1 Qp - e, R e, and
D, = Zn>1 Qn - €, Q €, and the series converge uniformly.

ProOF. The operator V), is a Hilbert-Schmidt operator. By the Schmidt de-
composition theorem (see [1]) there exist orthonormal sequences (e, ) and (€,) in
Lo{)) and a sequence (ay,) in R such that 1), 2) hold. Relation 3) follows from 1)
and 2). O

COROLLARY 6. We have

At A s) Zan en(t)en(s), ) A¢) Zan “en(t)?,
nzl nzl
2) t Vs) Z Q- en(t)en(s), 5) &= Z Vau, - eq(t)e,
nzl nzl
3) A = Z oy - en(t)?, 6) 5 = Z Vo, e, (t)en.
nz1 nz1

where the series above converge A a.e. and in La(A).

ProoF. Follows from the lemmata above by the standard argument. See [1].

COROLLARY 7. Let (T, \) be a measure lattice and Xy = J(ey), X¢ = J(5),
t €T. Then we have

X, = Z @ eﬂ(t)](én): and yt = Z @'En(t)J(en)

nzl nzl

where the series converge a.e. and in Lo(N). Further, (J(en)) and (J(€,)) are
sequences of uncorrelated centred general Poisson variables in R.

ProOF. Follows from the corollary above, Proposition 3 and Theorem 1. [

COROLLARY 8. Let (T, \) be a measure lattice and By = J(e; @ &), t € T.
Then B is a centred Poisson bridge on (T2, A\?)f and

=33 Vanvanes(ten(t)J (e @ ex)

Exlnzl

where the series converges a.e. and in Ly((A\2)1). Further, (J(€,@ey)) is a sequence
of uncorrelated centred general Poisson variables in R.

ProOF. Follows from Theorem 1 and Corollary 6. O
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THEOREM 3. Let (T, A) be a measure lattice and Xy = J(&t), X¢ = J(&),
t €T. Then we have

1) /Xta(t) dA(t) = J(Via), a € La(\); 3) /de)\(t) = ZanJ(én)2;

2) /Yta(t) dA(t) = J(Vha), a € La(N); 4) /de)\(t) = ZanJ(en)2.

PROOF. Because of Via = [ia(t) dA(¢) we have

J(Vya) :/J(st)a(t) dA(t) = /Xta(t) dXA(t)
which proves the first relation. The second is similar. By Corollary 7 we have

X2 =S5 VaryamesBen(t) (@) T(@)
E>1n>l
and 3) follows by integration using the orthonormality of (e,). The proof of the
last formula is similar. O

REMARK 3. The theorem above gives the classical Karhunen—Loéve expansion
for centred Poisson field and dual centred Poisson field with control measure.

ExaMPLE 2. To illustrate the theory above let us apply it to the case of the
classical Poisson process. Let T'= [0,1] and let A be the Lebesgue measure on T.
It is easy to see that:

DA =t A@)=1—t,teT.

2) The operator V) is the classical operator of indefinite integral.

3) The sequence («;,) is given by

1

1
. n>1, and —
(n—1/2)22 "7 M D o=

n=1

Qyp =

4) The sequences (e,,) and (€,) are given by
en(t) = V2sin(n — 1/2)wt, &,(t) = V2cos(n — 1/2)xt.

5) Centred Poisson random field X; with control measure A becomes the clas-
sical centred Poisson process and

X =Y vam -en(t)J(En).
nzl

6) Centred dual Poisson random field X; with control measure X can be called
centred dual Poisson process. It is not so popular as X;. For it we have

X =S Van-eat)(en).
nzl

7) Poisson random field X; + ¢ with control measure A\ becomes the classical
Poisson process on T.

8) Dual Poisson random field X; + 1 — # with control measure A can be called
dual Poisson process on T.
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9) Centred Poisson bridge B; with control measure A can be regarded as a
Poisson analogue of the classical Brownian bridge. For it we have

By =YY ar/anen(t)en(t)J (@ @ en)

Ezln1

while Cy = By + ¢(1 — t) is the Poisson bridge.

FExAMPLE 3. Our theory simplifies maximally in the extreme situation when
T is a point e.g. T = {1} and A = 36;, # > 0. Then TF can be replaced by Ng
and Af by exp(f(d; — dp)) i.e., the Poisson measure with parameter 3. In this case
L2(A\) = R and we have:

Di=A=8e=5=1

2) m(a)(n) = a”, £(a)(n) = (1 +a)"e *F, J(a)(n) =a(n - ), a € R, n >0

3) Va=Vy =8, Dyx=Dx=p5"

4) The sequence (a,) reduces to a single term a; = 2, while (e,) and (€,)
reduces to e; =e; = 1//3.

5) Xi(n) = Xi(n) = J(1)(n) =n— B, n>0.

6) (X1 + X)(n) = (X1 +\)(n) =n,n > 0.

If T is a finite lattice then Poisson random field X consists of a finite number
of Poisson variables. Such a field is called finite Poisson field or Poisson vector.
The theory of Poisson vectors is far from trivial. It is meaningful to investigate
Poisson vectors in detail, separately from the general theory. Tn this case La()\) is
finite dimensional and the general theory reduces substantially.

DEFINITION 9. Let (T, \) be a measure lattice and
K(W)(t) = JEe) (W) + A1), teT, welt.

Then K(w) € Ly()\) is called a trajectory of the Poisson field X; = J(g;) + A(#).
The measure 75, = Af o K~ on La()\), is called distribution of the Poisson field X.

Tn a similar way we define the distribution 7y = Xf o K" of the dual Poisson field
X; = J(&) + A(t) and the distributions 7 and 7, of the centred fields.
Under distribution we always mean a Borel probability measure.

THEOREM 4. The measure Ty is a general Poisson measure on Lo(N). It is
analytic and

7\ = exp(Ag, — A(T)d) = e M) Z ()\R—l)

n!
n>0
for Ag, = Ao Kfl, K, = K|T. Further, we have

/ exp(alz) dry(z) = exp/ [exp(Via) — 1] dA, a € La(A)
La(X) T

/ exp(alz) dAg, (x) = / exp(Via)dX, a € La2(A).
L2{(X) T
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Proor. If t; € T, a € Lo(A) and © = K(#;) then

(@) = [ aayar = [ a7 +30] A
- / a(t) {et(tl) - / 5t(t1)d)\(t1)+;\(t)} AA(E) = Vialt)

and we have

exp(a|z) dAg, (%) :/expV;a(tl)d)\(tl)
Lo(X) T

which proves the last formula. Since Via € Loo(A) and ||[Vial|e < VAT)]a]| we
see that the measure Ag, is analytic.
Now for a € Ly(A) and 2 = K(w) we have

(alz) = / a(1)w(t) dA(E) = / a(t) [J()(@) + A®)] dA(D)
= J(VYa)(w) + (Vyall).
By Proposition 4 we get

/ exp(a|z) dry(z) = / exp[J (Via)(w) + (Vyial1)] dA\¥(w)
La(XN) Tt

= Eexp[J(Vya) + (Vya|l)] = exp/T[exp(V,\*a) —1]dx

which proves the second formula. The first formula is equivalent to the second
formula.
The measure 7y is analytic by Corollary 1 since A, is analytic. O

THEOREM 5. The measure Ty is a general Poisson measure on La(A). It is
analytic and

_ (Az)"
7a = exp(Agg, = MT)d) = e >~ 27}
n>0
for AR, = Ao K17, Ky = K[T. Further, we have

/ exp(alx) d7r(z) = exp/ [exp(Vya) — 1]dA, a € Lo(A)
La(X\) T

/ exp(alr) dig (z) = / exp(Vaa)dX, a € La(N).
La2(N) T

ProoF. Analogous to the proof of the theorem above. O

COROLLARY 9. The moments of Tx and T) are given by

| @l dn(@) = a5 aD..... (50)"1D)
L2(})

/ (ale)"d7r(x) = Yo((VaalD), ..., (Vaa)"]1))
La(X)

for every n > 0 and a € Lo(X), where Y, is the Bell polynomial.
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ProOF. Follows from Theorem 4, Theorem 5 and Corollary 1. O

COROLLARY 10. 1) The mean values of Ty and T», are X and X respectively i.e.,

/ zdry(z) =\ and / zdrx(z) = A
La(\) La(X)

2) The correlation operator of Ta is Dy + Ao A e,
[ (@) (the) dra (o) = (Dralt) + @D a6 € L)
Lz()

or, equivalently

/ x®xd7,\(:v):D>\+;\®;\.
L2(})
3) The correlation operator of Ty is Dy + Ao Ae.,
| (@)l amae) = Dralt) + @O a,b€ L)
La(X)

or, equivalently

/ z@xdiy(z) =Dr+A@ A
La(X)

ProOF. Follows from the corollary above. d

COROLLARY 11. We have mx = Tx ¥ 0_5 and Ty = T *0_5 where my is
the distribution of centred Poisson field and Ty is the distribution of centred dual
Poisson field with control measure .

COROLLARY 12. The moments of wy and Ty are given by

/ (al)"dmr(z) = Yo (0, (Vi a)?|1), ... (Vi a)™|1))
La(X)

/ (al2)"dTx(z) = Yo (0, (Vaa) (L), (Vaa)"|1))
Lo(X)

for everyn > 1 and a € La(X), where Y, is the Bell polynomial.
ProoF. Follows from Corollary 11 and Proposition 4. O

COROLLARY 13. 1) The mean values of wx and Ty are 0 i.e.,

/ zdmy(z) = / xdma(z) =0.
La2(X) La(X)

2) The correlation operator of wy is Dy i.e.,
/ (a|z)(b|x) dmy(z) = (Dyalb) a,b € La(A)
L2(N)

or, equivalently
/ z@xdry(z) = D,y.
La2(N)
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3) The correlation operator of Ty is Dy i.e.,
/ (a]x)(b|lx) dFa(z) = (Daalb) a,b € La(N)
La(N)

or, equivalently

/ r @z drx(z) = D).
La(X)

Proor. Follows from the corollary above. O

REMARK 4. Let T'=[0, 1] and let A be the Lebesgue measure on T. Then the
classical centred Poisson process X has the distribution 7. The measure 7 is a
Poisson analogue of the classical Wiener measure w on L2(A). Both measures, m)
and w have zero mean and the same correlation operator D.
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