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GENERAL TAUBERIAN THEOREM IN 5/,

B. Stankovié

ABSTRACT. We show how an idca developed by J. Karamata in [1] and [2] can
be used to prove a Tauberian type theorem for generalized functions.

Introduction

Without doubt the mathematical word sets a high value on the results of J. Ka-
ramata, especially on thosc related to the summability and to the inverse processes
of summability. One can find the most general idea of these problems, first of all
in the paper [2] and in the book [1]. We cite a theorem which represents a part of
it, and which we use in this paper.

THEOREM A. [2] If the kernel (z,t) of the U-summability

¥(z) = / b )s(0) dt, (z - oo) ()
4]

satisfies

P(z,t) = 05 /OOC Pz, 0)dt =1 for all 2 >0 and t > 0; (IT)

/ P(z,t)dt > 0, = — oc for every m > 0,
0

and if L is a function monotone increasing to infinity, which for a suitable choice
of y satisfies

/OOC Pz, t)|log(L(y)/L(t))| dt = O(1), .y — oo, (I11)

then from the W-summability of s(t) follows the convergence of s(t) to the same
limit provided that

/ L(t) ds(t) = o(L(2)), = — o (1v)

or °
s(t') — s(t) = 0 for every t <t <T\(t), t— oo, (V)
where Th\(¢t) = V{AL(¢)}, V is the inverse function of L and X is a number, A > 0.
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This form of Theorem A calls for some explanations. The function s is supposed
to be of bounded variation on (0,b) for every b > 0. The ¥-summability of s,
denoted by (I), means that there exists a number « such that the integral in (I)
exists for every = > 0 and that

oC
lim [ ¥(z,t)s(t)dt = a.
Tr—roC
0
The phrase: “which for a suitable choice of y...”
with z in a suitable combination.

This Theorem A gives in fact conditions to find a function L so that (IV) or (V)
become a convergence condition of the ¥-summability. Of course, the function L is
not defined uniquely by (IIT). One has to find such an I to have the best condition
for s(t) in the given case.

In the meantime, to this day, a theory of integral transforms of generalized
functions has been developed and in the last twenty years Tauberian type theorems
have been proved (cf. [3-7]). At any rate V.S. Vladimirov and his pupils Yu.N.
Drozhinov and B.1. Zavialov had a pioneering role in this field of mathematics.

Tauberian type theorems in fact give inverse processes for summability defined
by the integral transforms.

In this paper we shall use only the idea exploited in Theorem A to prove a
general Taubcrian type theorem for integral transforms of generalized functions of
the form

means only that y — oc together

z— V() = (s(t),9(=,1)), s €Sy,
adjusting the assumptions and the method of the proof to the global character of
distributions.

Certainly, this result can be improved. It could be extended to other spaces
of generalized functions or treated in many dimensional case, as well. Our aim is
only to show how the idea of J. Karamata has a general character and how it can
be used to obtain results in the theory of generalized functions.

Notation and definitions

We denote by S([0,00)) = & the basic space of rapidly diminishing functions.
f eS8y if feC™(]0,00)) and
Ifllo="_sup (L4225 (@)] < 00, p=0,1,...;
20, 0<ap

Ifllp» » = 0,1,... are the norms in S;. Then by &' we denote the space of
continuous linear functionals on S, called the space of generalized functions of
slow growth (space of tempered distributions).

In &' a convolution is defined, denoted by *: for f, g in S’

(fxg,90) = (f(z) x g(y): {(x)n(y)e(z +y)) (1)

where x denotes the direct product and
&mec™, |EP (@) < Cy, InP(z)] < Cp;
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&,m are equal 1 in (supp f)¢ and (supp g)¢ and are equal 0 outside of (supp f)?¢,
(supp g)%¢ respectively, € > 0 (cf. [8]).

S’ is an algebra if for the operation of multiplication we take the convolution.
The space Oy ([0, 00)) is the space of functions of “slow growth”; f € O ([0, 00))
if the function and its derivatives have a majorant polynomial on [0, 0o).

By H(t) we denote the Heaviside function: H(¢) =1, ¢ > 0; H(t) =0, t < 0.

Tauberian type theorem for tempered distributions
THEOREM. Let the function ¥(z,t) satisfy the following conditions:
Y, t) € S, &> 0; Yira,t) = Ar(z, A(r)t), t>0, z >0, (2)

where A(r) > 0, r = rg > 0 and A(r) — oo, r — 0o. Let L € Op([0,00)), L() # 0,
t > 0. Then every s € S’ can be written in the form:

s = LD+ [H + (LY D)], (3)
where
D="IL"2Hx*(Ls'V) e S, (4)
Suppose that
L(t/A(r))D(t/A(r)) = 0, 7 — o0, in S, (5)
and that
AL E LD/ A)D(E/A(r)) = 0, 7 — oo, in S, (6)
as well. Then from
() = (5(8), 0(, £)) = 89, = — o, (7)
it follows that
s@t/A\(r)) = s, r—> 00, inS. (8)

ProOF. First we prove that
(H(t),¥(x,t)) = A,z > 0 where A is a constant. (9)

By the properties of :

For simplicity we may assume that A = 1.
In the second step we prove that s(x) can be written in the form (3), where
D € S’ is given by (4). This will follow by properties of the derivative of the
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convolution when we substitute in D + (H % L(*) D) the value of D given by (4):

LD+ [H » (LVD)] = L7 [H(#) % (Ls™)] + H + {LVL*[H # (Ls™)]}
= L7YH = (Ls)V] — L7YH = (LMs)]
+ H+ {LYL72[H  (Ls)M} — (H « {LYL2[H « (LM )]}
=s— L' Hx*(LWs)] + H« (LWL 1)
+ H+ {L7UH (LW ¥V — [H « (L7 LWs)] = s.

In the third step we show that we can menage the proof of the theorem in the
following way: Supposing that ¥(z) — sg, z — 00, we prove that

lim (¥(z)H(y) — s(y/A(r): ¢(y)) =0 (10)

z,r—00

for every ¢ € S, . In this case we may conclude that s(y/\(r)) = soH(y), r — oo,
in 8’ because for every ¢ € Sy

(U(z)H(y) — s(y/A(r)). 0 (y))
= {(¥(z) — s0)H(y) — (s(y/A(r)) — s0H (y)) ¢(v))
(11) = (U(z) = 50)(H(y): p(y)) = (s(y/A(r)) — s0H () p(y))-

But by (11) it follows that we may assume that sg = 0 without loss of generality.
We choose just this way of the proof. Let us consider

J(z,7) = (¥(@)H(y) — s(y/A(r)), ¢(y)), =>0.

By (7), (9) and the properties of the direct product (cf. [8])

J(@,r) = (H(y){s(t/Mx)): (1, )) = {s(y/A(r)) H(2), (1, 1)). 0 (y)
= (H(y){s(t/Mx)): (1. ), () — ((s(y/A(r)) H(£), ¥ (L:8)), ()
(12) = (H(y): o(y))(s(t/A(x)), ¥ (L. 1)) — (s(y/A(r)): o(v))-

(13) = Jl(z:,r)ii-Jg
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where G = H % L{UD. Let us consider the second part of (13) related to the
generalized function G:
Ja(w,r) = (H(y), o(y)G(t/A(@)), (1, 1)) —
): (G (t/A(2)), ¥ (L, t)e(y))) —
)Gt/ (2)), ¥(1,t)e(y)) — (G
y)G(t/ M=) — HH)G(y/A(r)), (1, 1) e(t))
= (H(y)(H » LY D)(t/A(z)) — H(t)(H = LV D)(y/A(r), (L. t)p(y))
(

(@)A(r)(H (y )(H*L(1 D)(t)-H lt)(H*L(1 D)(w): ¥(1. A(@)t)(A(r)y))
(@)A(r)[ (1) )

(G(y/A(r));
(Gy/A(r),
(y/A(r)H(t

e(y))
(H(t): (1. 8)p(y))
), ¥(L.t)e(y))

|
s
N
Y
*

&
E
S
§

): ( )t)w(k(r)y)ﬂ
= A(w)A(T)RL(”(t)D( ) (H (y)H (u), ¢( A(@)(t +u))e(A(r)y))
“ ) ¥(L A2 (A(r)(y +v))))]
(H(y)H(u),

Since
and

Ja(z,7) is given by
Ja(@,7) = A7Ha)(LTHE/ M) D(t/X(2)), a(t))
= AT LD (/M) D/ A1), B())-
Now we have in &',

lim J(z,7)= lim Ji(z,r)+ lim Ja(z,r)=0

xz, T—0C xz, T—0C xz, T—0C
because in S,

lim Ji(z,7) =0by (5) and lim Ja(z,7)=0

z,7r—0oc z,7r—0oc
by (6), which completes the proof of the theorem. O

Condition (5) in the theorem has the role of a convergence condition, while (6)
defines the function L(¢). Since (6) is not simple we prove:

COROLLARY. If in the theorem the function L has the additional property: Let

LY@/ LT /A = X ()W (1) for an v < 1,

where W (t,r)o(t) = V(&)p(t) in S1 for every ¢ € S+, then (6) is satisfied and the
theorem holds.
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PrOOF. For any ¢ € S

AT @)L/ A)DE/Ar)), 9 (1))
= X)Lt/ A(r)
(r)¢

(t/A(r))D(t/A(r)
=\ (I( r))D( T

)
t/Ar))D(t/A(r)
(14) + X THENLE/A ) D(E/A(r), (W (t,r) = V(2))e(t)

= L(r) + Iy(r).
By (5), I1(r) = 0, r = oo. Since {L{/A(r))DE/A(r)) : 7 2 7o > 0} is a
bounded set in &’ , we can use Schwartz’s theorem for I(r) which asserts that
there exist K > 0 and m € Ay such that

(15)  [L(/NP)DE/A()), (Wt r) = V()e(0))| < KW (t,r) = V() @(t)llm
(cf. [8]). Now, by (15) it follows that I2(r) — 0, r — oo, which proves (6). This
completes the proof of the theorem. (|

Since tempered distributions have been defined as continuous functionals on
S, we had to adjust the assumptions and the method of proof of our theorem to
the global structure of them. Therefore, it is not easy to compare Theorem A and

x
our theorem. Thus, the function ———— can be the kernel in Theorem A but

(14 xt)?
not in our theorem. On the other hand (z — t)e satisfies the assumptions on
the kernel in our theorem but not in Theorem A. Finally the function ze™*! can
be the kernel in both cases. We have a similar situation with the function L.

We illustrate the theorem by the Laplace transform. TLet (z,t) = ze™ %,
x> 0. Then ¥(z,t) € 84 and satisfies (2) with A(r) = r. One possibility for L(¢)
isL{t) = (t+1)? a € R, a # 0. We can apply the corollary proved above. Then

—t/z

LW/ L Ntr) = a——.
(¢ /) = a
ar ar .
Hence W(t,r) = —— and ——p(t) = ap(t), r > o0, in & and v = 0.

t-+r t-+r
By the theorem it follows now: If (s(t), ze~**) — sg, z — oo, and if

(t—:r) (H(u) * (u + 1)“(%5(11))(15/1") —0, r— o0, in S\
for an a € R, a # 0, then s(¢t/r) = sp, r — 00, in &,..

If a = 0, then by (3) s(z) = D(z) and the process is useless.

Another possibility is to take L(t) = e=%, a € Ry. Then LV (#)L71(t) = —a.
Condition (6) is satisfied and the convergence condition (5) has the form

d
ax/r au . /
e (H(u) * e us(u))(m/r) —0, r—o0, inS,.
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