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TAUBERIAN THEOREMS
AND LIMIT DISTRIBUTIONS
FOR UPPER ORDER STATISTICS

H. Lanzinger and U. Stadtmdiller

ABSTRACT. Starting with the Tauberian thcorems of Karamata for regular
variation we prove a slight extension of a Tauberian theorem by Trautner and
the sccond author and use this to characterize limit rclations for upper order
statistics if we are in the domain of attraction of a max-stable distribution.
Furthermore, we discuss the speed of convergence therein.

1. Introduction

One of the great contributions to Mathematics of Jovan Karamata is the notion
of regular variation and its use in Tauberian theory (1930/31), see e.g., [13, 14, 15,
16]. Many authors have extended and applied these investigations in asymptotic
Analysis and its applications. Another Mathematician from Yugoslavia, William
Feller, introduced these concepts in his books [11] into Probability Theory where
they had and still have many fruitful applications. The best modern book dealing
with regular variation and its extensions together with various applications is the
work of Bingham, Goldie and Teugels [2].

Tt is the aim of this paper to extend a Tauberian result of [29] slightly in order
to get a characterization of the distributions for which certain distributional limit
theorems for upper order statistics hold. Thereby we simplify the proof of a result
by Smid and Stam [25] and extend their result.

Let. us begin with some facts which are the basics since Karamata. Consider a
measurable function f: R. — Ry it is called regularly varying (at infinity) if

f(Ar)

(1) lim ——~ exists on a set of positive measure in (0, co).

TRy
Then the limit exists for all + € R, and the limit function is t” with some p € R
called the index of regular variation and we write f € RV,. Furthermore we can
represent such a function f as f(t) = t*L(t) with a slowly varying function L(.),
i.e.; a regularly varying function of order zero. We know that the limit relation in
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42 LANZINGER AND STADTMULLER

(1) is locally uniform in (0, c0) and even uniform in [b,00) for any b > 0if p < 0.
One specific example is f(t) = ct”, p > 0, which has the Laplace transform

flz):= m/ e " f(t)dt = cT(p+1)z™", > 0.
0

This extends to the following Abelian type theorem

If feRV, then f(1/z) €RV,.

The well-known Tauberian theorem of Karamata says that for nondecreasing func-
tions the converse is true as well (see also [31, 32, 33]). Whereas Karamata’s prool
uses approximation of a rectangular function by polynomials, another approach
which is simple and effective is the use of sequential compactness arguments (see
e.g., [17, 11, 26, 27, 28, 29]). Many subsequence principles have been shown in
addition to the classical ones, consult e.g., the papers [1, 18, 23, 24, 30]. In our
section 2 we alter a result from [29] slightly and use this in section 3 to prove the
converse part in the characterization of certain distributional limit theorems for
upper order statistics for iid random variables being in the domain of attraction
of max-stable distributions. Besides Tauberian arguments the notion of regular
variation and its extensions are essential in this context.

2. Some more Tauberian results

We shall present some ratio-Tauberian theorems following the arguments in
[27, 29]. Therefore we consider the following classes of functions:

F »:={f:Ry = Ry, f is nondecreasing and right continuous} and

At
Fp = {f € F », My(t) := limsup f() < oc for some (all) t > 1}
A—o00 (A)
the class of dominatedly varying functions. Analogously to F » we define 7.
Then the following result was shown in [27].

THEOREM A. Let be given some function f € Fp. Then we have for any
g € F » that

g(t)

g(1
g /x)—>1.m—>oo, implies == — 1, t = oc

fiijzy £t)

if
(2) M(1+) =1

REMARKS. (i) Note that M;(1) = 1, this means that condition (2) is equivalent
to the continuity of My at ¢ = 1. Functions satisfying (2) are also called intermediate
regularly varying, see e.g., [6].

(i) If we use f € RV,, p > 0, then M;(¢) = t*, t > 0, so (2) is obviously
satisfied and we get back Karamata’s Tauberian theorem.

(iii) If f € Fp, then there exist some constants ¢, 8 > 0 such that

FOM) {ctﬂ, t>1

(3) m < p 0.
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The Laplace transform uses the exponential function as its kernel. A related
result, however, is true for kernels which have similar properties as the exponen-
tial function, such as positivity or fast decay. If positivity is given up two-sided
Tauberian conditions are usually needed. But in some recent results Drasin-Shea-
Jordan theorems (see [2]), ratio Mercerian theorems and Tauberian theorems using
one-sided Tauberian conditions are extended to kernels with sign changes, see the
papers [3, 4, 5]. The typical Tauberian condition in Wiener’s theory (see e.g.,
[34, 20]) for general kernels is, however, two-sided.

From now on we consider integral transforms of type

f@) = / K (at)f(t)dt
0
with kernels satisfying

@) K eL(R,), K>0, /OC K(v)dv = 1;

The map Tk : f — ]?is injective on

5 oc
) {f e L1 (R,), with / K(zt)|£(t)|dt < oo, for all z > o};
0

(6) / K(t)t*dt < oc for all p > 0.
0

Condition (5) is true if the Mellin transform [ t** K (t)dt of the kernel does not
vanish on the real line (see e.g., [2, Thm. 4.8.4]).

For two sets of functions A, 5 on R, we say that f € A- B if f can be split
into two functions A € A and g € B such that f = k- g. Then we are interested in
the following slight variation of the sufficiency part of Theorem 5 in [29] which is
suitable for the investigations below.

THEOREM 1. Let be given a kernel K satisfying conditions (4)—(6) and some

function f; € Fp satisfying (2). Then we have for an arbitrary function fa €
I\ RV, ¢ > 0 being locally bounded in [0,00) that

f2(1/2) f2(t)

== 1, r— o0, implies
Ji(t)

fi(1/z)

ProOF. We follow the arguments in the sufficiency part in the proof of Theo-
rem 5 in [29] and give a short outline of the proof only. Assume that as z — oc we

have f1(1/z) ~ f2(1/z) but with some sequence (u,) — oc we have f1 (1) / f2(pen)
— ¢ # 1. By our assumption we obtain for any z > 0 as A — oc

(7) Fu(@/) ~ Jalw/A).

Consider now the family of functions hy () = f2(At)/f1(A), A > 0. Note that we
have limsup, _, .. 7 (1) < co. Otherwise there exists a sequence A,, — oc such that

— 1, t — oo.
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with fo(t) = ¢?L(¢)g2(¢) and g2 \
f2(An) f2(Ant) S (Ant)?L(Ant) AL L(An)g2(An)
and then we find by (7) and the fact that f; € Fp the following contradiction

_ [T 16 ~ b z 1 x
0(1)_/0 K(at) 5 /0 K(atha, (0dt > [ K(at)hy, (e

1/2
since the right side is unbounded for suitable 2 > 0.
Furthermore since f; € Fp and f; is locally bounded there exist constants
¢, p > 0 with

1
— oc and on [5,1} : — 00,

Now by the subsequence principle for monotone functions we find using a suitable
subsequence i, which we denote by pu, again that fi(unt)/fi(u,) — f* and
hy, (t) = h* and by dominated convergence we get that f* = h*. Now (5) yields
that f* = A" a.e. in particular we have that £ = 1 is a continuity point of f* and
so 1 = f*(1) = h*(1) (note that h* is a power times a monotone function) which is
a contradiction to our choice of (py,). O

COROLLARY. The statement of Theorem 1 holds if for given ¢ > 0 the assump-
tion (6) on the kernel is reduced to [~ K (t)tPdt < oo for 0 < p < pg with some

po > ¢ and if f1 satisfies (3) with 8 < po.
PrOOF. Note that we have with arbitrary small § > 0 and the notions from
the proof above
(A)?L(AL) A?L(A)ga(A)
A?L(A) fi(A)
for t > 1 and the proof works as before. (|

ha(t) < < cst?t?

3. Limit theorems for upper order statistics

From now on let X7, X5,... be a sequence of iid random variables with a
continuous distribution F. For any n € N we denote by (X(1.n), X(2:n)s - - s X(nin))

b

the n-th order statistics of (X,...,X,). By F(z) we mean the tail 1 — F(z) and
by e = sup{z : F(z) < 1} we denote the right endpoint of the support of F.

Tt is well known (cf. e.g., [22]) that if one finds centering and norming sequences
(an) and (b,) (with b, € R und a,, > 0) such that (X(,.,y — bn)/a, converges in

law to some nondegenerate distribution G, then G is of one of the following types:
0, ifz<0

i) @u(z) = >0,
® (=) {exp{—xa}, ifz>0 ©7
exp{—(—z)*}, ifz<0
1, if 23>0

(iil) A(z) = exp{—e™"}.

a >0,



LIMIT DISTRIBUTIONS AND TAUBERIAN THEOREMS 45

The respective domains of attraction (denoted by D(®(x)), D(¥,(z)) and D(A(z)))
are also well known, namely:

(i) F € D(®4(z)) iff F € RV_,.

(ii) F € D(¥,(x)) iff F is regularly varying with index —a at some point

Zoo € (0,00).

Recall that a measurable function f : (0,2.) — Ry; is regularly varying at x.
with index p if we have for A large enough that f(z.. — A7!) = A?L()) with a
slowly varying function L.

(iii) F € D(A(z)) iff 1/F is T-varying at some point 2 € (—oo, 00].
Here a nondecreasing right-continuous function f : (g, o) — Ry (with some

Zo < Too) 18 [-varying at z. if there exists a measurable function « : (g, Too) —
R, called the auxiliary function of f, such that for all u € R:

FO+ua) |,
f)

It turns out that for all of these three classes of distributions certain limit
relations for upper order statistics hold. We start with the class of distributions
with a regularly varying tail at infinity and state a simplified version of a result
on the limit distributions of quotients of upper order statistics given by Smid and

Stam [25]. For carlier results concerning the Abelian part of the Theorem, see e.g.,
[9, 10, 19].

THEOREM B. The following statements are equivalent for some a > 0:

(A= Zoo)-

(i) FeERV_,
(ii) lim P(i < m) =29% for all x € (0,1) and some (all) j € N.
N o (n—j4+1:n)

For completeness we give a simplified proof using Theorem 1 instecad of Wiener’s
Taubcrian theorem, which was employed by Smid and Stam.

PROOF. ‘(i) = (i): The joint distribution of order statistics is well-known
and therefrom we get

P(X(n—j+1:n) = 1/$|X(n—gn)) = (F(max{l/x,X(n—]n)})/f(X(nfjn)))J :

W.l.o.g. we put j =1 and then we obtain for any = € (0,1)

P(L > 1) :/ FXem/®) 1p e oo
X(n—l:n) r Q F(X(n—ln))

since by our assumptions X ,_1.) 2% o0, F € RV_, and the dominated conver-
gence theorem applies.
‘(i1) => (¢)’: We have for arbitrary = € (0,1)

P(Xnotmy > @ X)) = n(n — 1) / "1 Flw)"F(u/2)dF (u)
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with 8(t) := (1/F(t))* and the substitution u = (¢) we find (note that 5(1/F(t))
=t, F-a.e. and 8(F(t)) = 1/t, t > 1, since F is continuous)

—a(n-1) [0 Y FE0/0%

_ /1 M(M@ - ﬁ)”_Q - ’fe*"/t)tﬁ(g(t)/x)dt

13 nt 3
> n? —n/ty
+ ) 5 tF(B(t)/z)dt = I, + II,, say.
Using Scheffé’s Lemma and the fact that [¢F(3(t)/z)| < 1 we find that

><l1 1
IInls/
0

n—2 1
— (1 — —) 111 /m,00) (V) — 0—36_1/“ dv =0, n — oc.
Hence we get by our assumptions that with K (t) = e™1/% 7319 ) (t)

3 nv

1 /= —
I, = o(1) + —/ K(t/n)tF(z™16(t))dt — %, n — oo.
nJo
and then it is easy to see that
1 [ —
3 / K(t/MtF(z718(t))dt =z, as X = co.
0

Setting fo(t) = tF(z~'8(t)) and f,(t) = = the assumptions of the Corollary are
satisfied (note that the Mellin transform of K is I'(2 — ¢z) # 0 on R and hence (5)
is satisfied, see e.g., [2, 34]) and thus we obtain

FG50)

-1, t—> ¢

which means that for z € (0,1)

F(z-!
(=80) | .

F(B(1)
Since for an arbitrary sequence ()\n)_/‘ oc we find a sequence Lt") such that
Btn—) €< A\ < B(t,) and F(B(t,—))/F(B(t,)) = 1 we obtain that F € RV_,. [

We continue by showing that for the domains of attraction of the other two
types of max-limit laws we have analogues of Theorem B. The result about distri-
butions with a tail that is regularly varying at some finite point is

THEOREM 2. The following statements are equivalent for some o > 0:

(i) F is reqularly varying at T with inder —a

.. . Too — X(n— j+1:n) ;
lim P : < z) =ai® Lz € (0,1) and 1
(i) Jim ( oo = Xmsm m) 3% for oll z € (0,1) and some (all)

jEN.

PrOOF. This is an easy consequence of the fact that the random variables
Y, = 1/(zoc — X,,) have a distribution whose tail is in RV_,, and that obviously
Yijiny = 1/ (®oc = X(jiny)- O
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X(n—j+1:n) P

We come to the class I'. Here it is well known that X =1 (n— o00)
(n—j:n)

but the analogue of the results above is as follows.

THEOREM 3. The following statements are equivalent:

(i) 1/F €T with auxiliary function «,
Xn—’ n _Xn—"n :
(ii) lim P( (n=j+1:n) (n=gim) x) =e % for all x> 0 and some (all)
n—oc a(X(n_]n))
7 € N, where we can assume w.l.o.g. that the auxiliary function satisfies
for any u > 0: A+ ua(\) is eventually nondecreasing.

PrOOF. The proof proceeds along the same lines as the proof of Theorem B.
‘(i) = (i1)’: W.l.o.g. we put j = 1. As in Theorem B we have for any = > 0

F(X(n—lzn) +xa(X(n—1:n)))
F(X(n—lz'n))

P(X(n:n)>X(n—1:n)+xa(X(n—1:n))) :/ dP—>e_$:
Q

n — 00, by the dominated convergence theorem. By Theorem 3.10.8 in [2] we can
replace the auxiliary function by one which absolutely continuous with derivative
tending to zero, so the additional requirement in (ii) is satisfied.

‘(1) = (4)’: For arbitrary = > 0 we get by the substitution « = 8(t)

P(X(n:n) > X(n—1m) + ﬂ:a(X(n_lm)))
— n(n—1) / F(5(1) + xa(5() F(5()™
n 2@

i1y [T+ walBO)
=n(n-1) [ SRS R0

The same sort of application of Scheffé’s Lemma as before yields

2t
$2

l/OC K (t/n)tF(B(1) + 2a(B(1)dt — =%, n — co.
nJo

Setting f2(t) = tF(B(t) + za(B(t))) and f1(t) = e~ the assumptions of the Corol-
lary are again satisfied (with the same kernel as before) and thus we obtain

FB(0) + (1))

-1, t—> o

which means that

and hence F' is T-varying. O

REMARKS. If one considers the joint limit distribution of the expressions above
for 1 € 7 < k then one finds as in the proof of Theorem 1 in [25] that its components
are independent, that is, e.g., in case 1/F € T we have

X(n:n)_X(n—lzn) > X(n—k—i—l:n)_X(n—k:n)
a(X(n—l:n)) a(X(n—k::n))

lim P(

n—oc
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for any fixed k£ € N and any tupel (1, ..., 2) € RF. In the special case of standard

exponential random variables it is well known that «(.) =1 and that
nX(l:n): (n - ]-)(X(Zn) - X(l:n)): (R 2(X(n—1:n) - X(n—Z:n)): (X(nn) - X(n—l:n))

are independent and exponentially distributed.
In case 1/F € RV_, we have

lim P
(n—1:m) &1 X(n—km) Tk

n—oc

for any fixed k € N and any tupel (zy,...,z;) € (0,1)*. From this we get e.g., that

lim P(# > —) = 2%(1—2°/2), 0< z < 1.
X

N o (n—2:n)

If one wants to gain some information on the speed of convergence in Theorem B
it is clear that some more knowledge about the underlying distribution function is
needed. A reasonable possibility is to look at second-order regular variation.

Recall that a measurable function is called second-order regularly varying with
first order index ~ if there exist a function ¢ with ultimately constant sign such
that a{A\) = 0 as A = oc and

fO8) £

: fn)
(®) m

¢
— H, ()= ct”/ u"tdu (¢ #0)
1

for all t > 0. We write this as f € 2RV (v, «, a).

It is well known that if (8) holds then H., , is of the above form and convergence
is locally uniform in (0, c0). Moreover, a € RV(x) and thus & < 0. For these and
other results on sccond order regular variation the reader may consult [12, 8].

Now the second-order result corresponding to Theorem B stated in its simplest
form is:

_THEOREM 4. Let F € 2RV(~a, —p,a) with a > 0,p > 0. Set again B(t) :=
(1/F(t))*. Then we have for all z € (0,1):

) a(ﬂl(n)) (¥ (X;(::?) <z)-a") — Hooyla) T(* 10 41)

PRrROOF. We may assume w.l.o.g. that ¢ > 0in (8) and we write H := H_, .
Fix 2 € (0,1) throughout the whole proof. Note that 8 € RV, (e.g., Thm. 1.5.12
in [2]).

Now choose €, € (0,1) arbitrarily small but fixed and then g = zg(¢, ) and
ng = no(zo, €, () such that the following conditions are satisfied
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(10) F(zo) 2 1/2,

(11) F(A/m)éz()k) ~ e [(1— O H(z), (1 + ) H(x)] for all A > z

(12) P(X(n—1:m) < T0) < %a(,@(n)) for all n > no,

(13) E ; 2max { (y/z) "¢, (y/z) ¢} for all &,y > o

(14) g(_y; 2max{ (y/z)* @, (y/x)/ )} for all z,y > 1/F(zo).

bk

Conditions (13) and (14) are plain applications of the so called “Potter bounds
(cf. [2, Thm. 1.5.6]). To see that (12) is true note that

P(X(n_lm) < 330) = Z <Z>F(m0)l’ . F(JZO)"—V < TlF(wo)n_l _ 0((1(5(77,)))

since ao B € RV_, /-
Proceeding as in the proof of Theorem B we obtain

) e (P(XJXX) <))

_ 1 F(X(n-1:m)/) a
 a(B(n) (/{X(n—lzn)@ﬁo} i /{X(n—lzn)>w0}) ( F()(((niljl)) - )dp

Using (12) the first integral in (15) can be estimated from above by

1 F(X(no1n 2P(X(p_1imy <
(16) —/ <—£ (n=1:m) /) +m“)dP< Kn-tim) S T0)
{X(n—1:m)<20}

a(B(n)) F(X(n-1:m)) a(B(n))
For the second integral of (15) we get from (11):
1 F(X(n—ln)/x) AN a(X(n—lzn))dP
a’(ﬁ(n)) / ( F(X(nfln)) T ) a(X(n—lzn)) '
{X(n—1:n)>z0}
~ a(X(n—lzn))
17 =c¢-H(z)- ———=dP.
"o CHE [ )

with some ¢ € [1 —€,1+ €.
Now assume for the moment that

a(X(n—lzn))
(18) /{X} a(B(m)

then combining (16) and (17) we obtain for

Xin_1n o
a(,@l(n)) (P( )(((n:n))) -t )

dP%F(%—l—l)
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that the upper limit is at most

a+p
(1+6)H(x)-F< . +1) te
and the lower limit is at least
(- oH@) T(“L 1) e

Since e was arbitrary this proves (9).
So all that remains to be shown is (18). To this end fix § € (0,1). Then
68(n) = x for all sufliciently large n. Now we split

Mdp
/{X(n—1;n)>zo} a(ﬁ(n)) l

a(X(n—l:n))
:</ +/ >7dP:In+IIn.
(Xnotm268(m)}  {z0<X(n1m <68}’  @(B(n))

We consider I, first. It is well known (cf. e.g., [21]) that X(,_1.,)/8(n) Ly
where P(Y < z) = e 1/#" (142~®) for all positive . Thus on a suitable probability

space there exists a sequence of random variables (Y,) such that Y, 4 x (n—1:n) and
Y./B(n) = Y as. Then in particular ¥;, — oc a.s. and by the uniform convergence
in (1) on [1/m, o) for each m we find that

a(Yn) _ a((Yn/B(n)) - B(n))

=Y *as. (n— o0).

a(B(n)) a(B(n))
If Y, > §B(n) we can also conclude from (13) that
a(Yy,)

max f n -t (v n —p—¢ 7p7<.
20y < max{(Ya/Bn) 1, (Ya/B(m) 7} <0

Using dominated convergence we have

a(Yy,) _
= _— P — Y"1 P — 00).

The latter integral equals
/ t“’d(e‘l/ta(l—i-t_a)) =a/ g2 le =/ gt
5 5

and substituting v =t~ yields

5
(19) I, — / wPrelee=udt  (n — o).
0

Now we give an upper bound for II,,. Note that for 2o < X(,_1.,) < 08(n) we find
using (13)

a(X(n_1:my) X1\ P X1y —2P—¢ B(n) \rt<
a((ﬁ(n))) <2m"‘x{( (B(n) ) (B(n) ') }<2(X(n_1m)) :



LIMIT DISTRIBUTIONS AND TAUBERIAN THEOREMS 51

Hence

+¢
I, < 2 / (M)p P
{20 < X(n1:m) <6B(n)} X (n—1:n)

= 2n(n—1) /w(n) (M)p+CF(y)"‘2F(y)dF(y)

zo Y
F(58(n)) B(n) \Pt¢ .,
=2 -1 "1 — y)d
n(n )/F(m) (F&(y)) y" (1 —y)dy

) F(88(n)) B(n) pre B
<”LAWM (Gaa—yy) v a-wdn

Note that by (14) we have
B(n) 3/(2a) 1/(2a)
—— 2 < 2max< (n(l — ,(n(1— .
B3] {1 =)/, (n(1 = y)) /2|
Since § < 1 it follows that

n(l—y) > nF(55(n)) = %

=6 “>1
such that for sufficiently large n:
B(n) 3/(2a)
— 2 <on(l-y .
B/ -y <P
Therefore

F(38(n))

I, < An (Bo+30)/(20)+2 /F( ) yn—2(1 _ y)(3p+3<)/(2a)+1dy.
Zo

Substituting y = e~ leads to

— log F(zo)
11, < 4n(30+30)/(20)+2 / eri (a=mu(y

—log F(68(n))

From (10) we obtain 0 < —log F(§8(n)) < u € —log F(z0) < log2 and therefore

0<(1—e™)/u < ¢ for some positive constant ¢;. Thus we obtain with some
further constant ¢o > 0:

_ e‘“)(3f’+3<)/(2a)+1du.

— log F(zo)
11, < degn(30+30)/(20)+2 / (1=m)u, (30+30)/(20) 41 7,
~ log F(68(n))

< 462 /—logF(zo) P (nu)(3p+30/(20¢)+1
F(20) J_ 105 F(58(n))

—nlog F(zo)

. 4eo / B (30430 /(20) 4L g,
F(20) J_n1og F(58(n))

As n — oc we have

ndu

—nlog F(68(n)) ~ 4§«

F(B(n))



52

LANZINGER AND STADTMULLER

and we find with some constant c3 > 0

(20)

lim sup II,, < cs / o~y 30130/ (20)+1 gy,

n— oo

Now (18) follows from (20) and (19) since by choosing § small enough we can make
I, arbitrarily close to T'((« + p)/a+ 1) and II,, arbitrarily small. O

REMARK. If (9) holds with some auxiliary function a tending to zero, then we

know by Theorem B that F € RV_,. However, we do not have a simple Tauberian
condition on F in order that we can obtain from (9) that F isin 2RV.
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