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REMAINDER TERM IN CHAKALOV-POPOVICIU
QUADRATURES OF RADAU AND LOBATTO
TYPE AND INFLUENCE FUNCTION

Miodrag M. Spalevié
Communicated by Gradimir Milovanovié

ABSTRACT. Let f be a given real function defined on [a,b], —c0 < a <
b < oco. We develop estimates of the remainder term in the quadrature
formulas with multiple nodes (Q) below, where o = o, = (51,82,...,5n)
is a given sequence of nonnegative integers, p,q € Np, and w(t) is a given
weight function on (a,b). Let N =2(3_"_, s, +n)+p + ¢, and denote by
AC*[a,b], B*[a,b], C*[a,b] the classes of functions whose the k-th deriva-
tive is absolutely continuous, bounded or continuous on [a, b], respectively.
An influence function is introduced, its relevant properties are investigat-
ed, and in classes of functions ACY~1[a,b], BN[a,b], CN[a,b] the error
estimates are given. A numerical example is included.

1. Introduction

Let dp(t) be a given nonnegative measure on the real line R, with compact or
unbounded support, for which all moments p, = [, thdp(t) (k = 0,1,...) exist
and are finite, and uo > 0.

A quadrature formula of the form

n 2s

(11) [ £0det) = 3% 01O + RO,
v=1 1=0
where A;, = Agjf,’s), 7, = ) (t=0,1,...,2s; v = 1,...,n), which is exact for

all algebraic polynomials of degree at most 2(s + 1)n — 1, was considered firstly by
P. Turén (see [24]), in the case when dp(t) = dt on [—1,1]. The case with a weight
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function dy(t) = w(t) dt on [a, b] has been investigated by Italian mathematicians
Ossicini, Ghizzetti, Guerra, Rosati, and also by Chakalov, Stroud, Stancu, Ionescu,
Pavel, etc. (see the survey paper [11] for references).

The nodes 7, in (1.1) must be zeros of a (monic) polynomial m,(¢) which
minimizes the integral

B = d(ag,ar, . ap_1) = / (122 do(8),
R

where 7, (t) = t" + a, 1" ' + ... + a1t + ap. In order to minimize ® we must
have
(1.2) /}%afﬁﬂﬁd¢a):0, E=0,1, ... ,n—1.

R

Such polynomials 7, (t), which satisfy this new type of orthogonality so called
“power orthogonality’ are known as s-orthogonal (or s-self associated) polynomials
with respect to the measure dp(t).

For s = 0 we have the standard case of orthogonal polynomials.

Take now a sequence of nonnegative integers ¢ = (s1,82,...). Consider a
generalization of Gauss-Turdn quadrature formula (1.1) to rules having nodes with
arbitrary multiplicities

n 2s,
(13) [ £Oaet) =33 4050 + R,
v=1 =0
where A;, = AEZ;U), 7, = ) (1 =0,1,...,25,; v = 1,...,n). Such formulas

were derived independently by Chakalov [2, 3] and Popoviciu [18]. A deep the-
oretical progress in this subject was made by Stancu (see [23] and references in
it).

In this case, it is important to assume that the nodes 7, (= T,En7a)) are ordered,
say

(1.4) <7< < Ty, T, € supp(dr),

with odd multiplicities 2s; + 1, 2so+1, ..., 2s, + 1, respectively, in order to have
uniqueness of Chakalov-Popoviciu quadrature formula (1.3) (cf. Karlin and Pinkus
[8]). Then this quadrature formula has the maximum degree of exactness

n
dmax:2Zsu+2n—1

v=1

if and only if

(1.5) /H(t—r,,)2s”+1tk do(t) =0, k=0,1,...n—1.
R
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The last orthogonality conditions correspond to (1.2). The existence of such quad-
rature rules was proved by Chakalov [2], Popoviciu [18], Morelli and Verna [15],
and existence and uniqueness subject to (1.4) by Ghizzetti and Ossicini [6].

The conditions (1.5) define a sequence of polynomials {7y, ¢ }neny,

n
Tn,o(t) = H (t - T,E""’)) , Tl(n’a) < 7'2(”’0) <eec7m9) 2 e supp (d)),
v=1

such that

n _(no) 2s,,+1d _ L= B
/me(t)H(t i) o) =0, k=01, . n—1.

v=1

These polynomials are called o-orthogonal polynomials and they correspond to the
sequence o = (81, S2,...). If we have 0 = (s, s,...), the above polynomials reduce
to the s-orthogonal polynomials.

In this paper we consider the generalized Chakalov-Popoviciu quadrature for-
mulae

b p—1 n 28,
[ e0r0a =Y 40O+ Y Y A fOm)
a i=0 v=1 i=0
q—1

+> 0 A1 FO0) + R(),
=0

with arbitrary, 7,(v = 1,...,n), and fixed, a and (or) b, multiple nodes. A such
quadrature formula has maximum degree of exactness N — 1 if and only if

b n
/ w(t)(1+)P(1—¢t)? H(t —r) b at =0, k=0,1,...,n— 1.

v=1

Recent proofs of the existence and the uniqueness of such quadrature rules have
been obtained in [19], [22]. Proofs of convergence of such formulas can be found in
[17], [20].

In Section 2 an influence function is considered, its relevant properties are
investigated, and in the classes of functions ACYN 1[a,b], BV[a,b], CV[a,b] the
error estimates are given. In order to illustrate the possibility of use these error
estimates we give a numerical example.

2. Error estimates for quadrature formulae of Radau and
Lobatto type connected to g-orthogonal polynomials

In [16] (see also [5]) Ossicini, for the Gauss-Turan quadratures (formula (Q)
with p =q¢q =0, sy =--- = s, = s, or (1.1) with dp(t) = w(t)dt), and the
Gauss-Turdn quadratures of Lobatto type (formula (@) with s; = -+- = s, = s
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and p = ¢ = 2s + 1), constructed an influence function, investigated its relevant
properties, and in some classes of functions gave error estimates. Recently, we
have generalized those results to the formula (@) with p = ¢ = 0 (or (1.3) with
dp(t) = w(t) dt) (see [14]). In this section we will consider the quadrature formula
(@), the general case.

For all undefined notions and notations we refer to [5].

Radau formula. Let
b p—1 n 2s,
@ i=0 v=1 i=0

—0 < a < 00, p €N, with RE(f) = 0 for f € Pa(sr_, s,+n)+p—1, be the
generalized Chakalov-Popoviciu quadrature formula of Radau type. With Py, we
denoted the set of all polynomials of degree at most k, £k € Ny. Denote N =
2(>°0_, sy + n) + p. Concerning the assumptions on w(t), f(¢) for the validity of
(2.1) we have the following theorem:

THEOREM 2.1. Formula (2.1) is valid under the following hypotheses:
w(t) € Lla,b], f(t) € ACN~'[a,b],  ifb is finite,
tNw(t) € Lla,0), f(t) € ACY " a,0),

loc

™) / TV (e de € L]0, ).

The proof is the same as the one of Theorem 4.13.1. in [5, pp. 132-133] and
will be omitted.
Consider, for example, the case:

(2.2) p—1< 281 <28 < --+ < 28y,

e, N—p—1>N—-2s; —2>---> N — 2s, — 2. Let p be odd, without loss of
generality. Then, we have that N is odd. Assuming already computed the nodes
7, and the coefficients Af, for the remainder in (2.1) we have (see [5]):

b
(2.3) RE(f) = R(f) = / (1) N (1) dt,

where the influence-function ®(t) is expressed by
(2.4) @(t) = pu41(t) for 7, <t<my1, v=0,1,....,n; 7o =a,Tht1 =D,

and the functions ¢, (t), integrals of the differential equation V) (t) = —w(t) (since
N is odd), are given by the formulae

v—1 2s;

t _ o N—i-1
ott)== [ w(a(( df+ZZ %_1)'

j=11i=0

' b ) N-i-1
+Z(—1)’Ai,o((]\,_17._1)!;

(2.5)
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where v =1,...,n 41, and A, ; = A} ..
For ¢p+1(t) we have

(26 0= [ weol T
' Pt = | (N—1)!
From (2.4),(2.5) it follows, differentiating k times (with 0 < k < N — 1):
(2.7) R (1) =p® (1)  for te(r_i,m), v=1,...,n+1,
where forl =v,v—1,...,1,
t N—k-1 1=1 255 N—i—k—1
(K) () — _ (t—9¢) . (t—15)
0 == [ oo G 17196+ 2 M (5
v—1 N—k-—1 .
. (t — T )N i—k—1 t _ a)N—z—k—l
)AL v-eo
S D s I e

with: (i) 0<k<N-2s,1—2,forl=v, (i) N—25—-1<k<N-—25_1—2,
forl=v—-1,v—2,...,1, where we put sp = (p — 1)/2, and

t N—k—1 v—1 N—k—1 N—i—k—1

k) (py — (t—f) ' (t —75)
A0 == [ oo G TR M IR ey
N—k—1

2.8) + A

(t—a

Az AT - 1. N1
- (N —i—k—1)!

=

for N—p <k <N —1. (We used the convention Z'Z -=0forj<i.)
For the derivatives of pp41(t) (t € (s,D)) we can use the following formulas:

(k) ’ (t =N+t

(2.9) Onia(t) = /t w(f)m d¢, t € (tn,b).
Now, we can conclude that
(2.10) M (a)=0, k=0,1,...,N —p—1,

' () =0, k=0,1,...,N —1,
and that the functions ®(t), ®'(t),...,®" 2»~2)(t) are continuous in [a, b], since
N — 25, — 2 = minj<y<p(N — 25, — 2), while ®(NV=2sn=1 (1) . $N=1(¢) have
discontinuities of the first kind at the points 71,72, ..., 7,. From (2.9) we conclude

(2.11) (~1D)*a® (1) >0 for te (mn,b), k=0,1,...,N—1,
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and, particularly, ®(¢) > 0 on (7, b).

Let the weight function w(t) be not identically zero in any interval contained
in [a,b]. We will prove that the influence function ®(¢) is positive inside [a,b]. We
give the proof for the case (2.2). (The general case can be considered in analogous
way, see the Lobatto case.) If we identify the function ®(¢) as a monospline, then
the property ®(t) > 0 on (a,b) is a corollary from the Micchelli estimate [9] of the
number of zeros for monosplines with multiplicities (cf. Braess [p. 241, 1]). Our
proof is direct and use only Rolle theorem.

We show that ®(N—251-2)(¢) (I = 1,2,...,n) has at most 2s; 4+ 2 zeros in each
interval [1,_1,7,], ¥ = 1,2,...,n. In fact, should it have 2s; + 3 of them, for the
Rolle theorem, ®(N=25-1)(¢) would have at least 2s; + 2 zeros inside [, _1,7,],
®(N=251) () would have at least 2s; + 1 zeros and so on, until we may conclude that
®(N-1(¢) would have at least two zeros inside [r, _1,7,]. But this is absurd since
from (2.8) there follows that, for ¢ € (1,_1,7,), we have

t v—

1
w(&)dE+ ) Ao,
7=0

B V() = ¥ 00 = - [

a

and this function is decreasing (for the hypothesis on w(t)).

®(N=P)(t) is continuous in [a, 7] and, we can prove as for ®(N=25:=2)(¢) it has
at most p zeros in [a,7]. ®N=2=2)(t) (v = 1,2,...,n) is continuous in [a, ;]
and let it have a zeros in [a,71]. Applying Rolle theorem (using (2.10) for a) we
conclude that ®N=?)(¢) has at least a zeros in (a,7;). Since a < p, we have that

®(N=25.=2)(¢) (v =1,2,...,n) has at most p zeros in [a,71].
®(N=251-2)(¢) is continuous in [a, 73] and has at most p + (2s; + 2) zeros in
[a,75]. @V —25v=2)(t) (v = 2,...,n) is continuous in [a, 75] and let it have o, zeros in

[a, 72]. Applying Rolle theorem (using (2.10) for a) we conclude that ®(N—2s»=1)(¢)
has at least a; zeros in (a, ), etc., @V -251-2)(¢) has at least ay zeros in (a, 7).
Since a; < p + (251 + 2), we have that @™ ~25v-2)(¢) (v = 2,...,n) has at most
P+ (2s1 + 2) zeros in [a, 72].

®(N=252-2)(¢) is continuous in [a, 73] and has at most p + (2s1 + 2) + (252 + 2)
zeros in [a,73]. ®N"25v=2)(¢) (v = 3,...,n) is continuous in [a, 73] and let it have
ay zeros in [a,73]. Applying Rolle theorem (using (2.10) for a) we conclude that
®(N=25v-1)(t) has at least ay zeros in (a,73), etc., ®N=22-2)(¢) has at least a
zeros in (a,73). Since as < p + (251 + 2) + (252 + 2), we have that ®(V—25v—2)(¢)
(v=3,...,n) has at most p + (251 + 2) + (2s2 + 2) zeros in [a, 73].

In analogous way, we conclude that ®N=25»=2)(¢) is continuous in [a, 7;,] and

has at most
n—1

P+ (25, +2) =N —2s, -2
v=1
zeros in [a, 7,], and also in (a,b), because of (2.11).
We may then show that ®(¢) does not vanish inside [a,b] and therefore it is
positive, because it is such on (z,,b). In fact, if ®(¢) should vanish at one point in
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(a,b), using (2.2) and (2.10) and applying Rolle theorem, we find that ®'(¢) would
vanish at least two times, etc., ®(V—25n—2) (t) would vanish at least N —2s,,—1 times,
in contraposition with the preceding deduction, because N —2s, —1 < N —2s,, — 2
gives 1 < 0.

So, we proved the theorem:

THEOREM 2.2. Under the hypothesis that the weight function w(t) is not
identically zero in any interval contained in [a, b], the influence function ®(t) defined
by (2.4) (together with (2.5) and (2.6)) belongs to the class CN=2%=2[a, b], where
N — 25, — 2 = minj<,<n(N — 25, — 2), and it is positive inside [a, ).

Now, we can estimate the remainder in the formulas of the type (2.1), by using
(2.3).
19 If f(t) € ACN 1[a,b] and a,b € R we have

|R(f)| < aHSl?%(b‘l’(t)VNq = ®(z9)Vn_1,

where Viy_; denotes the total variation of the function f(¥~1)(t) absolutely contin-
uous on the interval [a,b]. Because ®'(t) vanish in exact one point of the interval
(a,b) it holds (Izo € (a, b)) maécbfb( ) = ®(xo).

20 If f(N)(¢) is bounded in [a,b], i.e., My = sup |fV)
a<t<b

have
b

IR(f)| < My / (1) dt.

30 If f € CNa,b], b < oo, because ®(¢) > 0 on (a,b) we may apply the mean
value theorem and write

b

R(f) = fM(e) / B(t)dt, €€ (ah).

Lobatto formula. Let

n 28,

p—1
/ b w(t)f(t) dt = Z Al f D)+ >3 AL 9

v=1 i=0

(2.12)
+Z Azn+1f +RL(f)7

—00 < a < b < oo, pq €N, with RE(f) = 0 for f € Pysr_ s 4n)4psg—1, bE
the generalized Chakalov-Popoviciu quadrature formula of Lobatto type. Denote
N =2(3,_, s, +n) +p+ g Concerning the assumptions on w(t), f(t) for the
validity of (2.12) we have the following theorem:
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THEOREM 2.3. Formula (2.12) is valid under the following hypothesis:

w(t) € L|a,b],

f(t) € ACN[a, ).

The proof is the same as one of the theorem 4.13.1. in [5, pp. 132-133] and will

be omitted.
Let, for simplicity,
(2.13) p—1<28 <285 < -+

i.e.,
N—-p—1>N-25—-2>---

<28, < q-—1,

>N—-2s,—2>N—q—1,

and, let p + ¢ — be even, without loss of generality. Then, IV is even.
Assuming already computed the nodes 7, and the coefficients Aﬁu for the re-

mainder in (2.12) we have (see [5]):

(2.14)

where the influence-function ®(t) is expressed by

(2.15) ®(t) = py+1(t) for 7, <t <74,

v=20,1,...,

n; 7o =G, Tp4+1 = b,

and the functions ¢, (t), integrals of the differential equation ¢™¥)(t) = w(t) (since

N is even), are given by the formulae

—1 2sj

soy<t>=/w<s>(’é‘ e

(2.16) 7110

S

where v =1,...,n+1, and A4j ; = AﬁJ

For ,,11(t) we have

b p—
@11 et =- [ wo G 5T Jiln ds+2

t _ T])N_i_l

(t _ a)N—i—l

(t _ b)N—i—l
””1N—i—nr

From (2.15), (2.16) it follows, differentiating & times (with 0 < k < N —1):

W (1) = oM (1) for

te (7-1/—177-1/)7

v=1,...,n+1,
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where forl =v,v—1,...,1,
t t— )Nkl 1-1 25 (t — 7;)N—i—h=1
e (t) =/ w(§) EN )k 46— YY1 —;)T—l)'
@ j=11i=0 ’
v—1 N—k—1 ik p—1 N—i—k—1
g ()N i, (t—a)
- —1)"4; - —1)"A; - )
; ; (=1 TN—i—k—1)! ;( ) CN—i—k—1)!
with

i)0<k<N-2s,_;—2,forl=v,
(i) N—2s;—1<k<N-2s1—-2,forl=v—-1,v—2,...,1, where we put

so = (p—1)/2,
and
_ ! (t— E)kail AN ; (t — T.)Nfi—kfl
0= [ O X X
N—k—1
i (t _ a)N i—k—1
B i=0 =V AlO(N—i—k—l)

for N—-p<k<N-1.
For the derivatives of pp41(t) (t € (1s,D)) we can use the following formulas:

b _ ¢\N—k—1 I ) _ p\N—i—k—1
90521( t) = —/t w(f)((tn_gl)ci_l)! d¢ + Z(_l)lAi,n+1% )

with I =q—1,for0<k<N—-gq-—-1LI=N-k—-1,for N-¢g<k<N-1.
Now, we can conclude that

(218 " (@) =0, k=0,1,...,N—p—1,
' M () =0, k=0,1,...,N —q—1,
and that the functions ®(t), ®'(t),..., ®N=25»=2)(¢) are continuous in [a, b], since
N —2s, — 2 = minj<,<,(N — 25, — 2), while ®=252=U(3) . &= (t) have
discontinuities of first kind at the points 71,72, ...,Ts-
The same conclusions can be derived for an arbitrary case o = (s1, $2,-- -, 8n),

g €N s, € Ng(v =1,2,...,n). So, we have just proved that the influence
function ®(¢) defined by (2.15) (together with (2.16) and (2.17)) belongs to the
class V=252 ~2[q, b], where N — 2sj, — 2 = 1r<n1n (N —2s, —2).

If we put f(t) = (t —a)?(b—t)*T],_, (t — 7,)?** 2 in (2.14), then

v=1

(—l)qN!/bfb(t)dt:/ w(t)(t —a)P(b—t Qﬂ )22 dt .
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So, we obtain that
b <0, if gisodd,
/ O(t) dt {

>0, if qis even.

Therefore, if ®(t) does not vanish in (a,b) it holds a sign on this interval.

Let the weight function w(t) be not identically zero in any interval contained
in [a,b]. We will prove that the influence function ®(t) holds a sign in (a,b).

We will give a proof for a sufficient general case. Then, proceed in analogous
way, a proof for any other case can be performed. The consideration will be given
in detail.

Let n =9 and

q—1>2s1 > 285 >284 >258 >p—1> 2589 > 256 > 283 > 257 > 289,

i.e.,
N—-—qg—1<N-25—-2<---<N—2s,—2.

A point 7,, v = 2,3,...,n — 1, we will call a point of partition of [a,b] if for it
holds s, < s, > sy41,1i.e., N —2s, 1 —2> N —2s5, —2 < N — 25,41 — 2.
71 is the point of partition of [a,b] if for it holds p — 1 < s; > so. 7, is the point
of partition of [a,b] if for it holds s,—1 < s, > ¢ — 1. Denote by I the index
set whose elements are the indices of the points of partition of [a,b]. It is clearly
that I C {1,2,...,n}. Therefore, in our case, the points of partition of [a,b] are
T1,75,7s, and I = {1,5,8}. [a,b] by the points of partition we divide into the
intervals of partition, in our case [a, 1], [T1,75], [75, 78], [T8, b], on which we consider
the functions ®(N=25=2)(¢), v € I. Tt is clearly that [a,b] can be represented as
the union of the intervals of partition.

For v € I, order in the decreasing sequence the values N — 2s, — 2, and con-
sider the functions ®(V—2sv—2) (t), respectively . Therefore, in our case we consider
PN=2s5=2) () PN -255-2) (1) $IN-251-2)(¢), respectively.

a) Firstly, consider ®N—25=2)(¢), which is continuous in [rs,b] = [r5,7s] U
[7'8, b]

a.l) Firstly, consider [15,75]. For v € {5,6,7,8} (the indices of the nodes be-
long to [r5,7s]), order in the decreasing sequence the values N — 2s, — 2 so that
the last be one which correspond to the point of partition 75, and then consid-
er the functions ®V—25»=2)(¢), respectively. Therefore, in our case we consider
PN=251-2) () PN —256-2) (1) (N —255-2) (1), respectively.

®(N=257=2)(¢t) is continuous in [rs,78] = [7g,77] U [r7, 78] and has at most
(2s7 + 2) + (257 + 2) zeros in it.

®(N=256=2) (¢) is continuous in [15, 78] = [75, 76]U[76, T8]. Let ®(N=25%=2)(¢) have
B zeros in [1g,7s]. Then, using (2.18) and applying Rolle theorem, we conclude
that ®(N—2%—1)(t) has at least G5 — 1 zeros in (7q,7s), etc., ®N=257=2)(¢) has at
least B¢ — (2s¢ — 2s7) zeros in (76,7s). Therefore, we have B — (2s6 — 2s7) <

Therefore, ®(N=2%=2)(t) has at most (2s¢ + 2) + (256 + 2) + (257 + 2) zeros in
[75, Ts].
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Let ®(V=255=2)(¢) have ag zeros in [r5,75] . Then, using (2.18) and applying
Rolle theorem, we conclude that & ~255=1)(¢) has at least ag — 1 zeros in (75, 73),
etc., ®N-25%6-2)(¢) has at least ag — (255 — 25¢) zeros in (75,73). Therefore, we
have ag — (2sg — 2s6) < (286 +2) + (256 + 2) + (257 + 2), i.e., ag < (256 + 2) +
(257 +2) + (258 + 2).

a.2) Consider [rg,b]. For v € {8,9} (the indices of the nodes belong to [s, b]),
order in the decreasing sequence the values N — 2s, — 2 so that the last be one
which correspond to the point of partition 75, and then consider the function-
s ®(V=250=2)(4)  respectively. Therefore, in our case we consider ®(N—259-2)(¢),
®(N=255=2)(¢), respectively.

®(N=25-2)(t) is continuous in [rg,b] = [rs,70] U [19,b] and has at most
(2s9 + 2) + (2s9 + 2) zeros in it.

Let ®(N=255-2)(¢) have (g zeros in [rg,b]. Then, using (2.18) and applying
Rolle theorem, we conclude that ®(N=255=1)(¢) has at least s — 1 zeros in (73,b),
etc., 8V 2%9-2)(¢) has at least g — (255 — 259) zeros in (73, b). Therefore, we have
Bs — (253 — 2s9) < (289 +2) + (289 +2), L.e., s < (253 +2) + (259 + 2).

Therefore, using a.1), a.2), we conclude that ®N—255—2)(¢) has at most
(288 +2) + 23:6(23,, + 2) zeros in [75,b].

b) Now, consider ®(N=2%5-2)(¢), which is continuous in [ry,b] = [r1, 5] U[7s, b].

b.1) Consider [, 75]. For v € {1,2,3,4,5} (the indices of the nodes belong to
[11,75]), order in the decreasing sequence the values N — 2s, — 2 so that the last be
one which correspond to the point of partition 75, and then consider the function-
s ®(N=25:=2)(4)  respectively. Therefore, in our case we consider ®(N—252-2)(¢),
B(N=253=2) () H(N=254=2) (1) (N =255-2)(f)  respectively.

®(N=252-2)(¢t) is continuous in [r1,73] = [r1,7»] U [r2, 73] and has at most
(282 + 2) + (2s2 + 2) zeros in it.

®(N—253-2)(¢) is continuous in [y, 74] = [11, 73] U [73, T4].

Let ®(V-252-2)(¢) have oz zeros in [ry,73]. Then, using (2.18) and applying
Rolle theorem, we conclude that ®(N=2%3=1)(¢) has at least a3 — 1 zeros in (71, 73),
etc., ®N=252-2)(¢) has at least as — (253 — 2s2) zeros in (71, 73). Therefore, we
have ag — (2s3 — 2s2) < (252 +2) + (252 + 2), i.e., ag < (282 +2) + (253 + 2).

Therefore, ®(N=253-2)(¢) has at most (2s2 + 2) + (253 + 2) + (2s3 + 2) zeros in
[T1,74]

®(N—254-2)(¢) is continuous in [, 75] = [y, 4] U [74, 75].

Let ®(N=254=2)(t) have a4 zeros in [r;,74]. Then, using (2.18) and applying
Rolle theorem, we conclude that &V ~25¢=1)(¢) has at least ay — 1 zeros in (71,74),
etc., ®(N=253-2)(¢) has at least oy — (254 — 2s3) zeros in (71,74). Therefore, we
have ag — (2s4 — 2s3) < (252 4+ 2) + (253 +2) + (283 + 2), i.e., as < (282 +2) +
(253 +2) + (254 + 2).

Therefore, ®(N=251=2)(¢) has at most S +_,, (25, +2) + (254 +2) zeros in [y, 75].

Finally, let ®(V=255=2)(¢) has as zeros in [r1,75]. As above, we conclude that
as <30 _,(25, +2).

b.2) Let ®(N—25-2)(t) have @5 zeros in [73,b]. In analogous way as above, by
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using the conclusions from a), we conclude that 85 < 2325(28,, +2).

Therefore, (N =255-2)(t) has at most Y_o_, (25, +2) + (255 +2) zeros in [, D).

c) Finally, consider &V 251-2)(¢), which is continuous in [a,b] = [a, 7, ]U[r, b].

c.1) Consider [a, 1]. ®V=P)(t) has at most p zeros in [a, 7;]. Let ®N—251-2)(¢)
have «a; zeros in [a,71]. Then, using (2.18) (for the point a) and applying Rolle the-
orem, we conclude that ®(V—=251-1)(¢) has at least a; zeros in (a, 1), etc., 8NP (¢)
has at least «; zeros in (a, 7). Therefore, a; < p.

c.2) By using the conclusions for ®¥~255-2)(t), from b), in analogous way as
above, we conclude that ®(N~251-2)(¢) has at most 3.°_, (25, + 2) zeros in [y, b].

Therefore, on the basis of c.1), c.2), we conclude that ®N=251-2)(¢) has at
most p+ Y0_, (25, +2) = N — g zeros in [a, D).

We may then show that ®(t) does not vanish inside [a,b] and therefore holds
a sign in it. In fact, if ®(¢) should vanish at one point in (a,b), using (2.18)
and applying Rolle theorem, we find that ®'(¢) would vanish at least two times,
®(N=1=1)(¢) would vanish at least N — ¢ times, ®(V—9)(¢) would vanish at least
N — ¢+ 1 times, etc., ®N-251-2)(¢) would vanish at least N — ¢ + 1 times, in
contraposition with the preceding deduction, because N —q¢+ 1 < N — q gives
1<0.

On the basis of the upper considerations we have just proved the following
statement:

THEOREM 2.4. Under the hypothesis that the weight function w(t) is not
identically zero in any interval contained in [a, b], the influence function ®(t) defined
by (2.15) (together with (2.16) and (2.17)) belongs to the class C™ 2%+ ~2[a, b], where
N — 25, — 2 = minj<,<n(N — 25, — 2), and one holds a sign inside [a, b].

Now, we can estimate the remainder in the formulas of the type (2.12), by
using (2.14).
19 If f(t) € ACN~1[a,b] we have

IR(I < mas [9(0)] Vi-t = |#(a0)| Vi1,

where Viy_; denotes the total variation of the function f(¥=1)(t) absolutely contin-
uous on the interval [a,b]. Because ®'(t) vanish in exact one point of the interval

(a,b) it holds (Izo € (a, b)) arr<1?%<b‘1>(t) = ®(x9).

20 If (M) (t) is bounded in [a, b], i.e., My = sup |f(N) (t)| , then we have
a<t<b

b
|R(f)] SMN/ |®(t)] dt.

30 If f € CN[a,b], because ®(t) holds a sign on (a,b) we may apply the mean
value theorem and write
b

R(f) = fM(e) / B(t)dt, €€ (ah).

a
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Example. An iterative process for computing the coefficients of s-orthogonal
polynomials in a special case, when the interval [a, b] is symmetric with respect to
the origin and the weight function w is an even function, was proposed by Vincenti
[25]. He applied his process to the Legendre case. When n and s increase, the
process becomes numerically unstable.

In [10] (see also [4]) a stable procedure for numerical construction of s-ortho-
gonal polynomials with respect to dp(t) on R is given.

Recently, a simple and numerically stable procedure for construction of o-ortho-
gonal polynomials is proposed by Milovanovi¢ and Spalevié [14].

A stable numerical procedure for calculating the coefficients A;, in (1.1) was
given by Gautschi and Milovanovi¢ [4]. Some alternative methods were proposed
by Stroud and Stancu [23], Golub and Kautsky [7], and Milovanovié¢ and Spalevi¢
[12] (see also [21]). A generalization of methods, for the weights, from [4, 12] to the
general case when s, € Ny, v = 1,...,n, was derived recently by Milovanovi¢ and
Spalevié [13].

Finally, a method for calculating the nodes and the coefficients in the gen-
eralized Chakalov-Popoviciu quadrature formulae of Radau and Lobatto type, by
using the results from [13, 14], has been proposed in [22]. We use that method,
for calculating in this example, in order to tabulate the corresponding influence
function. Consider the Legendre case with w(t) = 1 on [-1,1]. Let p = ¢ =1
and o = (1,0,1) in (2.12). Therefore, we have a symmetric task. The results show
that the nodes of the corresponding quadrature are symmetrically distributed with
respect to the origin, namely,

1 = —13 = —0.66772435790692, T =0.

The coefficients of the corresponding Chakalov-Popoviciu quadrature formula of
Lobatto type are:

Apq1 = Ap 3 =6.68946557387391(—01), A;;1 = —A; 3 =2.90757109134605(—02),
Az = A3 =8.27917955975223(—03), Ago = 5.47406124470793(—01),
Ap,o = Aoa = 5.7350380377213(—02).

The results show that the influence function is even (see Table), and

max_|®(t)] = —®(0) = 7.06(—12).

—1<t<1

TABLE

t |F1 +7 F0.5 F0.4 F0.3 F0.2 F0.1
®(t)| 0 | —4.05(—15) | —1.94(—13) | —8.23(—13) | —2.23(—12) | —4.31(—12) | —6.25(—12)

Therefore, these results can be use in estimations of the remainder given above
for the corresponding Chakalov-Popoviciu quadrature formula of Lobatto type.

All computations were done using FORTRAN in double precision arithmetics.
The numbers in parentheses denoted the decimal exponents.
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