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A CLASSIFICATION OF 2-TYPE CURVES
IN THE MINKOWSKI SPACE E?}
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ABSTRACT. We complete a classification of 2-type curves in Minkowski
spaces. Namely, we give a classification of 2-type spacelike and timelike
curves, lying fully in the Minkowski spaces Ei‘ and Ef

1. Introduction

A submanifolds of finite type were defined by Chen in [1]. Recall that a sub-
manifold M is said to be of finite type (finite Chen type) if its position vector field
x can be written as a finite sum of the eigenfunctions xg, X1, . ..,xy of the Laplace
operator A of M. More explicitly,

k
(1.1) X =xXg+ E Xi, Ax; = \iXg,
i=1
where xq is a constant vector, x; are non-constant vectors and A\; < --- < A\, are

eigenvalues of A.

The simplest submanifolds of finite type are the curves of finite type. A curve
a is said to be of (finite) k-type for some natural number £ if its Laplace operator A
has exactly k eigenvalues {1, ..., A\x} in decomposition (1.1) which are all different.
In particular, if one of the eigenvalues {A1, ..., Ax} in decomposition (1.1) is equal
to zero, a is said to be of (finite) null k-type. Moreover, in the case of null k-type
submanifolds, decomposition (1.1) is not unique.

Finite type curves in the Euclidean space E™ were studied in [1], [2] and [3].
A full classification of 1-type, 2-type and 3-type curves in the space E™ is given
respectively in [4], [6] and [8]. On the other hand, finite type curves in Minkowski
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spaces were studied in [5] and [7]. It is interesting that hyperbolas and straight
lines are the only 1-type curves in Minkowski spaces. A classification of non-planar
3-type curves in the Minkowski 3-space is given in [10]. It is proved in [1] that
arbitrary curve of k-type is contained in at most 2k-dimensional subspace of the
space E™. This implies that the dimension n of the space E™ is not greater than 2k.
Similarly, arbitrary curve of k-type is contained in at most 2k-dimensional subspace
of the Minkowski space E7', so the dimension n of the space E} is not greater than
2k + 1. Spacelike and timelike curves of 2-type, lying fully in the Minkowski space
E3} are classified in [11]. In this paper, we give a classification of all 2-type spacelike
and timelike curves, lying fully in the Minkowski spaces E{ and E}. In this way,
classification of such curves in Minkowski spaces is completed.

2. Preliminaries

In the sequel, we introduce some basic definitions and notions. Let ET' denote
the n-dimensional Minkowski space, i.e., the Euclidean space E™ with the standard
flat metric given by

g=—dz} +dr+ - +ds?,

where (21, ...,2,) is a rectangular coordinate system of E'.

Recall that arbitrary subspace W of the Minkowski space ET is said to be:

(1) spacelike if g|w is positive definite;

(2) timelike if g|w is nondegenerate of index 1;

(3) lightlike (isotropic) if g|w is degenerate.

The type into which W falls is called its causal character. In the same manner,
a vector a in the space E7' is said to be:

(1) spacelike if g(a,a) > 0 or a = 0;

(2) timelike if g(a,a) < 0;

(3) null (lightlike) if g(a,a) = 0 and a # 0.
Similarly, a curve a = «a(s) in E}" is said to be spacelike, timelike or null (lightlike), if
respectively all of its velocity vectors o(s) are spacelike, timelike or null (lightlike).

The norm of a vector a is given by ||a|| = v/|g(a,a)| and two vectors a, b are
said to be orthogonal if g(a,b) = 0.

Next, the curve a(s) is said to be of unit speed, if for its velocity holds v =
[/ (s)]| =1, i.e., if g(a'(s),a’(s)) = £1. The Laplace operator A of the curve a(s)
is defined by A = +d?/ds®. Its eigenfunctions are the functions s, cos(ps), sin(ps),
cosh(ps) and sinh(ps). Following the definition of Chen, the curve a(s) is of finite
type in the space E} if and only if it can be written in the form

a(s) = ap + bos + Z (a; cos(pis) + b; sin(p;s))

t
+ Z c;j cosh(g;s) + dj sinh(g;s)),
j=1
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where ao,bo,ai,bi,cj,dj ER", pi,g; EN,0<p1 <+ <Py, 0 <+ < g

Further, recall that an isometry of the space E7' is a diffeomorphism I : E} —
E? that preserves metric. More explicitly, g(I(a),I(b)) = g(a,b) for each a, b € E}.
We mention here that the spacelike rotation (in the spacelike 2-plane {z3,z4}) and
the timelike rotation (in the timelike 2-plane {z;,72}) in the space Ef may be
expressed respectively by matrices

10 0 0 cosh(p) sinh(p) 0 0
0 1 0 0 sinh(p) cosh(p) 0 O
0 0 cos(p) sin(p) |’ 0 0 10
0 0 —sin(p) cos(p) 0 0 0 1

Such rotations in the space E} may be expressed in a similar way ([9]).

3. A classification of 2-type curves
in the Minkowski space E}

It is known that the space E} is contained in the space Ef as its timelike
subspace, i.e., as its timelike hyperplane. Therefore, if « is a 2-type curve in E},
it is also a 2-type curve in Ef. All 2-type spacelike and timelike curves, lying fully
in E} are classified in [11]. In the following two theorems, we give a classification
of null 2-type and 2-type spacelike and timelike curves, lying fully in E{ and not
lying in its timelike hyperplane.

THEOREM 3.1. Let a(s) be a unit speed spacelike or timelike curve, with one
eigenvalue of its Laplace operator A in decomposition (1.1) equal to zero, lying
fully in E} and not lying in its timelike hyperplane. Then up to isometries of E,
« is a null 2-type curve if and only if « is a part of one of the following spacelike
circular helices:

(1) a(s) = (0,ms,ncos(ps),nsin(ps)), m?*+p?n? =1, pe€ N,m,n € Ry;

(2) a(s) = (ms,ms,ncos(ps),nsin(ps)), p°n®>=1, p€ N,m,n € Ry;

Proof. Suppose that a(s) satisfies the assumptions of the theorem and that it
is a null 2-type curve. Then «(s) can be written in one of the following forms

(a) a(s) =a+ bs+ ccos(ps) + dsin(ps);
(b) a(s) = a+ bs+ ccosh(ps) + dsinh(ps);

where p € N, a,b, c,d € R*. Denote by Ry the set of all real numbers different from
zero. Next, assume that a = (0,0,0,0) up to a translation and let b = (by, ba, b3, bs),
¢ = (c1,c2,¢3,¢4), d = (di,dz,d3,ds). In the sequel, we consider cases (a) and (b).

Case (a). Since g(a',a’') = £1 and using the linear independence of the func-
tions sin(z) and cos(z), we obtain the system of equations

(1) g(b,b) + 5(g(c,c) + g(d, d)) = £1,
(2) g(b,c) = g(b,d) = g(c,d) =0,
(3) g(c,c) —g(d,d) = 0.
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With respect to the causal character of the vectors ¢ and d, we distinguish three
subcases: (a.1) g(c,¢) = g(d,d) > 0; (a.2) g(c,c) = g(d,d) = 0; (a.3) g(c,c) =
g(d,d) < 0.

(a.1) We may assume that ¢ = (0,0, ¢3,0),d = (0,0,0, ¢3), cs # 0. The equation
(2) implies that b = (b1, b2,0,0). If b is spacelike, let by = psinh(y), by = pcosh(yp),
p € Ry, ¢ € R. Then « has the form

a(s) = (pssinh(p), ps cosh(p), c3 cos(ps), c3 sin(ps))

cosh(yp) sinh(p) 0 0

= (0, ps, 3 cos(ps), cs sin(ps)) | SPR(P) - coshle) 070
0 0 1 0

0 0 01

Up to isometries of Ef, a is a spacelike circular helix lying fully in a spacelike
hyperplane of E}, where the equation (1) gives p? + p?c3 = 1. Next, if b is timelike,
let by = pcosh(p), b2 = psinh(y), p € Ry, ¢ € R. Then « has the form

a(s) = (ps cosh(y), ps sinh(y), c3 cos(ps), cs sin(ps))

cosh(p) sinh(p) 0 0

= (ps,0, ¢3 cos(ps), s sin(ps)) | SPRP) cosh) 00
0 0 10

0 0 01

Up to isometries of E}, a lies fully in a timelike hyperplane of E{, which is a contra-
diction to the assumption of the theorem. Finally, if b is null, let b = (b1, b1, 0, 0),
by # 0. Then a has the form a(s) = (b1s,bys, cs cos(ps), ez sin(ps)), where the
equation (1) gives p?c2 = 1. Therefore, « is a spacelike circular helix with a null
axis lying fully in a lightlike hyperplane of Ef.

(a-2) In this subcase, assume that ¢ = (¢1,0,0,¢1), d = (d1,0,0,d1), ¢1 and dy
are not both equal to zero. The equation (2) implies that b = (b, ba, b3, b1). Let
by = pcos(yp), be = psin(p), p € Ro, ¢ € R. Then a has the form

a(s) = (b1s + ¢1 cos(ps) + dy sin(ps), ps cos(p), ps sin(yp),
b1 s + ¢; cos(ps) + dy sin(ps))
= (b1s + ¢1 cos(ps) + dy sin(ps), ps, 0,
1 0 0
(

0 cos(p) sin(p)
0 —sin(p) cos(p)
0 0 0

b1 s + c¢1 cos(ps) + dy sin(ps))

= O OO

Consequently, « lies fully in a 2-dimensional lightlike subspace of E{ and hence lies
in a timelike hyperplane of E{, which is a contradiction.

(a.3) It follows that ¢ and d are mutually orthogonal timelike vectors in Ef,
which is not possible.
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Case (b). Since g(¢/,a’') = £1 and using the linear independence of the func-
tions sinh(x) and cosh(x), we obtain the system of equations

2

(1) g(bvb)+%(g(d)d) —g(c,c)) = :t]-;
(2) g(b,c) = g(b,d) = g(c,d) =0,
(3) g(c,¢) + g(d,d) = 0.

With respect to the causal character of the vectors ¢ and d, we distinguish three
subcases: (b.1) g(c,¢) = —g(d,d) > 0; (b2) g(c,c) = —g(d,d) < 0; (b.3) g(c,c) =
—g(d,d) = 0.

(b.1) We may take ¢ = (0,0,0,¢4), d = (¢4,0,0,0), ¢4 # 0. The equation (2)
gives b = (0, b2, b3, 0). Let by = pcos(p), b3 = psin(p), p € Ry, ¢ € R. Then a has
the form

a(s) = (cq sinh(ps), ps cos(ip), ps sin(p), ¢4 cosh(ps))

1 0 0 0
_ . 0 cos(p) sin(p) O
= (cq sinh(ps), ps, 0, c4 cosh(ps)) 0 —sin(p) cos(y) 0
0 0 0 1

This means that « lies fully in a timelike hyperplane of E}, which is a contradiction.
(b.2) In a similar way we get a contradiction.
(b.3) We may assume that ¢ = (¢1,0,0,¢1), d = (d1,0,0,d1), ¢1 and dy are not
both equal to zero. The equation (2) gives b = (by, bs,bs,b1). Let ba = pcos(yp),
bs = psin(yp), p € Ro, ¢ € R. It follows that « has the form

a(s) = (b1s + ¢1 cosh(ps) + dy sinh(ps), ps cos(p), ps sin(yp),
b1s + ¢; cosh(ps) + d; sinh(ps))
= (b1s + ¢y cosh(ps) + d; sinh(ps), ps, 0,
1 0 0
(

0 cos(p) sin(p)
0 —sin(p) cos(p)
0 0 0

bi1s + ¢ cosh(ps) + d sinh(ps))

_ o OO

Therefore, a lies fully in a 2-dimensional lightlike subspace and hence lies in a
timelike hyperplane of E}, which is a contradiction. O

Remark 3.1. All curves of null 2-type lie fully in a hyperplane of E}.

THEOREM 3.2. Let a(s) be a unit speed spacelike or timelike curve with both
eigenvalues of its Laplace operator A in decomposition (1.1) different from zero,
lying fully in E{ and not lying in its timelike hyperplane. Then up to isometries of
E{, a is a 2-type curve if and only if a is a part of one of the following curves:

(1) a(s) = (mcosh(ts), n cos(ps), —n sin(ps), msinh(ts));

P’ +t2m?> =1, p,t€N, m,n€ Ry;
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(2) a(s) = (msinh(ts),n cos(ps), —n sin(ps), m cosh(ts));
p’n? —t2m?> =1, p,t€N, m,n€ Ry;
(3) a(s) = (kcos(ps) + I sin(ps) + m cosh(ts) + n sinh(ts), r cos(ps), —r sin(ps),
k cos(ps) + I sin(ps) + m cosh(ts) + n sinh(ts));
p’r2 =1, m?+n?2#£0, p,teN, m,nklcR;
(4) a(s) = (mcos(ps) + nsin(ps), m cos(ps) + nsin(ps), ksin(ts), k cos(ts));
?k2 =1, m?>+n®>#0, pteN, t#3p, m,ncR;
(5) a(s) = (kcos(ps) + I sin(ps) + m cos(ts) + nsin(ts),
k cos(ps) + Isin(ps) + m cos(ts) + nsin(ts),r cos(ps), rsin(ps));
p’r2=1, m?2+n?2#0, pteN, m,nklcR;
(6) a(s) = (r cos(ps), m cos(p(w — 5)), m cos(p (2w +5)) - = cos(ps)
+n.cos(3ps), 15, ~ sin(p(2w + 5)) — m sin(ps) + nsin(3ps));

p (—z—l—(l%n)z(m + 7t —2m?r? cos(2pw)) + 9n?) = £1, p€ N,
r,m,n,w € Ry;

(7) a(s) = (r sin(ps), 7 sin(ps), m cos(3ps), msin(3ps)), (3pm)? =1,
pEeN, m,r € Ry;

(8) a(s) = (0, rsin(ps), m cos(ps) + k cos(3ps), m sin(ps) + ksin(3ps));
r?+12mk=0, p*(m—-3k)2 =1, peN, r,m, k€ Ry;

(9) a(s) = (rsin(ps), 0, r cos(ps) + m cos(3ps), rsin(ps) + m sin(3ps));
r=12m, (9pm)? =1, pEN m,T € Ry;

(10) a(s) = (—% cosh(ps) — m cosh(p(2w — s)) + n cosh(3ps), r cosh(ps),

m cosh(p(w + 5)), — 12n sinh(ps) + 2 m smh( (2w — 5)) + n sinh(3ps));

P2((15)2(r* + m* 4 2m?r? cosh(2pw)) — 5™ 4 9n?) = +1, pe N,
r

(11) a(s) = (—m cosh(ps) — m cosh(p(2w — s)) + n cosh(3ps), r sinh(ps),

m cosh(p(w + s)), — 75, sinh(ps) + {5~ smh( (2w — s)) + nsinh(3ps));
P(2)20* + m* + 2m r2 cosh(2pw)) + 2522 + 9n2) = £1, p€ N,
r,m,n,w E RO;

(12) a(s) = (— ¢ p(s+29) — F cosh(ps) + n cosh(3ps), reP(s=9),
m cosh(ps), & _p(3+29) — m- smh(ps) +n smh(3ps))
p2((ﬁ) (m +4r2e _2”0) +9n )—il, p€N, r,m,n € Ry, 0 € R;
(13) a(s) = (=15, cosh(ps) — 12n cosh( (2w — s)) + n cosh(3ps), r sinh(ps),

3

inh(p(w + 8)), — 15, sinh(ps) + {5~ smh( (2w — s)) + nsinh(3ps));
)2(rt + m* + 2r?m? cosh(2pw)) + ’""'m +9n?) = PEN,
w € R(),‘
—@e_p(s‘*”) —i cosh(ps) + n cosh(3ps), re?=? m sinh(ps),
e P(s+29) _ M ginh(ps) + nsinh(3ps));

pz((%)z(m +4r2e 2”9) +m - +9n?) =1, pe N, r,m,n € Ry, 6 € R;
(15) a(s) = (12n sinh(ps) + {5, s1nh( (s — 2w)) + n sinh(3ps), r cosh(ps),

m cosh(p(w + s)), 1;n cosh(ps) + % cosh(p(s — 2w)) + n cosh(3ps));
P2 ()2 (=r* — m* — 2r’m? cosh(2pw)) — % -9n?)=-1, peN,

—~~
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r,m,n,w € Ry;
(16) a(s) = ({5 sinh(ps) + msmh( (s — 2w)) + n sinh(3ps), r sinh(ps),

m cosh(p(w + s)), 75, cosh(ps) + 1’”—2 cosh( (s — 2w)) + n cosh(3ps));
P*((5=)*(=r* = m* = 2r?m? cosh(2pw)) + rom? _m —-9n%) =41, peN,
r,m,n,w € Ro,

(17) a(s) = (=& e~ P(5420) —I— smh(ps) —I— n sinh(3ps), reP(s=0)
m cosh(ps), —e p(s+29) + 15~ cosh(ps) + n cosh(3ps));
—p2((12n) (m?+4r2e _2”9) +9n ) =—-1,pe N, r,m,n € Ry, 0 € R;
(18) a(s) = (m sinh(ps) + 2 m s1nh( (s — 2w)) + nsinh(3ps), rsinh(ps),

m sinh(p(w + 5)), 75, cosh(ps) + {5~ cosh( (s — 2w)) + n cosh(3ps));
P*((3:)%(=r* = m* = 2r?m? cosh(2pw)) + = ';m —-9n?) =41, peN,
r,m,n,w € Ry;

(19) a(s) = (—g—Z —p(s+20) —I— mz — sinh(ps) + n sinh(3ps), reP(s=0)
m sinh(ps), & e p(S“(’) + % cosh(ps) + n cosh(3ps));
p?(— (12n) (m?+4r2e _2”9) %2—9712) =41,peN,r,m,n € Ry, 0 € R.

Proof. Suppose that a(s) satisfies the assumptions of the theorem and that it
is a 2-type curve. Then «a(s) can be written in one of the following forms

(a) a(s) = a+ bcos(ps) + csin(ps) + dcosh(ts) + esinh(ts);

(b) a(s) = a + bcos(ps) + csin(ps) + d cos(ts) + esin(ts);

(¢) a(s) = a + bcosh(ps) + csinh(ps) + d cosh(ts) + e sinh(ts);
where p,t € N, a,b,c,d,e € R*. Denote by Ry the set of all real numbers different
from zero. Next, assume that 0 < p < ¢ and that a = (0,0,0,0) up to a translation.
Denote vectors b, ¢, d, e by b = (b, ba,bs,b4), ¢ = (c1,¢2,c3,¢4) and so on. In the
sequel, we consider cases (a), (b) and (c).

Case(a). Since g(a/,a’) = £1 and using the linear independence of the func-

tions sin(z) and cos(x) as well as sinh(z) and cosh(z), we get the system of equa-
tions:

(1) 2 (g(b,b) + gle,¢) + & (g(e,e) — g(d, d)) = 1,

2) gle,¢) — g(b,b) =0,

(3) gle,e) +g(d,d) =0,

(4) g(b,d) = g(b,e) = g(c,d) = g(c,e) = g(b,c) = g(d,e) = 0.

With respect to the causal character of vectors d and e, we distinguish three sub-
cases: (a.1) gle,e) = —g(d,d) > 0; (a.2) gle,e) = —g(d,d) < 0; (a.3) g(e,e) =
—g(d,d) =0.

(a.1) In this subcase, assume that d = (e4,0,0,0), e = (0,0,0,e4), eq4 # 0. The
equation (4) implies b = (0, b2, b3,0), ¢ = (0,¢2,c3,0). Next, let bo = pcos(pyp),
co = psin(py), p € Ry, ¢ € R. Then the equations (2) and (4) imply b3 = psin(py),
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c3 = —pcos(pp). Hence a has the form

a(s) = (eq cosh(ts), pcos(p(e — s)), psin(p(p — s)), €q sinh(ts))
= (eq cosh(ts), p cos(ps), —psin(ps),
1 0 0

. 0 cos(pp) sin(py)
casinh®) | o _ in(pp)  cos(pp)
0 0 0

_= o O O

where the equation (1) becomes p?p? + t?e7 = 1. Up to isometries of Ef, « lies
fully in E}, which gives form (1).

(a-2) We may assume that e = (e1,0,0,0),d = (0,0,0,e1), e; # 0. This subcase
is analogous to the subcase (a.1), so we get that (up to isometries of E}) o has the
form a(s) = (ey sinh(ts), pcos(ps), —psin(ps), e; cosh(ts)), where the equation (1)
gives p?p® —t?e? = 1. Therefore, a is a spacelike or a timelike curve lying fully in
E¢, which gives form (2). The causal character of a depends on the choice of the
constants.

(a.3) We may take that d = (d;,0,0,d,), e = (e1,0,0,e1), d; and e; are not
both equal to zero. The equation (4) gives b = (b1, b2, b3,b1), ¢ = (c1,¢2,c3,¢1).
Let by = pcos(py), co = psin(py), p € Ro, ¢ € R. Then equations (2) and (4)
imply b3 = psin(py), c3 = —pcos(py). Hence « has the form

a(s) = (by cos(ps) + c1 sin(ps) + dy cosh(ts) + eq sinh(ts), p cos(p(p — s)),
psin(p(e — s)), by cos(ps) + ¢1 sin(ps) + d; cosh(ts) + e; sinh(ts))
= (b1 cos(ps) + ¢ sin(ps) + dy cosh(ts) + ey sinh(ts), p cos(ps), —psin(ps),
b1 cos(ps) + ¢1 sin(ps) + dy cosh(ts)
1 0 0

. 0 cos(pp) sin(pp)
+ ey sinh(ts)) 0 —sin(py) cos(py)
0 0 0

_ o O O

where the equation (1) gives p?p? = 1. Up to isometries of E}, a is a spacelike
curve lying fully in a lightlike hyperplane of Ef, which gives form (3).

Case(b). After using the equation g(a’(s),a’(s)) = £1, we get that the argu-
ments of the functions sin(z) and cos(z) are the numbers {2p, 2t,p+1¢,t —p}. Since
0 < p < t, we distinguish two subcases: (b.1) t —p # 2p; (b.2) t — p = 2p.

(b.1) t — p # 2p. The corresponding system of equations has the form

(1) 2 (g(b,b) + g(c, &) + L (g(d, d) + g(e,e)) = 1,
2) gle,e) — g(b,b) =0,
(3) gle,e) — g(d,d) =0,
(4) g(b,c) = g(b,d) = g(b,e) = g(c,d) = g(c,e) = g(d,e) = 0.



50 SUCUROVIC

With respect to the causal character of vectors d and e, we distinguish three sub-
cases: (b.1.1) g(e,e) = g(d,d) > 0; (b.1.2) g(e,e) = g(d,d) = 0; (b.1.3) g(e,e) =
g(d,d) > 0.

(b.1.1) Take that e = (0,0, e3,0), d = (0,0,0,e3), es # 0. Then the equation
(4) implies b = (b1, b2,0,0,), ¢ = (c1,¢2,0,0). If g(b,b) = g(c,c) > 0, then there ex-
ist four mutually orthogonal spacelike vectors b, ¢, d, e in Ef, which is impossible.
If g(b,b) = g(c,c¢) < 0, then there exist two mutually orthogonal timelike vec-
tors b and ¢ in Ef, which is impossible again. Finally, if g(b,b) = g(c,c¢) = 0,
take b = (b1,b1,0,0), ¢ = (c1,¢1,0,0), by and ¢; are not both equal to zero.
We obtain that o« has the equation a(s) = (b; cos(ps) + ¢ sin(ps), by cos(ps) +
c1 sin(ps), e3 sin(ts), ez cos(ts)), where the equation (1) becomes t?e2 = 1. Thus «
is a spacelike curve, lying fully in a lightlike hyperplane of E}, which gives form
(4).

(b.1.2) Assume that d = (di,d1,0,0), e = (e1,€1,0,0), di and e; are not both
equal to zero. Then (4) implies that b = (b1,b1,bs,b4), ¢ = (c1,c1,¢3,c4). Let
bs = pcos(py), ba = psin(py), p € Ry, ¢ € R. The equations (2) and (4) give
cs = —psin(py), ¢4 = pcos(py). Thus a has the form

ts) + ey sin(ts),
ts) + ey sin(ts),

a(s) = (b1 cos(ps) + c1 sin(ps) + di cos(
by cos(ps) + ¢; sin(ps) + d; cos(
peos(p(y + s)), psin(p(y + s)))

= (b cos(ps) + ¢ sin(ps) + d; cos(
) + dy cos(

ts) + ey sin(ts),

ps
by cos(ps) + ¢; sin(ps ts) + ey sin(ts),
10
peos(ps), psin(ps)) | |
’ 0 0 cos(pp) sin(py)
0 0 i

where the equation (1) becomes p?p? = 1. Up to isometries of Ef, a is a spacelike
curve lying fully in a lightlike hyperplane of Ef, which gives form (5).

(b.1.3) Tt follows that d and e are mutually orthogonal timelike vectors in Ef,
which is not possible.

(b.2) Since g(a',a’) = £1, we get the system of the equations:

2

(1) 2 (g(b,b) + g(c,¢)) + &(g(d, d) + g(e,e)) = 1,
2) 2 (gle,€) — g(b,0)) + pt(g(b,d) + g(e,e)) = 0,
(3) gle,e) — g(d,d) =0,
(4) —p°g(b,c) + pt(g(b,e) — g(c,d)) = 0,
(5) g(d,e) =0,
(6) glc,e) — g(b,d) =0,
(7) g(b,e) + g(c,d) = 0.
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Again we distinguish three subcases: (.2.1) g(e,e) = g(d,d) > 0; (b.2.2) g(e,e) =
g(d,d) = 0; (b.2.3) g(e,e) = g(d,d) < 0.

(b.2.1) We may take d = (0,0,ds,0), e = (0,0,0,ds3), d3 # 0. The equations (6)
and (7) give b = (by,ba,b3,b4), ¢ = (c1,c2,—by,b3). If b, d, e (c, d, e) are linearly
dependent vectors, then by = b2 = 0 (¢; = c2 = 0), so a lies fully in a 3-dimensional
subspace of the space E{. Moreover, if b; # 0 and ca # 0 (by # 0 and ¢; # 0), then
a lies fully in the space Ef. In the sequel, we consider each of these cases.

(b2].].) b1 7é 0, Co 7é 0 (OI' b2 7é 0, C1 ;é 0)

Let by = pcos(pp), c1 = psin(pp), bo = mcos(pd), co = msin(pd), p,m € Ry,
0,0 € R, #0,pp # S+kn,pd # kr, k € Z. Then the equations (2) and (4) imply
that b3 = 57 (m” cos(2pf) — p® cos(2pp)), ba = 5z (M sin(2pf) — p sin(2py)).
Consequently, a has the form

a(s) = (pcos(p(p — s)), mcos(p(f — s)),
% cos(p(26 + s)) — % cos(p(2¢ + s)) + ds cos(3ps),
% sin(p(26 + s)) — % sin(p(2¢ + s)) + ds sin(3ps)).

Putting u = s — p and w = 0 — @, we get that
2 2
a(u) = (pcos(pu), m cos(p(w — u)), l’g—da cos(p(2w + u)) — 15—(13 cos(pu)

+ ds cos(3pu), % sin(p(2w + u)) — % sin(pu)
1 0 0 0
01 0 0

0 0 cos(3pp) sin(3py)
0 0 —sin(3py) cos(3pp)
where the equation (1) becomes p?(§ (m” —p?)+(577)* (m* +p* —2m?p? cos(2pw) ) +
9d3) = +1. Up to isometries of Ef, a is a spacelike or a timelike curve lying fully
in B, which gives form (6).

(b212) b1 = bQ =0 (OI' Cl =Cy = 0)

The equation (4) implies by = 0 and thus b = (0,0, b3,0), ¢ = (¢1,¢2,0,b3). If
bs = 0, then the equation (2) gives ¢ = (¢1,¢1,0,0), ¢1 # 0. Therefore, « has the
equation a(s) = (e sin(ps), ¢ sin(ps), ds cos(3ps), ds sin(3ps)), where the equation
(1) becomes (3pd3)? = 1. It follows that « is a spacelike curve, lying fully in a
lightlike hyperplane of E{. This gives us form (7). Next, suppose that b3 # 0. If ¢
is spacelike, let ¢; = psinh(pf), ca = pcosh(pf), p € Ry, § € R. Then the equation
(2) gives p? + 12b3dsz = 0 and « has the equation

+ ds sin(3pu))

Y

a(s) = (psinh(pf) sin(ps), p cosh(ph) sin(ps), bs cos(ps) + ds cos(3ps),
bs sin(ps) + ds sin(3ps))
= (0, psin(ps), bz cos(ps) + ds cos(3ps),
cosh(pf) sinh(ph)
sinh(pf) cosh(ph)
0 0
0 0

bz sin(ps) + ds sin(3ps))

O = OO
= o O O
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where the equation (1) becomes p?(bs — 3d3)? = 1. Up to isometries of E}, a is a
spacelike curve lying fully in a spacelike hyperplane of E}, which gives form (8). If ¢
is timelike, then « lies fully in a timelike hyperplane of Ef, which is a contradiction.
Finally, if ¢ is null, let ¢; = b3 cosh(pf), ¢ = bz sinh(ph), bs € Ry, € R. Then (2)
gives bs = 12d3, so a has the form

a(s) = (bs cosh(ph) sin(ps), bs sinh(pf) sin(ps), bs cos(ps) + dz cos(3ps),
bs sin(ps) + ds sin(3ps))

= (b3 sin(ps), 0, b3 cos(ps) + d3 cos(3ps),
cosh(pf) sinh(pd) 0 0O
by sin(ps) + ds sin(3ps)) sinh(pf) cosh(pd) 0 O
0 0 1 0
0 0 0 1

Then the equation (1) becomes (9pds)? = 1 and up to isometries of Ef, v is a
spacelike curve lying fully in a lightlike hyperplane of the space Ej{, which gives
form (9).

(b.2.2) Take that d = (di,d1,0,0), e = (e1,€1,0,0), i.e., that d = Xe, A € R,
d; and e; are not both equal to zero. The equations (6) and (7) imply (1 +
A2)g(e,d) = 0 and thus g(c,d) = 0. Then g(b,d) = 0, and thus b = (by, b1, b3, bs),
¢ = (e1,c1,c3,c4). We have the same vectors b, ¢, d, e as in the subcase (b.1.2), so
we get the same form (5) of the curve a.

(b.2.3) It follows that d and e are two mutually orthogonal timelike vectors in
E}, which is not possible.

Case (c). After using the equation g(a', ') = £1, we get that arguments of the
functions sinh(z) and cosh(z) are the numbers {2p, 2t,p+t,t —p}. Since 0 < p < t,
we distinguish two subcases: (¢.1) t — p # 2p; (¢.2) t — p = 2p.

(c.1) t — p # 2p. The corresponding system of equations has the form:

(1) 2 (g(c,e) — g(b,b) + £ (g(e,e) — g(d, d)) = 1,
2) g(d,d) + g(e,e) = 0,
(3) g(b,b) + g(c,¢) =0,
(4) g(b,c) = g(b,d) = g(b,e) = g(c,d) = g(c,e) = g(d,e) = 0.

With respect to the causal character of vectors d and e, we distinguish three sub-
cases: (c.1.1) g(e,e) = —g(d,d) > 0; (c.1.2) g(e,e) = —g(d,d) < 0; (¢.1.3) g(e,e) =
—g(d,d) = 0.

(c.1.1) Assume that d = (e4,0,0,0), e = (0,0,0,¢e4), e4 # 0. The equation (4)
implies b = (0, by, b3,0), ¢ = (0, ¢2, ¢3,0), while the equation (3) gives b = ¢ = 0,
which is a contradiction.

(c.1.2) Again we get a contradiction.

(c.1.3) Assume that d = (d;,0,0,d;), e = (e1,0,0,e1), d; and e; are not both
equal to zero. Then the equations (3) and (4) imply b = ¢ = 0, which is a contra-
diction.
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(¢.2) t — p = 2p. The corresponding system of equations has the form:

(1) 2 (gle,¢) — g(b,0)) + £ (g(e,e) — g(d,d)) = 1,
(2) g(e,e) +g(d,d) =0,
(3) 2 (g(b,b) + glc, ) + pt(g(c,€) — g(b,d)) = 0,
(4) p°g(b,c) + pt(g(c,d) — g(b,e)) =0,
(5) g(d,e) =0,
(6) g(b,d) + glc,e) = 0,
(7) g(b,e) + g(c,d) = 0.

With respect to the causal character of vectors d and e, we distinguish three sub-
cases: (¢.2.1) g(e,e) = —g(d,d) > 0; (c.2.2) g(e,e) = —g(d,d) < 0; (¢.2.3) g(e,e) =
—g(d,d) =0.

(c.2.1) We may assume that e = (0,0,0,e4), d = (e4,0,0,0), es # 0. The
equations (6) and (7) give b = (b1, ba,bs3,b4), ¢ = (ba,ca,c3,b1). If b, d, e (¢, d, €)
are linearly dependent vectors, then « lies fully in a timelike hyperplane of Ef,
which is a contradiction. Next, comparing the numbers b, and ¢, as well as b3 and
cs, the following possibilities may occur:

(c.2.1.1) b3 > 3, b2 > c3;

(c212) b3 <3, bi>c3 (orb3>c3, b3<cd);
(c213)ba=ca #0, bi>c2 (orb3>c3, bs=c3#0);
(c.2.1.4) b3 < c3, b3 < c;

(c.21.5)ba=ca #0, bi<c3 (orb3<c3, bs=c3#0);

(0216) b2 = C2 75 0, b3 = C3 7é 0.

In the sequel, we consider them separately.

(¢.2.1.1) Let by = pcosh(py), ca = psinh(py), bs = m cosh(ph), c3 = m sinh(ph),
m p € Ry, p,0 € R, ¢ # 6. Then the equations (3) and (4) imply b =

126 (p? cosh(2py) +m? cosh(2ph)), by = 126 (p? sinh(2pp) +m? sinh(2pf)). Thus
a has the form

a(s) = (126 cosh(p(2¢ — s)) — 2 cosh (26 — s)) + e4 cosh(3ps),
pcosh(p(p + s)), mcosh( (0 + ),
1ge sinh(p(2¢ — s)) + 13- smh(p(20 —5)) + eq sinh(3ps)).

(
)

Putting v = s + ¢ and w = 0 — , we obtain that

afu) = ( (pu) — {32 cosh( (2w )) + e4 cosh(3pu), p cosh(pu),
m cosh(p(u + w)), lge sinh(pu) + 7% (p(2w — u))
cosh(3py) 0 0 - Slnh(3p<p)
. 0 1 0 0
+ ey sinh(3pu)) 0 01 0 ,
—sinh(3pp) 0 0  cosh(3py)
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where the equation (1) becomes p2((12e4) (p* +m* + 2m?p? cosh(2pw)) — 1(p* +
m?) 4+ 9¢3) = £1. Up to isometries of Ef, a is a spacelike or a timelike curve lying
fully in B}, which gives form (10).

(¢.2.1.2) Using the similar methods as in the previous subcase (¢.2.1.1), we get
that a has the form

a(u) =( 1_22 (pu) — T cosh(p(2w — u)) + e4 cosh(3pu), psinh(pu),

m cosh(p(u + w)) sinh(pu) + 135; smh( (2w — u)) + e4 sinh(3pu)),

=
7 12e4
where the equation (1) becomes pz((12e4) (p* + m* + 2m?p? cosh(2pw)) + 5 (p* —
m?) +9e2) = £1. Hence « is a spacelike or a timelike curve lying fully in E{, which
gives form (11). In the case b3 > 3, b3 < ¢3, up to isometries we obtain the same
form (11).

(¢.2.1.3) Let bs = mcosh(ph), ¢z = msinh(pﬁ) m € Ry, 0 € R. Then the

equations (3) and (4) imply b1 = —5-(2b3 + m? cosh(2pf)), by = (203 +
m? sinh(2pf)). It follows that a has the equation

126

ofs) = (e (0(26 — 5)) + €4 cosh(3ps), boe?*, m cosh(p(6 + 5)).
;7246_103 + % 51nh(p(20 — S)) +eq smh(3ps))

Putting v = s + 0, we get that

alu) = (g—bge*p(“”e) — % cosh(pu) + e4 cosh(3pu), bye?(*~?) 'm cosh(pu),

€a

b3 —p(u+26) m?
TG — 15; sinh(pu)

cosh(3pd) 0 0 —sinh(3ph)
. 0 1 0 0
+ e4 sinh(3pu)) 0 0 1 0 )
—sinh(3p8) 0 0  cosh(3ph)

where the equation (1) becomes p?((

)2 (m? + db3e=?) — 2 4 9¢3) = £1. Up
to isometries of E}, « is a spacelike or a timelike curve lylng fully in Ef, which
gives form (12). In the case b3 > c3, bs = c3 # 0, (up to isometries) we obtain the
same form (12).

(c.2.1.4) Using the similar methods as in the subcase (¢.2.1.1), up to isometries
of Ef we get that o has the form

a(s) = (— 15 cosh(ps) 1253 cosh( (2w — s)) + e4 cosh(3ps), psinh(ps),

msinh(p(s + w)), —m sinh(ps) + smh( (2w — s)) + e4 sinh(3ps))

126

where the equation (1) becomes p*((z5;)?(p* +m* +2m?p? cosh(2pw)) + @ +

9¢3) = 1. Thus « is a spacelike curve lying fully in E{, which gives form (13).
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(¢.2.1.5) Using the similar methods as in the subcase (¢.2.1.3), up to isometries
of E} we obtain that a has the equation
b

a(u) = (- %e‘p(““g) - % cosh(pu) + e4 cosh(3pu), bye?(v=0)

m sinh(pu), %e*p(“”e) — % sinh(pu) + e4 sinh(3pu))

where the equation (1) becomes p?((152)*(m” + 4bge %) + m72 +9¢3) = 1. Thus
« is a spacelike curve lying fully in E}, which gives form (14). In the case b3 < c2,
bs = ¢3 # 0 (up to isometries) we obtain the same form (14).

(¢:2.1.6) The equations (3) and (4) give by = —5—(b3 + b3) = —ba. It follows
that b, ¢, d, e are linearly dependent vectors and since d is timelike, « lies fully in
a timelike hyperplane of Ef, which is a contradiction.

(¢.2.2) This subcase is analogous to the subcase (¢.2.1). Thus the similar com-
putations give forms (15), (16), (17), (18) and (19) of the curve a.

(c.2.3) Since d and e are two linearly dependent null vectors, « lies in a 3-
dimensional subspace of Ef. Let d = (di,d;,0,0), e = (e;,e1,0,0), d; and e;
are not both equal to zero. Then d = Xe, A € R, and the equations (6) and (7)
give (1 — A?) g(c,d) = 0. Hence we distinguish two subcases: (c.2.3.1) g(c,d) = 0;
(.2.3.2) X2 = 1.

(¢.2.3.1) The equation (7) gives g(b,e) = 0 and thus b = (b1, b1,b3,b4), ¢ =
(c1,c1,¢3,c4). Then g(b,d) = g(c,e) =0, so the equations (3) and (4) give b= ¢
0, which is a contradiction.

(¢.2.3.2) The equation (6) implies g(b+ Ac,d) = 0. Next, equations (3) and (4)
give that d and b — Ac are two linearly independent null vectors. On the contrary, if
d and b— Ac are two linearly dependent null vectors, then b— Ac = ud, p € R. Thus
(6) implies g(Ac+ ud, d) +g(c, Ad) = 0, i.e., g(c,d) = 0, which gives a contradiction,
as in subcase (¢.2.3.1). Next, assume that b — Ac = (—aqg, ao,0,0), ag # 0. Then
b+ Ac = (bo, bo,bs,bs), by # 0 and the last two equations for b — Ac and b + Ac
give b = %(bo — ag, by + ao,b3,b4), c= %(0,0 + b, bo — ao,b3,b4). Let m = bo—Tao’
n= WT“O Consequently, a has the form

a(s) = (mcosh(ps) + Ansinh(ps) + d,e**P%, n cosh(ps) + Am sinh(ps) + dy e P*,
%eAps, %6)\[)5)_

Finally, let b3 = pcos(ph), by = psin(ph), p € Ry, 8 € R. Then we get that

a(s) = (mcosh(ps) + Ansinh(ps) + d,e**P% n cosh(ps) + Am sinh(ps) + d; e*P*,

1 0 0 0
0 1 0 0
1 __Aps
zpe’ ", 0) 0 0 cos(pf) sin(ph)

0 0 sin(pd) — cos(pf)

and thus « lies fully in a timelike hyperplane of Ef which is a contradiction.
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4. A classification of 2-type curves
in the Minkowski space E}

Since a 2-type curve is contained in at most 4-dimensional subspace of the space
ET, we study the cases when « lies in a spacelike, timelike or lightlike hyperplane
of E}. The case when « lies fully in a timelike hyperplane of E} is equivalent to the
case when « lies fully in E}. This case has already been studied in the theorems
3.1 and 3.2.

THEOREM 4.1. Let a(s) be a unit speed spacelike or timelike curve, with both
eigenvalues of its Laplace operator A in decomposition (1.1) different from zero,
lying fully in E} and not lying in its timelike hyperplane. Then up to isometries of
E}, a is a 2-type curve if and only if « is a part of one of the following curves:

(1) a(s) = (0,mcos(ps), msin(ps), nsin(ts),ncos(ts)), p?m? +t*n? =1,
patEN) t7£3p’ manERO;

2

(2) a(s) = (O,msin(ps) rcos(p(s — 0)), W os(p(26 + s)) — W cos(ps)
+n cos(3ps), 15, sin(p(20 + s)) — 15~ sm(ps) + nsin(3ps)),

PP 4 (0)2((r — m?2)? + 4r°m? sin® (pf)) + 9n?) =1, p€ N,
e R, r,m,n€ Ry;

(3) a(s) = (m sin(p(s + 0)), msin(p(s + 0)), r cos(ps), % cos(ps) + ncos(3ps),
Toy Sin(ps) + nsm(3p8))
p2(§+(12n) +9n?) = pEN, 6€R, r,m,né€ERy.

Proof. Suppose that a(s) satisfies the assumptions of the theorem and that it
is a 2-type curve. Then proof of the theorem 3.2 implies that subcases (b.1.1) and
(b.2.1) are now the only possible cases. With respect to the causal character of
vectors b, ¢, d, e, it is easy to see that in all other subcases we get a contradiction.
In the sequel, we consider subcases (b.1.1) and (b.2.1) separately.

(b.1.1) g(e,e) = g(d,d) > 0. If g(b,b) = g(e,c) > 0, then b, ¢, d, e are mutually
orthogonal spacelike vectors, so we may take b = (0,2,0,0,0), ¢ = (0,0, b2,0,0),
d =(0,0,0,d4,0), e =(0,0,0,0,d4), by # 0, dy # 0. Thus « has the form

a(s) = (0, be cos(ps), by sin(ps), dy cos(ts), dy sin(ts)),

where the equation (1) becomes p?b3 + t2d2 = 1. Up to isometries of E7, « is a
spacelike curve lying fully in a spacelike hyperplane of the space E}, which gives
form (1).

(b.2.1) g(e,e) = g(d,d) > 0. Take that d = (0,0,0,d4,0), e = (0,0,0,0,dy),
dy # 0. Further, vectors b and ¢ belong to a spacelike or to a lightlike hyperplane of
E}. If b and ¢ belong to a spacelike hyperplane, then they are all spacelike vectors.
Let b = mq f+mad+mge, ¢ = nih+naf+nsd+nge, where f = (0,0,d4,0,0), h =
(0,d4,0,0,0), my,mo,mg,ny,n9,n3,n4 € Ry. It follows that b = (0,0, b3, by, bs),
¢ = (0,¢9,c3,c4,c5). Next, the equations (6) and (7) give ¢ = (0,¢2,c3,—bs,by)

and the equations (2) and (4) give by = 12d4 (b2 —c2 —c2), bs = 6}T4b303. Let
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bs = pcos(ph), c3 = psin(ph), p € Ry, 6 € R. Then « has the form

a(s) = (0, c2sin(ps), pcos(p(s — 0)), 17 cos(p(20 + ) — 752 cos(ps)

2
Co

+ dy cos(3ps), % sin(p(26 + s)) — 33; sin(ps) + dy sin(3ps)),

where the equation (1) becomes p2(p2;Cg + m((/ﬂ — 3)? + 4p*c3 sin®(ph)) +
9n?) = 1. Up to isometries of E7, a is a spacelike curve lying fully in a spacelike
hyperplane of the space E?, which gives form (2). Finally, if b and ¢ belong to a
lightlike hyperplane of E}, let b = my f+mad+mase, ¢ = nyh+ns f+nsd+nge, where
f =10,0,d4,0,0), h = (d4,d4,0,0,0), my,ma,m3,n1,n2,n3,n4 € Ry. It follows
that b = (0,0, b3,b4,b5), ¢ = (¢1,c1,¢3,c4,¢5). Further, equations (6) and (7) give
¢ = (c1,¢1,¢3,—bs, bs) and from equations (2) and (4) follows by = 7-(b3 — ¢3),
bs = ﬁbgCg. Let b3 = pcos(ph), cs = psin(pd), p € Ry, 8 € R. Thus a has the
form

a(s) = (e sin(ps),cr sin(ps), peos(p(s = 6)), gy cos(p(20 + ) + d cos(3ps),
% sin(p(26 + s)) + dy sin(3ps)).

Putting u = s — 0, we get that

a(u) = (¢ sin(p(u + 0)), c1 sin(p(u + 0)), p cos(pu), % cos(pu) + d4 cos(3pu),

p
1 0 0 0 0
T5q; sin(pu) + dasin(3pu)) [0 0 1 0 0 ,
0 0 0 cos(3ph) sin(3pb)
0 0 0 —sin(3pf) cos(3ph)
where the equation (1) becomes pz(é + (%)2 +9n2) = 1. Therefore, a is a

spacelike curve lying fully in a lightlike hyperplane of E}, which gives form (3) and
completes the proof of the theorem. O
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