SPECTRAL RADIUS AND SPECTRUM OF THE COMPRESSION OF A SLANT TOEPLITZ OPERATOR

Taddesse Zegeye and S.C. Arora

Communicated by Miroljub Jevtić

ABSTRACT. A slant Toeplitz operator A_{φ} with symbol φ in $L^{\infty}(T)$, where T is the unit circle on the complex plane, is an operator whose representing matrix $M=(a_{ij})$ is given by $a_{ij}=\langle \varphi,z^{2i-j}\rangle$, where $\langle\cdot,\cdot\rangle$ is the usual inner product in $L^2(T)$. The operator B_{φ} denotes the compression of A_{φ} to $H^2(T)$ (Hardy space). In this paper, we prove that the spectral radius of B_{φ} is greater than the spectral radius of A_{φ} , and if φ and φ^{-1} are in H^{∞} , then the spectrum of B_{φ} contains a closed disc and the interior of this disc consists of eigenvalues with infinite multiplicity.

1. Introduction

Let $\varphi \in L^\infty(T)$. Then $\varphi(z) \sim \sum_{i=-\infty}^\infty a_i z^i$, where $a_i = \langle \varphi, z^i \rangle$ is the i-th Fourier coefficient of φ and $\{z^i: i \in Z\}$ is the usual basis, and Z is the set of integers. The slant Toeplitz operator A_φ is defined as follows: $A_\varphi(z^k) = \sum_{i=-\infty}^\infty a_{2i-k} z^i$. Furthermore, by [4, Proposition 1] $A_\varphi = W M_\varphi$, where M_φ is a multiplication operator and $W z^{2n} = z^n$, $W z^{2n-1} = 0$, for $n \in Z$.

 B_{φ} , the compression of A_{φ} to $H^{2}(T)$, is by definition $B_{\varphi} = PA_{\varphi}|_{H^{2}}$. Equivalently, $B_{\varphi}P = PA_{\varphi}P$, where P is the orthogonal projection from L^{2} on to H^{2} . By [4, p. 846], $B_{\varphi} = WT_{\varphi}$, where T_{φ} is the Toeplitz operator on $H^{2}(T)$.

2. Spectral radius

Our aim is to prove that the spectral radius of B_{φ} is greater than the spectral radius of A_{φ} . To do this we need the following lemmas.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B35; Secondary 47A10.

 $[\]it Key\ words\ and\ phrases.$ Toeplitz Operator, Slant Toeplitz Operator, Compression, Spectrum.

LEMMA 2.1. $(I-P)M_{z^n} \to 0$, as $n \to \infty$ in the strong operator topology, where M_{z^n} is the multiplication by z^n on $L^2(T)$.

PROOF. Let $f \in L^2(T)$ and $f(z) \sim \sum_{i=-\infty}^{\infty} a_i z^i$ be its Fourier expansion. Then $(I-P)M_{z^n}f = (I-P)\Big(\sum_{i=-\infty}^{\infty} a_i z^{i+n}\Big) = \sum_{i=-\infty}^{-n-1} a_i z^{i+n}$. Since, $\Big\|\sum_{i=-\infty}^{-n-1} a_i z^{i+n}\Big\|^2 = \sum_{i=-\infty}^{-n-1} |a_i|^2 \to 0$, as $n \to \infty$, the assertion follows.

The proof of the following lemma is similar to that of [1, Theorem 5].

LEMMA 2.2. $M_{\bar{z}^n} B_{\varphi} P M_{z^{2n}} \to A_{\varphi}$, as $n \to \infty$, in the strong operator topology.

PROOF. From Lemma 2.1, we know $(I-P)M_{z^n} \to 0$. This implies that $M_{\bar{z}^n}(I-P)M_{z^n} \to 0$ which is equivalent to $M_{\bar{z}^n}PM_{z^n} \to I$. Consider

$$M_{\bar{z}^n}B_{\wp}PM_{z^{2n}}=M_{\bar{z}^n}PA_{\wp}PM_{z^{2n}}=(M_{\bar{z}^n}PM_{z^n})(M_{\bar{z}^n}A_{\wp}M_{z^{2n}})(M_{\bar{z}^{2n}}PM_{z^{2n}}).$$

Since, for each $n=1,2,\ldots,M_{\bar{z}^n}A_{\varphi}PM_{z^{2n}}=A_{\varphi}$, [4, Proposition 3], and the first and the last factors converge to I, as $n\to\infty$, the assertion follows.

The following theorem is proved in [4, p. 851] but we give here a different proof.

THEOREM 2.3. $||A_{\omega}|| = ||B_{\omega}||$.

PROOF. For each $n=1,2\ldots$, we have $\|M_{\bar{z}^n}B_{\varphi}PM_{z^{2n}}\| \leq \|B_{\varphi}\|$. So from Lemma 2.2, we get $\|A_{\varphi}\| \leq \|B_{\varphi}\|$. Since B_{φ} is the compression of A_{φ} , we get $\|A_{\varphi}\| \geq \|B_{\varphi}\|$. The proof is complete.

We are now ready to prove our main result.

Theorem 2.4. The spectral radius of B_{φ} is greater than the spectral radius of A_{φ} .

PROOF. First, we prove the following claim by induction.

Claim: For $k=1,2,3,\ldots,\ M_{\bar{z}^n}B_{\varphi}^k\bar{P}M_{z^{2^kn}}\to A_{\varphi}^k$, as $n\to\infty$ in the strong operator topology.

For k=1, the claim is true by Lemma 2.2. Let m be any positive integer and assume that it is true for $k \leq m$, and consider

$$\begin{split} & \| M_{\bar{z}^n} B_{\varphi}^{m+1} P M_{z^{2^{m+1}n}} - A_{\varphi}^{m+1} \| \\ & = \| M_{\bar{z}^n} (B_{\varphi}^{m+1} P M_{z^{2^{m+1}n}} - M_{z^n} A_{\varphi}^{m+1}) \| = \| B_{\varphi}^{m+1} P M_{z^{2^{m+1}n}} - M_{z^n} A_{\varphi}^{m+1} \| \\ & \leq \| B_{\varphi}^{m+1} P M_{z^{2^{m+1}n}} - P M_{z^n} A_{\varphi}^{m+1} \| + \| P M_{z^n} A_{\varphi}^{m+1} - M_{z^n} A_{\varphi}^{m+1} \| \end{split}$$

By Lemma 2.1, the second term tends to 0 as n approaches infinity. As to the first term, we use $M_{z^n}A_{\varphi}=A_{\varphi}M_{z^{2^n}}$ [4, Proposition 3] and get the following

approximation

$$\begin{split} \|B_{\varphi}^{m+1}PM_{z^{2^{m+1}n}} - PM_{z^n}A_{\varphi}^{m+1}\| &= \|PA_{\varphi}B_{\varphi}^{m}PM_{z^{2^{m+1}n}} - PA_{\varphi}M_{z^{2^n}}A_{\varphi}^{m}\| \\ &\leq \|A_{\varphi}\| \, \|B_{\varphi}^{m}PM_{z^{2^{m+1}n}} - M_{z^{2^n}}A_{\varphi}^{m}\| \\ &= \|A_{\varphi}\| \, \|(B_{\varphi}^{m}PM_{z^{2^mn}} - M_{z^n}A_{\varphi}^{m})M_{z^{2^mn}}\| \\ &\leq \|A_{\varphi}\| \, \|B_{\varphi}^{m}PM_{z^{2^mn}} - M_{z^n}A_{\varphi}^{m}\| \\ &= \|A_{\varphi}\| \, \|M_{z^n}B_{\varphi}^{m}PM_{z^{2^mn}} - A_{\varphi}^{m}\| \end{split}$$

By the induction assumption, the last expression tends to 0 as n approaches infinity. Therefore, the claim is proved. The fact that $||M_{z^n}B_{\varphi}^kPM_{z^{2^kn}}|| \leq ||B_{\varphi}^k||$, for $k = 1, 2, \ldots$, and the above claim imply that $||B_{\varphi}^k|| \geq ||A_{\varphi}^k||$. This in turn implies that $r(B_{\varphi}) \geq r(A_{\varphi})$, where r represents spectral radius.

Definition 2.5. $H^{\infty} = \{ \varphi \in L^{\infty}(T) : \langle \varphi, z^n \rangle = 0 \text{ for } n < 0 \}$. The elements of H^{∞} are called analytic and their conjugates are called coanalytic.

COROLLARY 2.6. $r(A_{\varphi}) = r(B_{\varphi})$, if φ is analytic or coanalytic.

PROOF. If φ is analytic, then $B_{\varphi} = A_{\varphi}|_{H^2}$. Therefore, for each $k = 1, 2, 3, \ldots$, $||B_{\varphi}^k|| \leq ||A_{\varphi}^k||$. This implies $r(B_{\varphi}) \leq r(A_{\varphi})$. This together with Theorem 2.4, gives the required assertion. If φ is coanalytic, then $B_{\varphi}^* = A_{\varphi}^*|_{H^2}$. By the same argument, we get $r(A_{\varphi}^*) = r(B_{\varphi}^*)$, Consequently $r(A_{\varphi}) = r(B_{\varphi})$.

The following fact is indicated in [4, p. 856], but we give a different proof below.

THEOREM 2.7. If φ is invertible in $L^{\infty}(T)$, then $r(A_{\varphi}) \geq [r(A_{\varphi^{-1}})]^{-1}$.

PROOF. First, we show that $\varphi(z)$ is invertible if and only if $\varphi(z^2)$ is invertible. Suppose φ is invertible. Then $\varphi\varphi^{-1}=1$. Therefore, by [4, p. 846] $W^*\varphi W^*\varphi^{-1}=1$. Equivalently $\varphi(z^2)\varphi^{-1}(z^2)=1$. Hence $\varphi(z^2)$ is invertible. Conversely, if $\varphi(z^2)$ is invertible, then $\varphi(z^2)\varphi^{-1}(z^2)=1$. This and [4, p. 847] implies $W\varphi(z^2)W\varphi^{-1}(z^2)=1$, which is equivalent to $\varphi\varphi^{-1}=1$. Therefore φ is invertible.

Let $h(z) = \varphi(z^2)$ be invertible. Then $hh^{-1} = 1$. This and [4, p. 847] implies that $(Wh)(Wh^{-1}) = 1$. Therefore $(Wh)^{-1} = W(h^{-1})$. This in turn implies that, for each $n = 1, 2, 3, \ldots$

$$(\varphi^{-1})_n = (\varphi_n)^{-1},$$

where

$$\varphi_n = \overbrace{W(W(\dots(W|h|^2)|h|^2\dots)|h^2|)}^{n \text{ times}}.$$

From this and [4, p. 851], we get

$$r(A_{h^{-1}}) = \lim_{n \to \infty} \|(\varphi^{-1})_n\|_{\infty}^{1/2n} = \lim_{n \to \infty} \|(\varphi_n)^{-1}\|_{\infty}^{1/2n}$$
$$\geq \left[\lim_{n \to \infty} \|\varphi_n\|_{\infty}^{1/2n}\right]^{-1} = [r(A_h)]^{-1}$$

Therefore, $r(A_h) \ge [r(A_{h^{-1}})]^{-1}$.

Since $\sigma(A_{\varphi}) = \sigma(A_{\varphi(z^2)})$, where σ denotes the spectrum [4, Lemma 9], it follows that $r(A_{\varphi}) \geq [r(A_{\varphi^{-1}})]^{-1}$.

Corollary 2.8. $r(B_{\varphi}) \geq r(B_{\varphi^{-1}})^{-1}$, if φ and φ^{-1} are analytic or φ and φ^{-1} are coanalytic.

PROOF. This is an immediate consequence of Corollary 2.6 and Theorem 2.7.

3. Spectrum

Ho [4] showed that, for invertible φ in L^{∞} , the spectrum of A_{φ} contains a closed disk consisting of eigenvalues of A_{φ} . We also show, for φ and φ^{-1} in H^{∞} , that the spectrum of B_{φ} contains a closed disc and the interior of this disc consists of eigenvalues with infinite multiplicity, by using the idea of the proof of Proposition 10 in [4].

Theorem 3.1. Let φ and φ^{-1} be in H^{∞} . Then the spectrum of B_{φ} contains a closed disc and the interior of this disc consists of eigenvalues with infinite multiplicity.

PROOF. Assume first that $\lambda \neq 0$. Suppose that $B^*_{\bar{\varphi}(z^2)} - \lambda$ is onto. Since $B_{\varphi(z^2)} = T_{\varphi}W$, we have, for f in H^2 ,

$$(B_{\bar{\varphi}(z^2)}^* - \lambda)f = (W^*T_{\varphi} - \lambda)f = (W^*T_{\varphi} - \lambda P_e)f \oplus (-\lambda P_0 f)$$

where P_e is the projection on the closed span of $\{z^{2n}: n=0,1,2\dots\}$ in $H^2(T)$ and $P_0=I-P_e$. Now let $0\neq g_0$ be in $P_0(H^2)$. Since $B_{\bar{\varphi}(z^2)}^*-\lambda$ is onto, there exists a nonzero vector f in $H^2(T)$ such that $(B_{\bar{\varphi}(z^2)}^*-\lambda)f=g_0$. But then from the computations above, we have $(W^*T_{\varphi}-\lambda P_e)f=0$, because $g_0\neq 0$. Since $\lambda\neq 0$ and T_{φ} is invertible [2, Theorem 7.1], it follows that $\lambda W^*T_{\varphi}(\lambda^{-1}-T_{\varphi^{-1}}W)f=0$, and the fact that W^* is an isometry implies that $(\lambda^{-1}-T_{\varphi^{-1}}W)f=0$. This in turn implies $\lambda^{-1}\in\sigma_p(B_{\varphi^{-1}(z^2)})$, where σ_p denotes the point spectrum. Since $\dim P_0(H^2)=\infty$, it follows that λ^{-1} is of infinite multiplicity. Now, for $\lambda\in\rho(B_{\bar{\varphi}(z^2)}^*)$, the resolvent of $B_{\bar{\varphi}(z^2)}^*$, the operator $B_{\bar{\varphi}(z^2)}^*-\lambda$ is invertible (hence onto), so we have

$$D=\{\lambda^{-1}:\lambda\in\rho(B^*_{\bar{\varphi}(z^2)})\}\subseteq\sigma_{\rho}(B_{\varphi^{-1}(z^2)}),$$

Since $B_{\varphi(z^2)} = T_{\varphi}W$, $B_{\varphi} = WT_{\varphi}$ and T_{φ} is invertible, we have $\sigma_{\rho}(B_{\varphi(z^2)}) = \sigma_{\rho}(B_{\varphi})$ [3, Problem 61]. Therefore $D \subseteq \sigma_{\rho}(B_{\varphi^{-1}})$. So by replacing φ^{-1} with φ , we have shown that for any invertible φ in H^{∞} , the spectrum of B_{φ} contains a disc consisting of eigenvalues with infinite multiplicity. Therefore, by the fact that the spectrum of any operator is compact, $\sigma(B_{\varphi})$ contains a closed disc and the interior of this disc consists of eigenvalues with infinite multiplicity.

REMARK 3.2. If φ and φ^{-1} are coanalytic, then $T_{\varphi}T_{\varphi}^{-1} = T_{\varphi}^{-1}T_{\varphi} = I$ [2, Theorem 7.1]. Therefore, one can repeat the proof above and arrive at the same conclusion as Theorem 3.1, that is, if φ and φ^{-1} are coanalytic, then the spectrum

of B_{φ} contains a closed disc and the interior of this disc consists of eigenvalues of infinite multiplicity.

REMARK 3.3. The radius of the closed disc contained in $\sigma_p(B_{\varphi})$ is equal to $(r(B_{\varphi^{-1}}))^{-1}$, because if $D_0 = \{0\} \cup \{\lambda^{-1} : |\lambda| > r(B_{\varphi^{-1}})\}$, then $D_0 \subseteq \{\lambda^{-1} : \lambda \in \rho(B_{\varphi^{-1}}^*)\} \cup \{0\} \subseteq \sigma_p(B_{\varphi})$ and the radius of the disc D_0 is equal to $(r(B_{\varphi^{-1}}))^{-1}$. Hence $r(B_{\varphi}) \geq [r(B_{\varphi^{-1}})]^{-1}$. This relation is also proved in Theorem 2.7.

Remark 3.4. If $\varphi(z)=1$, then $r(B_{\varphi^{-1}})=r(B_{\varphi})=1$ by the spectral radius formula for A_{φ} [4, p. 851] and Corollary 2.6. Hence, the spectrum of B_{φ} is the closed unit disc by Theorem 3.1 and Remark 3.3. Since the eigenvalues are of infinite multiplicity, it follows that the essential spectrum of B_{φ} is the same as the spectrum of B_{φ} .

References

- A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964), 89-102.
- [2] R.G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York and London, 1972.
- [3] P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1979.
- [4] M.C. Ho, Properties of slant Toeplitz operators, Indiana Univ. Math. J.(c) 45 (1996), 843-862.

Bahir Dar University Department of Mathematics P.O. Box 79, Bahir Dar Ethiopia

(Received 13 01 2000)

(Revised 10 09 2001)

bdtc@telecom.net.et

Department of Mathematics University of Delhi Delhi 110007 India