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ABSTRACT. The groupoid identity z(zy) = y appears in definitions of several
classes of groupoids, such as Steiner loops (which are closely related to Steiner
triple systems) [9, 10], orthogonality in quasigroups [4] and others [2, 12]. We
have considered in [8] several varieties of groupoids that include this identity
among their defining identities, and here we consider the variety V of semi-
groups defined by the same identity. The main results are: the decomposition
of a V semigroup as a direct product of a Boolean group and a left unit semi-
group; decomposition of the variety V as a direct product of the variety of
Boolean groups and the variety of left unit semigroups; constructions of free
objects in V and the solution of the word problem in V.

1. The structure of V semigroups

The variety of semigroups with xxy = y will be denoted by V. We will pay
attention to some structural properties first.

PROPOSITION 1. Each V semigroup is right quasigroup (i.e., it is left cancella-
tive and right solvable).

PrOOF. We have zy = 2z = zzy = xxz = y = z and z = xy is the solution
of the equation zz = y. O

PROPOSITION 2. The identity xyz = yxz holds in each V semigroup.

ProOF. We first prove the special case zyx = yxx. We have, xyzr = yryxxyr =
yryyr = yxx. Then zyz = zyxxrz = yrrrz = yxz. g

COROLLARY 1. In any V semigroup the following hold:
(1) TYTrZ = Yz; (iti) 2?2 = y? < zy = yx;

(i)  (zy)? =y?; (iv) z=vyVur=vy = 22 =y>

ye.
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COROLLARY 2. For any V semigroup (S,-) and any H C S, the subsemigroup
of S generated by H is {hiha...hsh | hj,h € H, i #j = h; # hj,s > 0} where
also hy(1y - -hos)h = h1 ... hsh for each h; € H, s > 0 and any permutation o on
{1,...,s}.

By [3, Theorem 1.27] and Proposition 1, we have that every V semigroup is
isomorphic to a direct product of a group and a left unit semigroup (i.e., a right zero
semigroup, and from what follows it will be clear why we prefer the term ‘left unit’
instead of ‘right zero’). Though it is known result, we clarify it in this particular
case, as follows.

Let (S, -) be a V semigroup. The set of left units in S and the set of idempotents
in S coincide, and 2 is a left unit (i.e., an idempotent) in S for each z € S. Denote
by E the set E = {z? | * € S}. We have that E is nonempty and it is a left unit
subsemigroup of S.

PROPOSITION 3. E contains all left units of S and ES =S = SE.
ProOOF. S ={z-2? |2 € S} CSE C S, hence ES=S = SE. a0

Let S/E = {zE | © € S} and define an operation in S/E by zF - yE = zyE.
The operation is well defined.

ProOPOSITION 4. S/E is a Boolean group.

PRrROOF. Note that E € S/E since E = 2°E, for z € S. We have E - 2E =
rE=xE-FE and (¢zE)? =zE -zE =2°E =E. O

(We note that what we call here Boolean group is also known as “elementary
2-abelian group”.)

PROPOSITION 5. Let S be a'V semigroup generated by a set X. Then
1)  E={s*|zeX},

(2)  S/E=({«B| € X)),

(3) tE=yE = ay € E,

(4) eE=yEAN2? =9y> = 2=1.

ProOOF. (1) For z € S either z € X or x = ay, y € X, implying 22 = 3.

(2) It is obvious since zyE = ¢EyE.

(3) Note that zE = yE implies (Vz € X)(3t € X) x2? = yt? which by Corollary
1(ii) means that (Vz € X) z2? = y2?2 and, equivalently, (Vz € X) 2 = zyz. Hence
zy is a left unit i.e., xy € E.

(4) Let zE = yE and 22 = 2. By (3), zy = u® € E so 2> = y? = u? and hence
zy =z ie, z=y. a

If G is a Boolean group and E is a left unit semigroup, then their direct product
G x E is a V semigroup. The opposite statement is also true.

THEOREM 1. A semigroup is a V semigroup iff it is isomorphic to a direct
product of a Boolean group and a left unit semigroup.
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ProOF. Let S be a V semigroup, and define a mapping ¢ : S - S/E x E by
o(z) = (zE,2?), where S/E and E are defined as before. Then by Proposition 5(4)
we have ¢(z) = p(y) = (zE,2?) = (yE,y?) = zE=yEAz? =942 = z =y,
i.e., p is injective, and it is a bijection too since for given (zE,y?) € S/E x E
we have (vE,y%) = (yayE, (yzy)?) = ¢(yay). Finally, p(zy) = (ayE, (zy)*) =
(zEyE, 2*y?) = ¢(x)p(y), i.e., ¢ is an isomorphism as well. O

We will consider the Boolean groups for a moment. They are commutative
and if X is a base (i.e., a minimal generating set) of a Boolean group G then
G = (Ban(X), +), where Bgn(X) is the set of all finite subsets of X and + denotes
the set theoretical operation of symmetric difference. Namely, given g € G, there
exist uniquely determined x; € X such that g = 122 ...z, (up to commutativity),
and then g — {z1,22,...,z,} is the required isomorphism. As a consequence we
have that |G| = 2!X! when X is finite and |G| = |X| when X is infinite, and if ¥’
is another base of G then |X| = |Y|. Thus, up to isomorphism, there is a unique
Boolean group with given base. Each Boolean group is also isomorphic to the
abelian group (V,+) of a vector space over Z/2Z which in n-dimensional case is
isomorphic to (Z/22)™.

Also, let us state a few facts about left unit semigroups: they are defined by
the identity zy = y, and there is a unique left unit semigroup on each set.

Now, by Theorem 1, we have the following property.

PROPOSITION 6. If S is a finite V semigroup then |S| = 2"k for some integers
r>0,k>0.

It is clear that for any integers r > 0 and k& > 0 there is a V semigroup with
cardinality 2"k, and S is unique (up to isomorphism) with the property |S/E| = 2".
It follows that the pair (r, k) uniquely determines the semigroup S with |S/E| = 27,
|E| = k. Thus we have:

PROPOSITION 7. The number of all nonisomorphic V semigroups with m ele-
ments is equal to s + 1, where m = 2%q, q is odd.

Let S be a finite V semigroup with cardinality 2"k generated by n generators,
ie, S = (X), |X| = n, such that |S/E| = 2", |E| = k. We investigate a bit the
connections among n, k and r. Note that r < n, £ < n. Namely, by Proposition
5 (1), |E| < |X]ie., k <n and, by Proposition 5 (2), |S/E| < 2{zElz€X} < 2lX]
i.e., r < n. Let a denote the equivalence on X defined by zay < z? = y%. Let
t = max(|z/al, € X). Then r > t—1 and k is equal to the number of equivalence
classes of a. Indeed, by Proposition 5(4) we have y € z/a, x #y = zE # yE.
So,7r=|{zFE |z € X} >tandr >¢t—1in case when E € {zE | z € X} i.e.,

22 = x for some x € X. Also note that for at most one y € x/a it is true that

v =y.

Theorem 1 gives rise to the question of the structure of the variety V. We will
show that V = BG ® LE, where BG denotes the variety of Boolean groups, and £E
denotes the variety of left unit semigroups. For that aim we will use the results
on unindexed products of algebras and varieties stated in [13]. Namely, given two
algebras A and B of arbitrary types an unindexed product C = A ®B is an algebra
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with universe C' = A x B that has a basic n-ary operation t for each pair (¢{!,t5) of

n-ary term operations ¢{! in A and tZ in B, defined by t((z},z!),..., (z!,z")) =
(M (xh,...,x"), (tB(z",... x")). These are all basic operations of C. If V; and

Vs are varieties, then the variety generated by all unindexed products A; ® As,
A; €V, is called product of V; and Vs, and is denoted by V; ® Vs.
For unindexed products we have the following properties [13]:

C < A ® B iff there exist A; < A, B; < B such that C = A; ® B;.
O(A ® B) = O(A) ® ©(B), where O(A) denotes the congruence lattice
of the algebra A.

There exists an epimorphism ¢ : A®B — C iff there exist epimorphisms
(f)liA—)Cl and¢2:B—>C2 and C =2 C; ® Cs,.

An algebra belongs to V1 ®Vs if and only if it is isomorphic to an unindexed
product of an algebra in V; and an algebra in V.

LEMMA 1. Let G € BG and E € LE. Then G x E is the same algebra as
G®E.

PROOF. Denote by %, 4+, - the binary operations of G x E, G, E respectively.

Let ¢ = (t1,t2) be an n-ary operation in G ® E, where t;, ¢t are n-ary term

operations in G, E respectively. We have t;(xy,...,2,) = z;, + --- + x;, where

{ir, ... i} CA{L,...,n} and to(z1,...,2,) = x; for some j € {1,...,n}. Then,

(), () = (ta (), o)) = (o ) =
" ! "

(z},, @) %o (2], @) ) * (2, 2) * (2], 27), i.e., t is derived operation from x. [

From the previous lemma, Theorem 1 and the results mentioned above we
obtain the following theorem.

THEOREM 2. V =BG ® LE and if G € BG, E € LE then:

(i) S < G x E iff there exist G; < G, E; < E such that S = Gy x E;.
(i) ©(G xE)=0(G) x 0(E).
(iii) There exists an epimorphism ¢ : GXE — S iff there exist epimorphisms
d)l:G—)Sl aﬂd¢21E—)SQ andS%Sle2.
Knowing that the congruence lattice of a group is modular, and the lattice of
equivalences on a set A is modular iff |A| < 3, we get the following result.

COROLLARY 3. The congruence lattice of a V semigroup S is modular iff |E| <
3, where E is the left unit subsemigroup of S.

REMARK 1. The variety V is also interesting since it is defined by a single
identity that holds in both of the varieties BG, £LE. One could obtain the fact
V = BG ® LE from another (syntactical) point of view. Namely, the varieties BG,
LE are independent, in the sense of [5], i.e., there exists a polynomial p(z,y) of
two variables in the signature {-} such that p(z,y) = z in each Boolean group and
p(x,y) = y in each left unit semigroup (e.g. p(z,y) = xy?). The variety BG has
defining (semigroup) identities zzy = y, vy = yx and the variety £E has a single
defining identity xy = y. Hence, the procedure proposed in [5] can be used for
finding the defining set of (semigroup) identities for BG ® LE, giving the following
set of (semigroup) identities: xzy = y, zyt® = yat?, t(zy)? = ty?, zt?(t2?)? = =,
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t?yt?t? = xyt?, t(tx’ty?)? = t(xy)?. All of them are of course consequences of
zxy =y (Proposition 2, Corollary 2). Hence, BG ® LE is the variety of semigroups
satisfying zzy = y. Some other similar examples of product varieties are considered
in [6] and [7].

2. Free semigroups in V

Here we focus on free objects in the variety of semigroups V. As an introduction
to what follows we give an example of a special class of V semigroups.

ExaMmpPLE 1. Let A be a set, and denote by B(A) its Boolean set, i.e., the set
of all subsets of A. Define an operation x on B(A) x B(A) by (R,S) * (T,U) =
(R+ S+ T,U). Then (B(A) x B(A),*) is a V semigroup which is commutative
if and only if A = (. For the semigroup (B(A) x B(A),*) we have that (S,5) is
left unit where S C A and {(R,S) | R,S € Ban(A)}, {(R,{a}) | RC A, a € A},
{(R,{a}) | R € Ban(A), a € A} are its subsemigroups.

We will present three rather simple constructions of free objects and some
properties of the free objects will be given too.

The first, direct construction is related to Example 1. Let B # () be a given
set and let Fp = {(C,b) | C € Bgn(B), b € B}. The set Fp will serve as a universe
of a free V semigroup with free base B. C' can be considered as “the content set
of an element” and b as “the tail”. Further on the singleton set {t} will be written
simply as ¢ (depending of the context), the set theoretical operation difference of
two sets X and Y will be denoted by X — Y and we will identify the element b € B
with the element ((}, ) € Fpg, in such a way obtaining B C Fg. Define an operation
x on Fg by

(C1,by) * (Ca,b2) = (C1 4+ by + Cy, by)
for all (Cl, bl), (02, bz) € Fp.
THEOREM 3. (Fg, *) is a free semigroup in V with free base B.

PROOF. Let u = (Cl,bl), v = (CQ,bQ), w = (C3,b3) € F. Then we have

(u*v)*w:(Cl+b1+02,b2)*(03,b3): (Cl+b1+02+b2+03,b3) =
= (C1,b1) x (Cy + by + C3,b3) = u* (v*w)

as well as
uxuxv=ux*(Cp+b +Cob)=(Cy+b +C1+b +Co,b2) =(Ca,b2) =w.
Hence, Fp € V.

The rest of the proof is derived by induction on the cardinality of the content
set.

The set B generates Fig since (C,b) = (B,¢)x (C —¢,b) = ¢x(C —¢,b) if c € C.

Let (G, 0) be any V semigroup and f : B — G a mapping. We extend f to a
mapping f : Fp — G inductively in the following way.

r _ f(b)) C:w
Jen = {f(c) 0 F((C—e,b), c
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The fact that f is well defined follows by induction and Proposition 2. Clearly, it is
well defined for the base elements, and for elements with |C| = 1. If ¢; # c2 € C and
if f is well defined for elements with smaller content set and g = f((C'—{c1, 2}, b)),
then

fle) o f((C =e1,b) = fler) o f(e2) 0.9 = flea) o f(er) 0 g = flez) o f((C = c2,D)).

To complete the proof we check that f is a homomorphism. Let u = (C4,by),
v = (Cs,b2). At first we consider several base cases:
(1) C1 =0, Co = 0: Then uxv = (b1,bs) and f(u) o f(v) = f(br) 0 f(bs) =
S((b1,b2)) = f(ux*v).
(2) o :Aw, CQA# @, b € C’Q:A Then u xv = (b1 + CQ,bQ) = (CQ — bl,bg)
and f(u) o f(v) = f(b1) o f((C2,b2)) = f(b1) o f(b1) o f((C2 = b1,b2)) =
f((CQ —bl,bg)) = f(’LL*’l)) R R
(3) Cy = @, Csy 75 @, by ¢ Cy: Then uxv = (b1 + CQ,bQ) and f(u) o f(’l}) =

f(b1) o f((Ca,b2)) = f((C + b1,b2)) = fuxv).

Finally we consider the inductive case:

(4) C1 #0,c€Cr: f(u)o f(v) = f(c) o f((C1 —c,b1)) 0 f((C2,b2)) =
f(e) o f((C1 = ¢, b1) % (C2,b2)) = f(c) o f(((C1 —¢) + b1 + C2,b2)) = R
There are two subcases here.
(41) ceEb +Cy: uxv= (Cl + by + Cz,bz) = ((Cl - C) + ((bl + 02) - C),bg)

and R = f(c) o f(¢) o f(((C1 = ¢) + (b1 + C2) = ¢),b2)) = f(u xv),

(42) c¢bi+Co: R=f((C1 =) +b1+Cs+0),b)) =
= f((C1+ b1 + Ca,b2)) = f(u*v). O

A free V semigroup with free base B can also be constructed using the free
semigroup B™ consisting of all nonempty words over the alphabet B with concate-
nation of words as operation. For that purpose we will use the construction of
(Fg, *), although it can be done independently. Let < be a well ordering of the
set B and let Fj; consists of all words biby...bpb (b,b; € B, n > 0) in Bt such
that i < j = b; < bj. If we define an operation *' by biby...b,b* cica...crc =
didy ...dpciff by xbox -+ % b, xbkcy xcy*---xcpxc=dy *xdy *---*xdp, *c, then
(Fg,*") is a free V semigroup with free base B.

Theorem 2 enables us to give one more construction of the free V semigroup. If
B is a nonempty set then (Bgn(B), +) is a free Boolean group with free base B and
the left unit semigroup (B,-) on B is also free. Now, consider the direct product
(s, ") = (Ban(B), +) X (B,) where (C1,by) +" (Ca,bz) = (Cy + Ca,by). (Ff, ")
is certainly free in V because of the properties of product varieties, with free base
{(b,b) | b € B}. Namely, given (C,b) € F}j, where C = {b1,...,b,} C B, b € B,
we have (C,b) = (b1,b1) *" -+ (by, by) =" (b,b) *"" (b,b). The mapping ¢ : Fg — Fp,
defined by ¢((C,b)) = (C + b,b) is an isomorphism from (Fpg, *) onto (Fpj,*").

Knowing how the free ¥V semigroups look like, it is clear that any free V semi-
group with finite free base is also finite, in fact we have the following theorem.
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THEOREM 4. Let S be a finitely generated V semigroup with n element base.
Then S is free if and only if |S| = 2"n.

PRroOOF. If S is free with n element free base then, according to previous con-
structions, |S| = 2"n. On the other hand, if |S| = 2"n and S has a base B with
n generators then, by Proposition 5(i),(ii), we have |S/E| < 2™ and |E| < n which
means that |S/E| = 2", |E| = n, i.e., S is free by the third construction of free
objects in V. O

In most of the varieties we considered in [8] the class of free objects was inheri-
table. But this is not a case in the variety V, since any nontrivial free ¥V semigroup
contains a left unit subsemigroup. Furthermore, having the ‘right’ number of ele-
ments in a subsemigroup of a free V semigroup is still not sufficient for freeness, as
shown by the next example.

EXAMPLE 2. Let (Fg,*') be the free V semigroup with a four element base
B ={a,b,c,d},a < b < c<d. Then G = {aa, bb, cc, dd, beda, acdb, abdc, abed}
is its subsemigroup which is not free, even though it has 22 - 2 elements.

3. The word problem for V

Let S be a V semigroup with a finite base B. Let S be a factor semigroup
of F by some congruence ~ generated by a finite set of defining pairs ¢; ~ s;,
where t;,s; € Fpj fori = 1,...,n. The word problem is solvable for S if there is an
algorithm such that for any u,v € Fp it is possible to determine whether v ~ v.
The word problem is globally solvable for V if there exists an algorithm that solves
the word problem for any such V semigroup.

Since F'p is finite when B is finite, the word problem for the variety V is trivially
solvable. Here we show that solving the word problem for V semigroups reduces to
solving the word problem for Boolean groups and left unit semigroups.

Let S = Fj/ ~ where B is finite set and the congruence ~ is generated by
a finite set of defining pairs ¢; ~ s;, where t;,s; € Fpy for i = 1,...,n, and let
u,v € Ff. Then t; = (¢],t)), s; = (s§,s), v = (v, u"), v = (v',v"). Denote by
~1 the congruence on (Ban(B),+) generated by the pairs ¢} ~; s, and by ~» the
congruence on the left unit semigroup (B, -) generated by the pairs ¢} ~y s/.

LemMA 2. (u/,u") ~ (v',0") if and only if u' ~1 v and u" ~y V", for any
(u',u"), (v',v") € Fg.

PROOF. One direction of this statement is easy i.e., (u',u") ~ (V',v") =

u' ~q v Au" ~y v". For the other direction note the following: (t},t!) ~ (s},s¥)

implies (0,t) ~ (0, s}) (since (0,t]) = (¢],t)) «" (¢},¢})) and also implies (¢;,b) ~

(2] (R
(s},b) for all b € B (since (t;,b) = (¢},t)) =" (0,b)). Hence, t; ~1 s} = (t},b) ~
(s},b) for all b € B and ¢} ~o s = (0,t]) ~ (0,s}). Moreover, for any z',y’ €
Ban(B), ' ~1 y' = (2',b) ~ (y',b) for all b € B and for any z",y" € B,
2"~y y" = (0,2") ~ (0,y"). Hence, if v’ ~; v' and u" ~g v then (v',u") =
(0, ) ¥ (B,u") ~ (01, B) #" (0, 0") = (u/ "), .
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Note that if ~; is defined as previously, then u’ ~; v" if and only if there exist
k ]

i1y...,0k € {1,2,...,n} such that v’ + v = ijl &, + s;J Also the word problem
is trivially solvable for left unit semigroups, since any equivalence is a congruence
in them.
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