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Abstract. We calculate the homotopy colimits of toric quasi-join diagrams
that naturally appear in the shelling process of toric varieties [2]. Our objective
is to give a suÆciently complete description of these spaces with the emphasis
on those quasi-join diagrams which resemble the diagrams associated with lens
spaces. The central result is a \recognition" theorem which is intended to serve
as a principal result in a homological description of more complex, shellable
spaces.

The problem of describing the geometric and combinatorial structure of toric
varieties has attracted a lot of attention both in algebraic geometry and combina-
torics [3], [10], [6], [4]. In [2] a new approach was developed, an approach based on
the so called shelling diagrams, diagram techniques and fragment calculations. The
question of describing the fragments of spaces, appearing in the shelling process,
leads to special diagrams de�ned over the face poset of a simplex.

One of the objectives of this paper is to emphasize the role of these, so called
quasi-join diagrams, in understanding the structure of general toric varieties. For
example, a corollary of the recognition theorem, allows us to o�er another inter-
pretation or explanation for some results of [5].

Let � and �0 be complete fans in R2 generated by vectors v1 = (1; 0), v2 =
(0; 1), v3 = (�1; 0), v4 = (0;�1) and v01 = (1; 0), v02 = (0; 1), v03 = (�1; 1),
v04 = (�1;�1). The fans � and �0 are combinatorial isomorphic, but it was shown in
the example 3.8 from [5] that cohomology algebras of the associated toric varieties
X� and X�0 are not isomorphic. From our point of view, this phenomenon is a
consequence of the fact that the varietiesX� andX�0 are constructed from di�erent
diagrams over the same poset

X� ' hocolim(S2 _ S2  S3 ! pt) and

X�0 ' hocolim(S2 _ S2  L(1; 1; 2)! pt)

where L(1; 1; 2) is the lens space.
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1. Introduction

The functor X : P ! Top from a poset (or a small category) P to the category
Top of compactly generated spaces (or local Hausdor� spaces) is a diagram of

spaces. This means that diagrams over poset P are objects in the categories TopP ,
and morphisms are natural transformations. A morphism X ! Y of diagrams
X : P ! Top and Y : Q ! Top is a pair (f; �) = �, where f : P ! Q is
a poset map and � a family of maps f�c : Xc ! Yfc j c 2 Pg such that for

every arrow c
g
! c0 in P , Yfg Æ �c = �c0 Æ Xg. For diagrams X; Y : P ! Top,

the morphism (IdP ; �) 2 MorTopP (X;Y ) is isomorphism X and Y if and only if
there is a morphism (IdP ; �), 2 MorTopP (Y;X) such that (8c 2 P ) (�c Æ �c =
idXc

and �c Æ �c = idYc).

Definition 1.1. Let Bn be the face poset of the (n � 1)-simplex �n�1 (i.e.,
the poset P(f1; : : : ; ng) � f;g ordered by inclusion), and X1; : : : ; Xn, topological
spaces. A diagram X : Bn ! Top de�ned by

Xa :=
Y
i2a

Xi; for a 2 Bn

is a quasi-join diagram. If X1 = � � � = Xn = A, then the diagram X is called an A-
quasi-join diagram, or simply a quasi-join diagram. If for every a � b the morphism
X
a
�
!b

:
Q

i2aXi !
Q

j2bXj is a projection, then X is called a join diagram.

The homotopy colimit of the diagram X : P ! Top is a quotient space

hocolimP X =
a
p2P

�(P�p)�Xp

Æ
�

where � is a \naturally de�ned" equivalence relation (see e.g. [14] for details). For
example, if X is a join diagram [12], then hocolimBn X = X1 � � � � � Xn. Many
interesting properties of the homotopy colimit construction and the important tools
for its calculation can be found in [1], [7], [12], [14]. Now we formulate the central
question of this article.

Problem 1.1. What can be said about the homotopy colimit of a quasi-join

diagram in general, and in particular when

(a) X1 = � � � = Xn = S1, or
(b) X1 = � � � = Xn = K(G;n) for G Abelian group and n � 1?

2. Lens spaces as quasi-join diagrams

In this section we focus our attention to lens spaces and interpret them as
homotopy colimits. This is the �rst place where quasi-join diagrams naturally
appear.

2.1. Let r1; r2; : : : ; rn and m be integers such that (ri;m) = 1 for every
i 2 f1; : : : ; ng. Using the m-th primitive root ! of 1 (for example, ! = e2�i=m), we
can de�ne Z=m action on Cn with

Z=m�Cn ! Cn; (l; (z1; : : : ; zn)) 7�! (!lr1z1; : : : ; !
lrnzn):
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The action can be restricted to the sphere S(Cn) � S2n�1, because jz1j2 + � � � +
jznj2 = 1 imply j!lr1z1j2 + � � � + j!lrnznj2 = j!lr1 j2jz1j2 + � � � + j!lrn j2jznj2 =
jz1j2 + � � �+ jznj2 = 1.

Definition 2.1. The lens space L(r1; r2; : : : ; rn;m) is the space of Z=m-orbits
S(Cn)=(Z=m).

The following properties are well known:

Proposition 2.1. (i) The lens spaces L(r1; : : : ; rn;m) and L(s1; : : : ; sn;m)
are homotopy equivalent if and only if there exists a unit u 2 Z=m such that

Q
ri =

�un
Q
si in Z=m.

(ii) If (8i 2 f1; : : : ; ng), 0<r0i<m and r0i = ri (mod m), then L(r1; : : : ; rn;m)
' L(r01; : : : ; r

0
n;m).

(iii) If d = (r1; r2; : : : ; rn), then L(r1=d; : : : ; rn=d;m) ' L(r1; : : : ; rn;m).
(iv) The lens spaces L(r1; : : : ; rn;m) and L(s1; : : : ; sn;m) are homeomorphic

if and only if there are numbers a and e1; : : : ; en 2 f1;�1g such that (r1; : : : ; rn)
is a permutation of (e1as1; : : : ; enasn) (mod p).

A consequence is that if we are interested only in the homotopy type of the
lens space L(r1; : : : ; rn;m) then we can always assume that (ri;m) = 1, ri 2
f1; : : : ;m� 1g and (r1; : : : ; rn) = 1.

2.2. Let Vi = f0g� � � ��C�� � � f0g be the i-th coordinate space in Cn. The
spaces Vi are invariant under the Z=m-action on Cn described above:

(l; (0; : : : ; 0; zi; 0; : : : ; 0)) 7�! (!lr1 � 0; : : : ; !lrizi; : : : ; !
lrn � 0) 2 Vi:

Then the sphere S(Cn) is Z=m-homeomorphic to the wedge S(V1) � � � � � S(Vn),
where the action on spaces Vi induces an action on the wedge [11]. The sphere
S(V1) � � � � � S(Vn) can be seen [12], [2] as a homotopy colimit of a join diagram
S : Bn ! Top de�ned by

Sa =
Y
i2a

S(Vi); for a 2 Bn; and S
a
�
!b

:
Y
i2a

S(Vi)!
Y
j2b

S(Vj) is a projection,

where Bn is the poset P (f1; : : : ; ng)� f;g ordered by inclusion. Since the sphere
S(V1) � � � � � S(Vn) has a Z=m-action, we actually deal with a diagram Q : Bn !

TopZ=m de�ned in the same way, but with all spaces equipped with the appropriate
Z=m-actions. This proves the following lemma:

Lemma 2.1. (i) hocolimBn Q is Z=m-homeomorphic with S(V1) � � � � � S(Vn).
(ii) L(r1; r2; : : : ; rn;m) � (hocolimBn Q)=(Z=m) = colimZ=m hocolimBn Q.

Now, if colimZ=m and hocolimBn are allowed to commute in the last expression
of the preceding lemma, we would immediately obtain a description of the lens
space L(r1; r2; : : : ; rn) as a homotopy colimit.

The following theorem says that this is always possible.

Theorem 2.1. L(r1; r2; : : : ; rn;m) � hocolimBn colimZ=mQ.
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Proof. Since

L(r1; r2; : : : ; rn;m) � (hocolimBn Q)=(Z=m) = colimZ=m hocolimBn Q;

and homotopy colimit has the right adjoint [7], [12], the colimit can commute with
the homotopy colimit. This follows from the known category theory lemma:

Let T : C ! D and S : D ! C be functors and S a right adjunct of T . Then
the the functor T commutes with colimits. �

Thus, lens spaces are homotopy colimits of quasi-join diagrams over simplex.
This motivated us to ask for a transparent description of the diagram colimZ=mQ
of Z=m-orbit spaces over Bn.

2.3. Let n = 2. In order to describe the diagram colimZ=mQ, we use the

model R2=(mZ)2 for torus S1 � S1 and R=mZ for circles S1. For example, when

r2 = 3, r1 = 2 and m = 7 a B2-diagram S1
�1 � S1 � S1

�2�! S1 can be described
by Figure 1, where the Z=7-action on torus S1 � S1 is encoded with vector (2; 3).

If we pass to orbits, i.e., to the diagram colimZ=7Q, we have to chose a new
fundamental domain for the quotient torus. This can be done in many ways, for
example f(2; 3); (3; 1)g and f(2; 3); (7; 7)g are two fundamental domains of the torus
S1�S1=Z=7. Now we can read o� the maps �1=(Z=7) and �2=(Z=7) in both cases:

L(2; 3; 7) � hocolim(S1
(3;1)
 � S1 � S1

(2;3)
�! S1);

L(2; 3; 7) � hocolim(S1
(3;4)
 � S1 � S1

(2;5)
�! S1):

A question arises how one can conclude that this two di�erent diagrams correspond
to the same lens space?

2.4. Here the maps �1=(Z=m) and �2=(Z=m) and identi�ed with a 1� 2 ma-
trix because [S1�S1;K(Z; 1)] �= Hom(Z2;Z1) and K(Z; 1) = S1. This means that

every diagram S1
(a;b)
 � S1 � S1

(c;d)
�! S1 is completely determined by the matrix�

a b
c d

�
. A natural question arises: When two di�erent matrices determine isomor-

phic diagrams?
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Lemma 2.2. Let S1
(a;b)
 � S1�S1

(c;d)
�! S1, S1

(�;�)
 � S1�S1

(
;Æ)
�! S1 be diagrams,

A =
�
a b
c d

�
, B =

� � �

 Æ

�
and detA 6= 0, detB 6= 0. Then

hocolim(S1
(a;b)
 � S1 � S1

(c;d)
�! S1) � hocolim(S1

(�;�)
 � S1 � S1

(
;Æ)
�! S1)

if and only if there exists an integer matrix P such that A = BP and detP = �1.

Proof. There are two ways to approach the proof of lemma. If we use a
geometric model, then the result follows from [9], and the matrix P is the base-
changing matrix from A to B, where A and B are interpreted as bases of R2. The
second way is to assume the existence of a diagram isomorphism

S1 (a;b)
 �S1�S1(c;d)�! S1

#f #g #h

S1 (�;�)
 � S1�S1(
;Æ)�! S1

from where f = �id, h = �id and H1(g) is the matrix P . Again, we use the main
property of Eilenberg{MacLane spaces. �

3. Recognition Theorem

Here we give a detailed description of the diagram colimZ=mQ over Bn for
every n 2 N. Also, we calculate the homotopy colimit of a general class of quasi-
join diagrams X : Bn ! Top where Xa = (S1)card a, for every a � f1; : : : ; ng.

3.1. Let r1; : : : ; rn 2 f1; : : : ;m � 1g, (ri;m) = 1 and (r1; : : : ; rn) = 1. Our
objective is to describe the diagram colimZ=mQ associated with the lens space
L(r1; : : : ; rn;m). Again, like in the previous example, we useRn=(mZ)n as a model
of a torus and the translation by the vector (r1; : : : ; rn) for Z=m-action. Thus, to
identify the quotient torus (Rn=(mZ)n)=Z=m �= Rn=((mZ)n +Z � (r1; : : : ; rn)) we
actually have to �nd a basis for the free Abelian group (mZ)n+Z�(r1; : : : ; rn). Since
(mZ)n � (mZ)n+Z � (r1; : : : ; rn) � Zn, the rank of group (mZ)n+Z � (r1; : : : ; rn)
is n.

Lemma 3.1. Let (r1; : : : ; rn) 2 Zn, m 2 N, ri 2 f1; : : : ;m � 1g, (ri;m) = 1
and (r1; : : : ; rn) = 1. If ff1; : : : ; fng is a basis of the group (mZ)n+Z�(r1; : : : ; rn),
then det[f1; : : : ; fn] = mn�1:

Proof. The lemma follows from the fact that the Z=m-action is free,

(Rn=(mZ)n)=Z=m �= Rn=((mZ)n + Z � (r1; : : : ; rn));

and the vectors f1; : : : ; fn form a fundamental domain for the quotient torus. �

Lemma 3.2. Let (r1; : : : ; rn) 2 Zn, m 2 N, ri 2 f1; : : : ;m � 1g, (ri;m) =
1 and (r1; : : : ; rn) = 1. There exist a basis ff1; : : : ; fng of the group Zn such

that ff1;mf2; : : : ;mfng is a basis of the group (mZ)n + Z � (r1; : : : ; rn) and every

coordinate of a vector f1 2 Zn is relatively prime to m.
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Proof. The group (mZ)n + Z � (r1; : : : ; rn) is a subgroup of the free group
Zn, so there exist a basis ff1; : : : ; fng of Zn and integers a1; : : : ; an such that
fa1f1; : : : ; anfng is a basis of (mZ)n +Z � (r1; : : : ; rn) and a1 j � � � j an. Now, from
Lemma 3.1 and the fact that (mZ)n is a subgroup of (mZ)n + Z � (r1; : : : ; rn), we
conclude that

a1 � � � � � an = mn�1 and a1 j m; : : : ; an j m:

Since, (r1; : : : ; rn) 2 (mZ)n + Z � (r1; : : : ; rn), there exist integers �1; : : : ; �n 2 Z

with the property (r1; : : : ; rn) = �1a1f1 + � � � + �nanfn: From (ri;m) = 1, ai j m
for every i 2 f1; : : : ; ng and a1 � � � � � an = mn�1 we conclude that a1 = 1; a2 =
m; : : : ; am = m and r1 = �1f11 (mod m); : : : ; r1 = �1f1n (mod m) where f1 =
(f11; : : : ; f1n). We observe that (f11;m) = 1; : : : ; (f1n;m) = 1.

Note that the sequences (r1; : : : ; rn) and (f11; : : : ; f1n) satisfy the conditions
of Proposition 2.1(iv). �

3.2. Let X : Bn ! Top be a diagram such that Xa = (S1)card a for ev-
ery a � f1; : : : ; ng. If a � b � f1; : : : ; ng, then the map Xb�a : (S1)card b �!
(S1)card a is, up to a homotopy, completely determined by its representation on
Hn((S1)card b;Zcarda), because

[(S1)card b; (S1)carda] �= [(S1)card b;K(Z; 1)carda] �= [(S1)card b;K(Zcard a; 1)]

�= H1((S1)card b;Zcard a) �= Hom(H1((S
1)card b);Zcard a)

�= Hom(Zcard b;Zcard a):

So, every map Xb�a : (S
1)card b �! (S1)card a can be represented as card b� carda

matrix Mb;a(X). From naturality, if a � b � c � f1; : : : ; ng, then Mc;b(X) �
Mb;a(X) = Mc;a(X). This means that the diagram X : Bn ! Top is determined
by the diagram H1(X) : Bn ! Ab.

Definition 3.1. Let a = fi1; : : : ; icardag � f1; : : : ; ng and i1 < � � � < icard a.
Then we de�ne a carda� carda matrix M(X)a with Ma;fi1g(X);.:;Ma;ficard ag(X)
as its rows. The n�n Z-matrix M(X) :=M(X)f1;::: ;ng is called the matrix of the

diagram X .

Lemma 3.3. Let X : Bn ! Top, Y : Bn ! Top be diagrams such that Xa =
Ya = (S1)card a, detM(X) 6= 0, detM(Y ) 6= 0 and Xa�b, Ya�b are surjections for

every a; b 2 Bn. Then there is an integer matrix A such that M(X) = M(Y ) � A
and detA = �1 if and only if there is a morphism of diagrams X and Y which is

a homotopy equivalence on every level.

Proof. ): First, we prove that (under the assumptions of the lemma) for
every a 2 Bn the matrices M(X)a (and M(Y )a) are invertible as matrices over
Q, i.e., detM(X)a 6= 0 (and detM(Y )a 6= 0). It is suÆcient to prove this in the
case a = f1; : : : ; n � 1g. Let f = Mf1;::: ;ng;f1;::: ;n�1g(X), g = Mf1;::: ;ng;fng(X),
N = M(X)f1;::: ;n�1g and M = M(X)f1;::: ;ng. Since f and g are surjections, then
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ker f �= Z and ker g �= Zn�1. Furthermore, kerf \ ker g = f0g, since

x 2 kerf \ ker g ) N Æ f(x) = 0; g(x) = 0)M(x) = 0) x = 0:

So, Zn = kerf � kerg and the associated restrictions �f = f jker g and �g = gjker f are
isomorphisms. Now we can factor M in the following way

Zn = ker f � ker g
�g� �f
�! Z� Zn�1

id�N
�! Z� Zn�1

i.e., M = (id�N) Æ (�g � �f). Thus, detN 6= 0
Secondly, let us observe that every map �a : Xa ! Ya is completely determined,

up to a homotopy, by the carda� carda matrix H1(�a) : H1(Xa;Z)! H1(Ya;Z).
If �a is a homotopy equivalence, then H1(�a) has to be an isomorphism. Now we
will de�ne an isomorphism H1(�) of diagrams H1(X;Z) and H1(Ya;Z).

Let H1(�f1;::: ;ng) : H1(Xf1;::: ;ng;Z) ! H1(Yf1;::: ;ng;Z) be the matrix A and,
without losing any generality, we assume thatH1(�fig) : H1(Xfig;Z)! H1(Yfig;Z)
are the identity maps. Now let us de�ne H1(�a), for every a � f1; : : : ; ng. Actually
we have to complete the following diagram

Zn �= H1(Xf1;::: ;ng;Z)
A
�! H1(Yf1;::: ;ng;Z) �= Zn

#f #g

Zk �= H1(Xa;Z)
?
9 9 K H1(Ya;Z) �= Zk

where carda = k, f = Mf1;::: ;ng;a(X) and g = Mf1;::: ;ng;a(Y ). This can be done
uniquely if and only if f is a surjection (which is one of the assumptions) and
A(ker f) � ker g. Let y 2 H1(Xf1;::: ;ng;Z). Then under the assumption of the
lemma

M(Y )a Æ g ÆA(y) =M(X)a Æ f(y) = 0
detM(Y )a 6=0

=) g ÆA(y) = 0) y 2 A(ker f):

So, if x 2 H1(Xa;Z), in order to �nd H1(�a)(x) we need y 2 H1(Xf1;::: ;ng;Z) with
the property Mf1;::: ;ng;a(X)(y) = x, and then we de�ne

H1(�a)(x) :=Mf1;::: ;ng;a(Y )(A(y)):

It only remains to be proved that maps H1(�a) form a morphism of diagrams
H1(X;Z) and H1(Ya;Z). For a � b � f1; : : : ; ng, carda = k, card b = l; we can
prove Mb;a(Y ) Æ H1(�b) = H1(�a) ÆMb;a(X) by chasing through diagrams. Let
x 2 H1(Xb;Z) and y 2 H1(Xf1;::: ;ng;Z), such that Mf1;::: ;ng;a(X)(y) = x. Then,

Mb;a(Y ) ÆH1(�b)(x) =Mb;a(Y ) ÆMf1;::: ;ng;b(Y )(A(y))

=Mf1;::: ;ng;a(Y )(A(y))

= H1(�a) ÆMf1;::: ;ng;a(X)(y)

= H1(�a) ÆMb;a(X) ÆMf1;::: ;ng;b(X)(y)

= H1(�a) ÆMb;a(X)(x):

(: If � is a morphism of diagrams X and Y which is a homotopy equivalence
on every level, then H1(�f1;::: ;ng) is the matrix A. �
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Remark 3.1. Let us observe that the proof of the preceding lemma is actually
a proof of the following more general result:

Let X : Bn ! Top, Y : Bn ! Top be diagrams such that Xa = Ya = (S1)card a,
detM(X) 6= 0, detM(Y ) 6= 0 and Xa�b, Ya�b are surjections for every a; b 2 Bn.

Then for every map Xf1;::: ;ng
g
! Yf1;::: ;ng such thatM(X) =M(Y ) �H1(g;Z) there

is a diagram morphism � : X ! Y with property �a = g.

Corollary 3.1. Let X : Bn ! Top, Y : Bn ! Top be diagrams such that

Xa = Ya = (S1)card a, detM(X) 6= 0, detM(Y ) 6= 0 and Xa�b, Ya�b are sur-

jections for every a; b 2 Bn. If there exists a matrix A 2 GL(n;Q) such that

M(X) = M(Y ) � A, then there exists a sequence of isomorphisms of diagrams

�n : Hn(X;Q)! Hn(Y;Q) for every n, such that (�1)f1;::: ;ng = A.

Proof. Let f : (S1)k+m ! (S1)m. Then all the maps Hn(f;Q), for n > 1,
are completely determined by the map H1(f;Q). If we know H1(f;Q), then we
know H1(f;Q) because Hj((S1)l;Q) �= Hom(Hj((S

1)l;Z);Q) for every j 2 N and
l 2 N. Since, the cohomology ring H�((S1)l;Q) is generated as a ring by the
1-dimensional classes, H1(f;Q) determines Hn(f;Q) and consequently Hn(f;Q),
for every n 2 N.

So, we only have to construct an isomorphism H�1. This construction is com-
pletely identical with the construction in the preceding theorem, starting with
(�1)f1;::: ;ng = A. �

3.3. Finally, we describe the diagram colimZ=mQ by detecting its matrix
M(colimZ=mQ). Let R1 = (r11; : : : ; r1n); : : : , Rn = (rn1; : : : ; rnn) be a fundamen-
tal domain of the quotient torus (Rn=mZn)=(Z=m), i.e., a basis of the free Abelian
group (mZ)n + Z � (r1; : : : ; rn). Then,

M(colimZ=mQ) =

2
4
f11 mf21 : : : mfn1
: : : : : : : : :
f1n mf2n : : : mfnn

3
5 :

where f1 = (f11; : : : ; f1n); : : : ; fn = (fn1; : : : ; fnn) is the basis from Lemma 3.2.
Note, that the diagram colimZ=mQ satis�es the conditions of Lemma 3.3. Thus,
the following theorem is true.

Theorem 3.1 (Recognition Theorem). Let X : Bn ! Top be a diagram such

that Xa = (S1)card a, Xa�b is a surjection for every a; b � f1; : : : ; ng, detM(X) 6=
0 and g1; : : : ; gn are the rows of the matrix M(X). Let f1; : : : ; fn be a basis

of Zn and a1; : : : ; an integers such that fa1f1; : : : ; anfng is a basis of the group

hg1; : : : ; gni where a1 j � � � j an.
(i) If j detM(X)j = ja1 � � � anj = 1, then hocolimX ' S2n+1.
(ii) If there exists m 2 Z such that j detM(X)j = ja1 � � � anj = mn�1 and

every coordinate of the vector f1 2 Zn is relatively prime to m, then hocolimX '
L(f11; : : : ; f1n;m), where f1 = (f11; : : : ; f1n).

(iii) hocolimX is always a Q-sphere.

Proof. (i) and (ii) are consequences of the colimZ=mQ matrix description.
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(iii) Since there exists A 2 GL(n;Q) with property E = M(X) � A and E is
a matrix of join-diagram J : Bn ! Top, then (from Corollary 3.1) there exists a
sequence of isomorphisms of diagrams �n : Hn(J;Q)! Hn(Y;Q), for every n 2 N
such that (�1)f1;::: ;ng = A. Now, the statement follows from Proposition 3.5 of
[14]:

Let X : P ! Top be a diagram. Then there exists a spectral sequence abutting

on ~H�(hocolimX) with E2-term described by E2
m;n
�= ~Hm(Hn(X)): Here Hn(X) is

a composition of X and Hn : Top! Ab, U 7! Hn(U) functor and E
2
m;n is the mth

homology with coeÆcients in this diagram. �

Corollary 3.2. Let X : B2 ! Top be a diagram such that Xa = (S1)card a,
Xa�b is surjection for every a; b � f1; 2g, detM(X) 6= 0. Then hocolimX is

homeomorphic to a lens space.

Remark 3.2. The remaining problem is to analyze homotopy colimits of quasi-
join diagrams whenX1 = � � � = Xn = K(G;n) for some Abelian groupG and n � 1.

Exercise 3.1. Describe the homotopy colimit of quasi-join diagrams when
X1 = � � � = Xn = K(G; 0) for some group G.
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