SUBCLASSES OF k-UNIFORMLY CONVEX AND STARLIKE FUNCTIONS DEFINED BY GENERALIZED DERIVATIVE, II

Stanisława Kanas and Teruo Yaguchi

Communicated by Miroljub Jevtić

Abstract

Recently, Kanas and Wiśniowska [7, 8, 9] introduced the class of k-uniformly convex, and related class of k-starlike functions $(0 \leq k<\infty)$, denoted $k-\mathcal{U C V}$ and $k-\mathcal{S T}$, respectively. In the present paper a notion of generalized convexity, by applying the well known Ruscheweyh derivative, is introduced. Some extremal problems for functions satisfying the condition of generalized convexity are solved.

1. Introduction

Denote by \mathcal{H} a class of functions of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\cdots \tag{1.1}
\end{equation*}
$$

analytic in the open unit disk \mathcal{U}, by $\mathcal{C V}$ its subclass consisting of convex and univalent functions, and by $\mathcal{U C V}$ a class of uniformly convex, univalent functions in \mathcal{U}. Futher on, let $k-\mathcal{U C V},(0 \leq k<\infty)$, be a class of k-uniformly convex univalent functions in \mathcal{U}, introduced and investigated by Kanas and Wiśniowska in [7] and [8].

A geometric characterization of $k-\mathcal{U C V}$ is that this class is a collection of functions f which map each circular arc with center at the point $\zeta \in \mathbf{C}(|\zeta| \leq k)$, onto an arc which is a convex arc. An analytic condition for members of $k-\mathcal{U C} \mathcal{V}$ was stated as:

Theorem 1.1. [7] Let $f \in \mathcal{H}$, and $0 \leq k<\infty$. Then $f \in k-\mathcal{U C V}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>k\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in \mathcal{U}) \tag{1.2}
\end{equation*}
$$

1991 Mathematics Subject Classification. Primary 30C45; Secondary 33E05.
Key words and phrases. Convex functions, uniformly convex functions, k-uniformly convex functions, Jacobian elliptic functions.

We shall also consider the class denoted $k-\mathcal{S T}$

$$
\begin{equation*}
k-\mathcal{S T}=\left\{f \in \mathcal{S}: \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>k\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \quad(z \in \mathcal{U})\right\} \tag{1.3}
\end{equation*}
$$

From (1.2) and (1.3) the class $k-\mathcal{S T}$ in a natural way emerged as the class of functions with the property that $g \in k-\mathcal{U C V}$ if and only if $z g^{\prime}(z) \in k-\mathcal{S T}$.

Setting $q(z)=1+z f^{\prime \prime}(z) / f^{\prime}(z)$ (and $q(z)=z f^{\prime}(z) / f(z)$ for the case of class $k-\mathcal{S T}$) we may rewrite the conditions (1.2) and (1.3), respectively, in the form

$$
\begin{equation*}
\operatorname{Re} q(z)>k|q(z)-1| \quad(z \in \mathcal{U}) \tag{1.4}
\end{equation*}
$$

The condition (1.4) may be also read as a description of the range of the expression $q(z)(z \in \mathcal{U})$, that is a conic domains Ω_{k}, such that $1 \in \Omega_{k}$ and $q \in \Omega_{k}$. Let $\mathcal{P}\left(p_{k}\right)$ $(0 \leq k<\infty)$, be a subclass of the well known class of Carathéodory functions \mathcal{P}, consisting of functions with the property (1.4). Also, let p_{k} denote the ekstremal functions in $\mathcal{P}\left(p_{k}\right)$. The explicit form of functions p_{k} were determined (cf. [7]). Obviously

$$
\begin{equation*}
p_{0}(z)=\frac{1+z}{1-z}=1+2 z+2 z^{2}+2 z^{3}+\cdots \tag{1.5}
\end{equation*}
$$

and (compare [10] or [11])

$$
\begin{equation*}
p_{1}(z)=1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}=1+\frac{8}{\pi^{2}} z+\frac{16}{3 \pi^{2}} z^{2}+\frac{184}{45 \pi^{2}} z^{3}+\cdots \tag{1.6}
\end{equation*}
$$

and when $0<k<1$ (see [6], [7] and [8]),

$$
\begin{align*}
p_{k}(z) & =\frac{1}{1-k^{2}} \cos \left\{A i \log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right\}-\frac{k^{2}}{1-k^{2}} \tag{1.7}\\
& =1+\frac{1}{1-k^{2}} \sum_{n=1}^{\infty}\left[\sum_{l=1}^{2 n} 2^{l}\binom{A}{l}\binom{2 n-1}{2 n-l}\right] z^{n}
\end{align*}
$$

where $A=\frac{2}{\pi} \arccos k$. Finally when $k>1$, the function p_{k} has the form (cf. [7], [8])

$$
\begin{align*}
& p_{k}(z)=\frac{1}{k^{2}-1} \sin \left(\frac{\pi}{2 K(\kappa)} \int_{0}^{\frac{u(z)}{\sqrt{\kappa}}} \frac{d t}{\sqrt{1-t^{2}} \sqrt{1-\kappa^{2} t^{2}}}\right)+\frac{k^{2}}{k^{2}-1} \tag{1.8}\\
& =1+\frac{\pi^{2}}{4 \sqrt{\kappa}\left(k^{2}-1\right) K^{2}(\kappa)(1+\kappa)} \times\left\{z+\frac{4 K^{2}(\kappa)\left(\kappa^{2}+6 \kappa+1\right)-\pi^{2}}{24 \sqrt{\kappa} K^{2}(\kappa)(1+\kappa)} z^{2}+\cdots\right\},
\end{align*}
$$

with

$$
u(z)=\frac{z-\sqrt{\kappa}}{1-\sqrt{\kappa} z} \quad(0<\kappa<1, z \in \mathcal{U})
$$

where κ is chosen, such that

$$
k=\cosh \frac{\pi K^{\prime}(\kappa)}{4 K(\kappa)}
$$

$K(\kappa)$ is Legendre's complete elliptic integral of the first kind, and $K^{\prime}(\kappa)$ is complementary integral of $K(\kappa)$.

Ruscheweyh [12] introduced the operator $D^{\lambda}: \mathcal{H} \rightarrow \mathcal{H}$, defined by the Hadamard product (or convolution)

$$
\begin{equation*}
D^{\lambda} f(z)=f(z) * \frac{z}{(1-z)^{\lambda+1}} \quad(\lambda \geq-1, \quad z \in \mathcal{U}) \tag{1.9}
\end{equation*}
$$

which implies that

$$
\begin{gathered}
D^{n} f(z)=\frac{z\left(z^{n-1} f(z)\right)^{(n)}}{n!} \quad\left(n \in \mathbf{N}_{\mathbf{0}}\right) \\
D^{0} f(z)=f(z), D^{1} f(z)=z f^{\prime}(z), D^{2} f(z)=z f^{\prime}(z)+(1 / 2) z^{2} f^{\prime \prime}(z)
\end{gathered}
$$

We observe that the power series of $D^{\lambda} f(z)$ for the function f of the form (1.1), in view of (1.9), is given by

$$
\begin{equation*}
D^{\lambda} f(z)=z+\sum_{m=2}^{\infty} \frac{\Gamma(m+\lambda)}{(m-1)!\Gamma(1+\lambda)} a_{m} z^{m} \quad(z \in \mathcal{U}) \tag{1.10}
\end{equation*}
$$

Using the Ruschweyh derivative new classes of convex and starlike functions were introduced. For instance, in [12] author investigated the class denoted \mathcal{K}_{n} such that Re $D^{n+1} f(z) / D^{n} f(z)>1 / 2$. He proved, among others, that \mathcal{K}_{n} is a subclass of $\mathcal{S T}(1 / 2)$. Clearly $\mathcal{K}_{1}=\mathcal{C} \mathcal{V}$. Subsequent generalization is due to Al-Amiri [1], who studied the class of functions f such that $D^{\lambda+1} f(z) / D^{\lambda} f(z) \prec 1 /(1-z)$.

Other approach to generalization one may find in [13], [2] and [3]. The class $\mathcal{R}_{n}=\left\{f: \operatorname{Re} z\left(D^{\lambda} f(z)\right)^{\prime} / D^{\lambda} f(z)>0\right\}$ was considered in [13] and the class $\mathcal{R}_{n}(\alpha)=\left\{f: \operatorname{Re} z\left(D^{\lambda} f(z)\right)^{\prime} / D^{\lambda} f(z)>\alpha\right\}$ was investigated in [2], [3]. Also, in [5] the class $\overline{\mathcal{R}}_{\lambda}(\beta)=\left\{f: z\left(D^{\lambda} f(z)\right)^{\prime} / D^{\lambda} f(z) \prec[(1+z) /(1-z)]^{\beta}\right\}$ was studied. Therefore it seems natural to use the Ruscheweyh derivative to introduce the notion of generalized convexity related to the mentioned earlier classes $k-\mathcal{S T}$ or $k-\mathcal{U C V}$.

Definition 1.1. Let $k \in[0, \infty)$ and $\lambda \geq-1$. By $\mathcal{U} \mathcal{K}(\lambda, k)$ we denote the class of functions $f \in \mathcal{H}$ satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)}\right)>k\left|\frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)}-1\right| \quad(z \in \mathcal{U}) \tag{1.11}
\end{equation*}
$$

Definition 1.2. Let $f \in \mathcal{H}, k \in[0, \infty)$ and $\lambda \geq-1$. We say that the function f belongs to the class $\mathcal{U} \mathcal{R}(\lambda, k)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z\left(D^{\lambda} f(z)\right)^{\prime}}{D^{\lambda} f(z)}\right)>k\left|\frac{z\left(D^{\lambda} f(z)\right)^{\prime}}{D^{\lambda} f(z)}-1\right| \quad(z \in \mathcal{U}) \tag{1.12}
\end{equation*}
$$

Remark 1.1. It is easy to check that for $\lambda=0$ both definitions reduce to the condition (1.3) and when $\lambda=1$ the condition (1.12) coincides with (1.2).

2. Properties of the class $\mathcal{U K}(\lambda, k)$

In the Section 2 we will assume that $\lambda \geq-1$. By virtue of (1.11) and the properties of the domain Ω_{k} we have for $f \in \mathcal{U} \mathcal{K}(\lambda, k)$ with $0 \leq k<\infty$,

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)}\right)>\frac{k}{k+1} \quad(z \in \mathcal{U}) \tag{2.1}
\end{equation*}
$$

and

$$
\left|\operatorname{Arg}\left(\frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)}\right)\right|< \begin{cases}\arctan 1 / k & 0<k<\infty \tag{2.2}\\ \pi / 2 & k=0\end{cases}
$$

Setting $k=1$ we get from (2.1) that $\operatorname{Re} D^{\lambda+1} f(z) / D^{\lambda} f(z)>1 / 2$ so that for $k \geq 1$ we have $\mathcal{U K}(\lambda, k) \subset \mathcal{K}_{n}$.

Taking into account the fundamental relation $p_{k}(z)=D^{\lambda+1} f_{k}(z) / D^{\lambda} f_{k}(z)$ between the extremal functions in the classes $\mathcal{P}\left(p_{k}\right)$ and $\mathcal{U K}(\lambda, k)$, and in view of $(1.10),(1.11)$ we have for $f_{k}(z)=z+A_{2} z^{2}+A_{3} z^{3}+\cdots$ and $p_{k}(z)=1+P_{1} z+$ $P_{2} z^{2}+\cdots$, a coefficients relation

$$
\begin{equation*}
\frac{\Gamma(m+\lambda)}{(m-2)!\Gamma(2+\lambda)} A_{m}=\sum_{p=1}^{m-1} \frac{\Gamma(p+\lambda)}{(p-1)!\Gamma(1+\lambda)} A_{p} P_{m-p}, \quad A_{1}=1 \tag{2.3}
\end{equation*}
$$

In particular, by a straightforward computation we obtain

$$
\begin{equation*}
A_{2}=P_{1}, \quad A_{3}=\frac{P_{2}+(\lambda+1) P_{1}^{2}}{2+\lambda}, \quad A_{4}=\frac{2 P_{3}+3(1+\lambda) P_{1} P_{2}+(1+\lambda)^{2} P_{1}^{3}}{(2+\lambda)(3+\lambda)} \tag{2.4}
\end{equation*}
$$

with coefficient $P_{1}, P_{2}, P_{3}, \ldots$ given in a complete form in [8].
Observe also, that the coefficients A_{n} are nonnegative, since $\lambda \geq-1$ and P_{n} are nonnegative.

ThEOREM 2.1. Let $k \in[0, \infty)$, and f of the form (1.1) belongs to the class $\mathcal{U K}(\lambda, k)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq A_{2},\left|a_{3}\right| \leq A_{3} \tag{2.5}
\end{equation*}
$$

Proof. From the univalency od p_{k} and the relationship between f and $p(z)=$ $1+p_{1} z+\cdots$, we have

$$
\frac{\Gamma(m+\lambda)}{(m-2)!\Gamma(2+\lambda)} a_{m}=\sum_{l=1}^{m-1} \frac{\Gamma(l+\lambda)}{(l-1)!\Gamma(1+\lambda)} a_{l} p_{m-l}, \quad a_{1}=1
$$

The function

$$
q(z)=\frac{1+p_{k}^{-1}(p(z))}{1-p_{k}^{-1}(p(z))}=1+c_{1} z+c_{2} z^{2}+\cdots
$$

is analytic in \mathcal{U}, and $\operatorname{Re} q(z)>0$. Since

$$
p(z)=p_{k}\left(\frac{q(z)-1}{q(z)+1}\right)=1+\frac{1}{2} c_{1} P_{1} z+\left[\frac{1}{2} c_{2} P_{1}+\frac{1}{4} c_{1}^{2}\left(P_{2}-P_{1}\right)\right] z^{2}+\cdots
$$

we have $\left|a_{2}\right|=\left|p_{1}\right| \leq\left|c_{1} P_{1}\right| / 2 \leq P_{1}=A_{2}$, where we have used the inequality $\left|c_{n}\right| \leq 2$. By virtue of the same estimation and the relation $\left|p_{1}\right|^{2}+\left|p_{2}\right| \leq P_{1}{ }^{2}+P_{2}$, (cf. [8]), we obtain

$$
\begin{aligned}
(2+\lambda)\left|a_{3}\right| & =\left|p_{2}\right|+(\lambda+1)\left|p_{1}^{2}\right|=\left|p_{2}\right|+\left|p_{1}\right|^{2}+\lambda\left|p_{1}\right|^{2} \\
& \leq P_{2}+P_{1}^{2}+\lambda P_{1}^{2}=P_{2}+(\lambda+1) P_{1}^{2}=(2+\lambda) A_{3}
\end{aligned}
$$

as desired.

Theorem 2.2. Let $0 \leq k<\infty$, and let f of the form (1.1) belongs to the class $\mathcal{U K}(\lambda, k)$. Then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{P_{1}\left(1+(1+\lambda) P_{1}\right)_{n-2}}{(2+\lambda)_{n-2}}, \quad n=2,3, \ldots . \tag{2.6}
\end{equation*}
$$

where $(\tau)_{n}$ is the Pochhammer symbol.

Proof. In view of Theorem 2.1 the result is clearly true for $n=2$. Let $n \in \mathbf{N}$ be an integer number satisfying $n \geq 2$ and assume that the inequality is true for all $l \leq n-1$. Then for $p \in P\left(p_{k}\right), p(z)=1+p_{1} z+\cdots$ and $p(z)=D^{\lambda+1} f(z) / D^{\lambda} f(z)$ we have

$$
\begin{aligned}
\left|a_{n}\right| & =\left|\frac{(n-2)!\Gamma(2+\lambda)}{\Gamma(n+\lambda)} \sum_{l=1}^{n-1} \frac{\Gamma(l+\lambda)}{(l-1)!\Gamma(1+\lambda)} a_{l} p_{n-l}\right| \\
& \leq \frac{(n-2)!\Gamma(2+\lambda)}{\Gamma(n+\lambda)}\left[P_{1}+\sum_{l=2}^{n-1} \frac{\Gamma(l+\lambda)}{(l-1)!\Gamma(1+\lambda)} \frac{P_{1}\left(1+(1+\lambda) P_{1}\right)_{l-2}}{(2+\lambda)_{l-2}}\right] \\
& =\frac{(n-2)!\Gamma(2+\lambda) P_{1}}{\Gamma(n+\lambda)}\left[1+\sum_{l=2}^{n-1} \frac{\Gamma(l+\lambda)}{(l-1)!\Gamma(1+\lambda)} \frac{\left(1+(1+\lambda) P_{1}\right)_{l-2}}{(2+\lambda)_{l-2}}\right]
\end{aligned}
$$

where we have applied the induction hypothesis to the $\left|a_{l}\right|$ and the Rogosinski result $\left|p_{j}\right| \leq P_{1}$. Since

$$
\frac{\Gamma(l+\lambda)}{\Gamma(1+\lambda)(2+\lambda)_{l-2}}=1+\lambda
$$

it suffices to show that

$$
\begin{equation*}
1+\sum_{l=2}^{n-1} \frac{1+\lambda}{(l-1)!}\left(1+(1+\lambda) P_{1}\right)_{l-2}=\frac{\left(1+(1+\lambda) P_{1}\right)_{n-2}}{(n-2)!} \tag{2.7}
\end{equation*}
$$

Above is true by the sequence of conversions, below.

$$
\begin{aligned}
& 1+\sum_{l=2}^{n-1} \frac{1+\lambda}{(l-1)!}\left(1+(1+\lambda) P_{1}\right)_{l-2} \\
& =\frac{1}{(n-2)!}\left\{(n-2)!+(n-2)!(1+\lambda) P_{1}+\frac{(n-2)!}{2!}(1+\lambda) P_{1}\left[1+(1+\lambda) P_{1}\right]\right. \\
& \left.+\frac{(n-2)!}{3!}(1+\lambda) P_{1}\left[1+(1+\lambda) P_{1}\right]\left[2+(1+\lambda) P_{1}\right]+\cdots+\left[n-3+(1+\lambda) P_{1}\right]\right\} \\
& =\frac{1}{(n-2)!}\left[1+(1+\lambda) P_{1}\right]\left\{(n-2)!+\frac{(n-2)!}{2!}(1+\lambda) P_{1}+\cdots+\left[n-3!+(1+\lambda) P_{1}\right]\right\} \\
& =\frac{1}{(n-2)!}\left[1+(1+\lambda) P_{1}\right]\left[2+(1+\lambda) P_{1}\right] \cdots\left[n-3+(1+\lambda) P_{1}\right] \\
& =\frac{\left(1+(1+\lambda) P_{1}\right)_{n-2}}{(n-2)!}
\end{aligned}
$$

as asserted in (2.7).
Corollary 2.1. For $\lambda=0$ Theorem 2.2 reduces to the coefficients estimates in the class $k-\mathcal{S T}$ (cf. [9]).

THEOREM 2.3. If for the function f of the form (1.1) the inequality

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda)}{(n-1)!}[k(n-1)+\lambda+n]\left|a_{n}\right|<\Gamma(2+\lambda) \tag{2.8}
\end{equation*}
$$

holds for some $k \in[0, \infty)$ then $f \in \mathcal{U K}(\lambda, k)$.
Proof. The condition (1.11) is equivalent to

$$
S:=k\left|\frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)}-1\right|-\operatorname{Re}\left(\frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)}-1\right)<1 .
$$

Then

$$
S \leq(k+1)\left|\frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)}-1\right|=(k+1)\left|\frac{z+\sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda+1)}{(n-1)!\Gamma(2+\lambda)} a_{n} z^{n}}{z+\sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(1+\lambda)} a_{n} z^{n}}-1\right|<1
$$

if

$$
(k+1) \sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(1+\lambda)}\left[\frac{n+\lambda}{1+\lambda}-1\right]\left|a_{n}\right|<1-\sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(1+\lambda)}\left|a_{n}\right|
$$

which holds when the inequality (2.8) is fulfilled.
Corollary 2.2. For $\lambda=0$ Theorem 2.3 coincides with results obtained in [9].

Theorem 2.4. Let $k \in[0, \infty)$ and $\lambda \geq-1$. The function f belongs to the class $\mathcal{U K}(\lambda, k)$ if and only if $(f * H)(z) / z \neq 0$ in \mathcal{U}, where

$$
\begin{equation*}
H(z)=\frac{z}{(1-z)^{\lambda+2}}\left[1-\frac{B z}{B-1}\right] \tag{2.9}
\end{equation*}
$$

with

$$
\begin{equation*}
B=t k \pm \sqrt{t^{2}-(t k-1)^{2}}, \quad\left(t^{2}-(t k-1)^{2} \geq 0, t \geq 0\right) \tag{2.10}
\end{equation*}
$$

Proof. The condition (1.11) means that the values of $D^{\lambda+1} f(z) / D^{\lambda} f(z)(z \in$ $\mathcal{U})$ lie in a conic domain Ω_{k}. Since $\partial \Omega_{k}=\left\{u+i v: u^{2}=k^{2}(u-1)^{2}+k^{2} v^{2}\right\}$ the condition (1.11) may be rewritten as

$$
\begin{equation*}
\frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)} \neq t k \pm \sqrt{t^{2}-(t k-1)^{2}}=B \quad\left(z \in \mathcal{U}, t^{2}-(t k-1)^{2} \geq 0, t \geq 0\right) \tag{2.11}
\end{equation*}
$$

Applying the definition of $D^{\lambda} f(z)$ and properties of Hadamard product, (2.11) will hold if $(f * H)(z) / z \neq 0$, with the function H given by (2.9).

Theorem 2.5. The coefficients h_{n} of the function H given by (2.9) satisfy the inequality

$$
\begin{equation*}
\left|h_{n}\right| \leq[\lambda+n+k(n-1)] \frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(2+\lambda)} \quad(n=2,3, \ldots) \tag{2.12}
\end{equation*}
$$

Proof. From the power series of the function H we have

$$
h_{n}=\frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(2+\lambda)}\left(\lambda+\frac{B-n}{B-1}\right)
$$

and therefore

$$
\begin{aligned}
\left|h_{n}\right|^{2} & =\left[\frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(2+\lambda)}\right]^{2}\left[(\lambda+1)^{2}-\frac{2 k(1+\lambda)(n-1)}{t}+\frac{(n-1)(2 \lambda+n+1)}{t^{2}}\right] \\
& =:\left[\frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(2+\lambda)}\right]^{2} v(t)
\end{aligned}
$$

The function $v(t)$ is decreasing in the interval $\left[1 /(k+1), t_{0}\right)$ and increasing in $\left(t_{0}, \infty\right)$ with $t_{0}=(2 \lambda+n+1) /[k(1+\lambda)]$ with its minimum at t_{0}. The limit of $v(t)$ as t tends to infinity is equal to $(1+\lambda)^{2}$, and $v(1 /(k+1))=[\lambda+n+k(n-1)]^{2} \geq(1+\lambda)^{2}$. Thus the maximal value of $v(t)$ is attained at the point $1 /(k+1)$, so the coefficients of H must satisfy the inequality (2.12).

Corollary 2.3. The function $g(z)=z+C z^{n} \in \mathcal{U} \mathcal{K}(\lambda, k)$ if and only if

$$
\begin{equation*}
|C| \leq \frac{(n-1)!\Gamma(\lambda+2)}{[\lambda+n+k(n-1)] \Gamma(\lambda+n)} \tag{2.13}
\end{equation*}
$$

Proof. First we prove the sufficient condition. Since

$$
\left|\frac{(g * H)(z)}{z}\right|=\left|1+h_{n} C z^{n-1}\right| \geq 1-\left|h_{n} C z\right| \geq 1-|z|>0 \quad(z \in \mathcal{U})
$$

then $g \in \mathcal{U} \mathcal{K}(\lambda, k)$. Assume next, for neccessity, that $g \in \mathcal{U} \mathcal{K}(\lambda, k)$, and

$$
h(z)=\sum_{n=1}^{\infty} \frac{[\lambda+n+k(n-1)] \Gamma(\lambda+n)}{(n-1)!\Gamma(\lambda+2)} z^{n} .
$$

Then

$$
\frac{(g * h)(z)}{z}=1+C \frac{[\lambda+n+k(n-1)] \Gamma(\lambda+n)}{(n-1)!\Gamma(\lambda+2)} z^{n-1}
$$

Thus, for $|C|>[\lambda+n+k(n-1)] \Gamma(\lambda+n)] /[(n-1)!\Gamma(\lambda+2)]$ there exists a point $\zeta \in \mathcal{U}$ such that $(g * h)(\zeta) / \zeta=0$, so that the inequality (2.13) must hold.

3. Properties of the class $\mathcal{U} \mathcal{R}(\lambda, k)$

Assume, like in Section 2 that $\lambda \geq-1$. First observe that the class $\mathcal{U} \mathcal{R}(\lambda, k)$ is closely related to the class $k-\mathcal{S T}$ by the relation

$$
\begin{equation*}
f \in \mathcal{U \mathcal { R }}(\lambda, k) \quad \Longleftrightarrow \quad D^{\lambda} f(z) \in k-\mathcal{S T} \tag{3.1}
\end{equation*}
$$

Applying relation (3.1) numerous properties of the class $\mathcal{U} \mathcal{R}(\lambda, k)$ may be transformed from the class $k-\mathcal{S T}$.

By the equivalence $p_{k}(z)=z\left(D^{\lambda} f_{k}(z)\right)^{\prime} / D^{\lambda} f_{k}(z)$ between classes $\mathcal{P}\left(p_{k}\right)$ and $\mathcal{U} \mathcal{R}(\lambda, k)$, and in view of (1.10), (1.12) we have for $f_{k}(z)=z+A_{2} z^{2}+A_{3} z^{3}+\cdots$ and $p_{k}(z)=1+P_{1} z+P_{2} z^{2}+\cdots$, the following equality

$$
\begin{equation*}
\frac{\Gamma(m+\lambda)}{(m-2)!} A_{m}=\sum_{p=1}^{m-1} \frac{\Gamma(p+\lambda)}{(p-1)!} A_{p} P_{m-p}, A_{1}=1 \tag{3.2}
\end{equation*}
$$

In particular

$$
\begin{equation*}
A_{2}=\frac{P_{1}}{1+\lambda}, \quad A_{3}=\frac{P_{2}+P_{1}^{2}}{(1+\lambda)(2+\lambda)}, \quad A_{4}=\frac{\Gamma(1+\lambda)}{\Gamma(4+\lambda)}\left[2 P_{3}+3 P_{1} P_{2}+P_{1}^{3}\right] \tag{3.3}
\end{equation*}
$$

with coefficient $P_{1}, P_{2}, P_{3}, \ldots$ given in a complete form in [8].
Theorem 3.1. Let $k \in[0, \infty)$, and f of the form (1.1) belongs to the class $\mathcal{U R}(\lambda, k)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq A_{2},\left|a_{3}\right| \leq A_{3}, \text { for } k \in[0, \infty), \text { and } \quad\left|a_{4}\right| \leq A_{4}, \text { when } k \in[0,1] \tag{3.4}
\end{equation*}
$$

Proof. Proof follows immediately from the relation (3.1) and the results obtained in the paper [9].

THEOREM 3.2. Let $0 \leq k<\infty$, and let f of the form (1.1) belongs to the class $\mathcal{U} \mathcal{R}(\lambda, k)$. Then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\lambda)}{\Gamma(n+\lambda)}, \quad n=2,3, \ldots \tag{3.5}
\end{equation*}
$$

Proof. Applying the relation (3.1) and the estimates of coefficients in the class $k-\mathcal{S T}$ we obtain the desired result.

Theorem 3.3. If for the function f of the form (1.1) the inequality

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(1+\lambda)}[n(k+1)-k]\left|a_{n}\right|<1 \tag{3.6}
\end{equation*}
$$

holds true for some $k \in[0, \infty)$ then $f \in \mathcal{U} \mathcal{R}(\lambda, k)$.
Proof. Reasoning along the same line as in proof of Theorem 2.3 we have the condition (3.6).

THEOREM 3.4. Let $k \in[0, \infty)$ and $\lambda \geq-1$. The function f belongs to the class $\mathcal{U} \mathcal{R}(\lambda, k)$ if and only if $(f * G)(z) / z \neq 0$ in \mathcal{U}, where

$$
\begin{equation*}
G(z)=\frac{z}{(1-z)^{\lambda+2}}\left[1-\frac{(B+\lambda) z}{B-1}\right] \tag{3.7}
\end{equation*}
$$

with B defined in (2.10).
Proof. Bearing in mind the relation (3.1) and the duality results in the class $k-\mathcal{S T}$ (cf. [9]) we get the thesis.

THEOREM 3.5. The coefficients g_{n} of the function G given by (3.7) satisfy the inequality

$$
\begin{equation*}
\left|g_{n}\right| \leq[n(k+1)-k] \frac{\Gamma(\lambda+n)}{(n-1)!\Gamma(\lambda+1)} \tag{3.8}
\end{equation*}
$$

Proof. Using the power series of the function G we get

$$
g_{n}=\frac{\Gamma(\lambda+n)}{(n-1)!\Gamma(\lambda+1)} \frac{B-n}{B-1}
$$

The expression $[\Gamma(\lambda+n)] /[(n-1)!\Gamma(\lambda+1)]$ does not depend on $B=B(t)$, so g_{n} attains its maximum at maximum of the factor $[B-n] /[B-1]$, namely at $t_{0}=1 /(k+1)$. The maximum is equal to $n(k+1)-k$ (cf. [9]). Hence we obtain the desired result.

Corollary 3.1. The function $g(z)=z+C z^{n} \in \mathcal{U} \mathcal{R}(\lambda, k)$ if and only if

$$
\begin{equation*}
|C| \leq \frac{(n-1)!\Gamma(\lambda+1)}{[n(k+1)-k] \Gamma(\lambda+n)} \tag{3.9}
\end{equation*}
$$

Proof. The result follows from Theorem 3.5 and the reasoning similar to that in Section 2.

References

[1] H. S. Al-Amiri, Certain generalization of prestarlike functions, J. Austral. Math. Soc. 28 (1979), 325-334.
[2] O. P. Ahuja, On the radius problem of certain analytic functions, Bull. Korean Math. Soc. 22(1) (1985), 31-36.
[3] O. P. Ahuja, Integral operators of certain univalent functions, Inter. J. Math. 8(4) (1985), 653-662.
[4] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92.
[5] S. Kanas, Class of functions defined by Ruscheweyh derivative, Bull. Malaysian Math. Soc. (Second Series) 18 (1995), 1-8.
[6] S. Kanas, A coefficient problem for the hyperbolic function, Mathematica (Cluj), 41(63):1 (1999), 47-54.
[7] S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, J. Math. Anal. Appl. 105 (1999), 327-336.
[8] S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, II, Folia Sci. Tech. Resov. 170 (1998), 65-78.
[9] S. Kanas and A. Wiśniowska, Conic domains and starlike functions, Rev. Roumaine Pures Appl. 45(3) (2000).
[10] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57(2) (1992), 165175.
[11] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189-196.
[12] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[13] R. Singh, S. Singh, Integrals of certain univalent functions, Proc. Amer. Math. Soc. 77 (1979), 336-343.

Department of Mathematics
Rzeszów University of Technology 35-959 Rzeszów
Poland
Department of Applied Mathematics
College of Humanities and Sciences
Nihon University
Sakurajousui, Setagaya
Tokyo 156-0045
Japan

