
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 69(83) (2001), 91{100
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DEFINED BY GENERALIZED DERIVATIVE, II
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Communicated by Miroljub Jevti�c

Abstract. Recently, Kanas and Wi�sniowska [7, 8, 9] introduced the class of
k-uniformly convex, and related class of k-starlike functions (0 � k < 1),
denoted k-UCV and k-ST , respectively. In the present paper a notion of
generalized convexity, by applying the well known Ruscheweyh derivative, is
introduced. Some extremal problems for functions satisfying the condition of
generalized convexity are solved.

1. Introduction

Denote by H a class of functions of the form

f(z) = z + a2z
2 + � � � ;(1.1)

analytic in the open unit disk U , by CV its subclass consisting of convex and
univalent functions, and by UCV a class of uniformly convex, univalent functions in
U . Futher on, let k-UCV , (0 � k <1), be a class of k-uniformly convex univalent
functions in U , introduced and investigated by Kanas and Wi�sniowska in [7] and
[8].

A geometric characterization of k-UCV is that this class is a collection of func-
tions f which map each circular arc with center at the point � 2 C (j�j � k), onto
an arc which is a convex arc. An analytic condition for members of k-UCV was
stated as:

Theorem 1.1. [7] Let f 2 H, and 0 � k <1. Then f 2 k-UCV if and only if

Re
n
1 +

zf 00(z)

f 0(z)

o
> k

���zf 00(z)
f 0(z)

��� (z 2 U):(1.2)
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We shall also consider the class denoted k-ST
k-ST =

n
f 2 S : Re

nzf 0(z)
f(z)

o
> k

���zf 0(z)
f(z)

� 1
��� (z 2 U)

o
:(1.3)

From (1.2) and (1.3) the class k-ST in a natural way emerged as the class of
functions with the property that g 2 k-UCV if and only if zg0(z) 2 k-ST .

Setting q(z) = 1 + zf 00(z)=f 0(z) (and q(z) = zf 0(z)=f(z) for the case of class
k-ST ) we may rewrite the conditions (1.2) and (1.3), respectively, in the form

Re q(z) > k jq(z)� 1j (z 2 U):(1.4)

The condition (1.4) may be also read as a description of the range of the expression
q(z) (z 2 U), that is a conic domains 
k, such that 1 2 
k and q 2 
k. Let P(pk)
(0 � k < 1), be a subclass of the well known class of Carath�eodory functions P ,
consisting of functions with the property (1.4). Also, let pk denote the ekstremal
functions in P(pk). The explicit form of functions pk were determined (cf. [7]).
Obviously

p0(z) =
1 + z

1� z
= 1 + 2z + 2z2 + 2z3 + � � �(1.5)

and (compare [10] or [11])

p1(z) = 1 +
2

�2

�
log

1 +
p
z

1�pz
�2

= 1 +
8

�2
z +

16

3�2
z2 +

184

45�2
z3 + � � � ;(1.6)

and when 0 < k < 1 (see [6], [7] and [8]),

pk(z) =
1

1� k2
cos
n
Ai log

1 +
p
z

1�pz
o
� k2

1� k2
(1.7)

= 1 +
1

1� k2

1X
n=1

� 2nX
l=1

2l
�
A

l

��
2n� 1

2n� l

��
zn;

where A =
2

�
arccosk. Finally when k > 1, the function pk has the form (cf. [7],

[8])

pk(z) =
1

k2 � 1
sin

�
�

2K(�)

Z u(z)
p
�

0

dtp
1� t2

p
1� �2t2

�
+

k2

k2 � 1
(1.8)

= 1 +
�2

4
p
�(k2 � 1)K2(�)(1 + �)

�
n
z +

4K2(�)(�2 + 6�+ 1)� �2

24
p
�K2(�)(1 + �)

z2 + � � �
o
;

with

u(z) =
z �p�
1�p� z (0 < � < 1; z 2 U);

where � is chosen, such that

k = cosh
�K 0(�)

4K(�)
:
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K(�) is Legendre's complete elliptic integral of the �rst kind, and K 0(�) is comple-
mentary integral of K(�).

Ruscheweyh [12] introduced the operator D� : H ! H, de�ned by the Hada-
mard product (or convolution)

D�f(z) = f(z) � z

(1� z)�+1
(� � �1; z 2 U);(1.9)

which implies that

Dnf(z) =
z(zn�1f(z))(n)

n!
(n 2 N0);

D0f(z) = f(z); D1f(z) = zf 0(z); D2f(z) = zf 0(z) + (1=2)z2f 00(z):

We observe that the power series of D�f(z) for the function f of the form (1.1),
in view of (1.9), is given by

D�f(z) = z +

1X
m=2

�(m+ �)

(m� 1)!�(1 + �)
amz

m (z 2 U):(1.10)

Using the Ruschweyh derivative new classes of convex and starlike functions
were introduced. For instance, in [12] author investigated the class denoted Kn such
that Re Dn+1f(z)=Dnf(z) > 1=2. He proved, among others, that Kn is a subclass
of ST (1=2). Clearly K1 = CV . Subsequent generalization is due to Al-Amiri [1],
who studied the class of functions f such that D�+1f(z)=D�f(z) � 1=(1� z).

Other approach to generalization one may �nd in [13], [2] and [3]. The class
Rn = ff : Re z(D�f(z))0=D�f(z) > 0g was considered in [13] and the class
Rn(�) = ff : Re z(D�f(z))0=D�f(z) > �g was investigated in [2], [3]. Also, in
[5] the class �R�(�) = ff : z(D�f(z))0=D�f(z) � [(1 + z)=(1� z)]�g was studied.
Therefore it seems natural to use the Ruscheweyh derivative to introduce the notion
of generalized convexity related to the mentioned earlier classes k-ST or k-UCV .

Definition 1.1. Let k 2 [0;1) and � � �1. By UK(�; k) we denote the class
of functions f 2 H satisfying the condition

Re
�D�+1f(z)

D�f(z)

�
> k

���D�+1f(z)

D�f(z)
� 1

��� (z 2 U):(1.11)

Definition 1.2. Let f 2 H, k 2 [0;1) and � � �1. We say that the function
f belongs to the class UR(�; k) if and only if

Re
�z(D�f(z))0

D�f(z)

�
> k

���z(D�f(z))0

D�f(z)
� 1

��� (z 2 U):(1.12)

Remark 1.1. It is easy to check that for � = 0 both de�nitions reduce to the
condition (1.3) and when � = 1 the condition (1.12) coincides with (1.2).
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2. Properties of the class UK(�; k)
In the Section 2 we will assume that � � �1. By virtue of (1.11) and the

properties of the domain 
k we have for f 2 UK(�; k) with 0 � k <1,

Re
�D�+1f(z)

D�f(z)

�
>

k

k + 1
(z 2 U);(2.1)

and ���Arg�D�+1f(z)

D�f(z)

���� <
(
arctan1=k 0 < k <1
�=2 k = 0

(2.2)

Setting k = 1 we get from (2.1) that Re D�+1f(z)=D�f(z) > 1=2 so that for
k � 1 we have UK(�; k) � Kn.

Taking into account the fundamental relation pk(z) = D�+1fk(z)=D
�fk(z)

between the extremal functions in the classes P(pk) and UK(�; k), and in view of
(1.10), (1.11) we have for fk(z) = z + A2z

2 + A3z
3 + � � � and pk(z) = 1 + P1z +

P2z
2 + � � � , a coeÆcients relation

�(m+ �)

(m� 2)!�(2 + �)
Am =

m�1X
p=1

�(p+ �)

(p� 1)!�(1 + �)
ApPm�p; A1 = 1:(2.3)

In particular, by a straightforward computation we obtain

A2 = P1; A3 =
P2 + (�+ 1)P 2

1

2 + �
; A4 =

2P3 + 3(1 + �)P1P2 + (1 + �)2P 3
1

(2 + �)(3 + �)
;

(2.4)

with coeÆcient P1; P2; P3; : : : given in a complete form in [8].
Observe also, that the coeÆcients An are nonnegative, since � � �1 and Pn

are nonnegative.

Theorem 2.1. Let k 2 [0;1), and f of the form (1:1) belongs to the class

UK(�; k). Then

ja2j � A2; ja3j � A3:(2.5)

Proof. From the univalency od pk and the relationship between f and p(z) =
1 + p1z + � � � , we have

�(m+ �)

(m� 2)!�(2 + �)
am =

m�1X
l=1

�(l + �)

(l � 1)!�(1 + �)
alpm�l; a1 = 1:

The function

q(z) =
1 + pk

�1(p(z))

1� pk�1(p(z))
= 1 + c1z + c2z

2 + � � � ;

is analytic in U , and Re q(z) > 0. Since

p(z) = pk

�q(z)� 1

q(z) + 1

�
= 1 +

1

2
c1P1z +

h1
2
c2P1 +

1

4
c1
2(P2 � P1)

i
z2 + � � � ;
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we have ja2j = jp1j � jc1P1j=2 � P1 = A2; where we have used the inequality
jcnj � 2. By virtue of the same estimation and the relation jp1j2 + jp2j � P1

2+P2;
(cf. [8]), we obtain

(2 + �)ja3j = jp2j+ (�+ 1)jp12j = jp2j+ jp1j2 + �jp1j2
� P2 + P1

2 + �P1
2 = P2 + (�+ 1)P1

2 = (2 + �)A3;

as desired. �

Theorem 2.2. Let 0 � k <1, and let f of the form (1:1) belongs to the class

UK(�; k). Then

janj � P1(1 + (1 + �)P1)n�2
(2 + �)n�2

; n = 2; 3; : : : :(2.6)

where (�)n is the Pochhammer symbol.

Proof. In view of Theorem 2.1 the result is clearly true for n = 2. Let n 2 N

be an integer number satisfying n � 2 and assume that the inequality is true for all
l � n� 1. Then for p 2 P (pk), p(z) = 1 + p1z + � � � and p(z) = D�+1f(z)=D�f(z)
we have

janj =
���� (n� 2)!�(2 + �)

�(n+ �)

n�1X
l=1

�(l + �)

(l � 1)!�(1 + �)
alpn�l

����
� (n� 2)!�(2 + �)

�(n+ �)

�
P1 +

n�1X
l=2

�(l + �)

(l � 1)!�(1 + �)

P1(1 + (1 + �)P1)l�2
(2 + �)l�2

�

=
(n� 2)!�(2 + �)P1

�(n+ �)

�
1 +

n�1X
l=2

�(l + �)

(l � 1)!�(1 + �)

(1 + (1 + �)P1)l�2
(2 + �)l�2

�
;

where we have applied the induction hypothesis to the jalj and the Rogosinski result
jpj j � P1. Since

�(l + �)

�(1 + �)(2 + �)l�2
= 1 + �

it suÆces to show that

1 +

n�1X
l=2

1 + �

(l � 1)!
(1 + (1 + �)P1)l�2 =

(1 + (1 + �)P1)n�2
(n� 2)!

:(2.7)

Above is true by the sequence of conversions, below.
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1 +

n�1X
l=2

1 + �

(l � 1)!
(1 + (1 + �)P1)l�2

=
1

(n� 2)!

n
(n� 2)! + (n� 2)!(1 + �)P1 +

(n� 2)!

2!
(1 + �)P1[1 + (1 + �)P1]

+
(n� 2)!

3!
(1 + �)P1[1 + (1 + �)P1][2 + (1 + �)P1] + � � �+ [n� 3 + (1 + �)P1]

o
=

1

(n� 2)!
[1 + (1 + �)P1]

n
(n�2)!+ (n�2)!

2!
(1+�)P1+� � �+[n�3! +(1+�)P1]

o

=
1

(n� 2)!
[1 + (1 + �)P1][2 + (1 + �)P1] � � � [n� 3 + (1 + �)P1]

=
(1 + (1 + �)P1)n�2

(n� 2)!

as asserted in (2.7). �

Corollary 2.1. For � = 0 Theorem 2:2 reduces to the coeÆcients estimates

in the class k-ST (cf. [9]).

Theorem 2.3. If for the function f of the form (1:1) the inequality

1X
n=2

�(n+ �)

(n� 1)!
[k(n� 1) + �+ n]janj < �(2 + �)(2.8)

holds for some k 2 [0;1) then f 2 UK(�; k).

Proof. The condition (1.11) is equivalent to

S := k
���D�+1f(z)

D�f(z)
� 1

����Re
�D�+1f(z)

D�f(z)
� 1

�
< 1:

Then

S � (k + 1)
���D�+1f(z)

D�f(z)
� 1

��� = (k + 1)

����������

z +

1X
n=2

�(n+ �+ 1)

(n� 1)!�(2 + �)
anz

n

z +

1X
n=2

�(n+ �)

(n� 1)!�(1 + �)
anz

n

� 1

����������
< 1

if

(k + 1)

1X
n=2

�(n+ �)

(n� 1)!�(1 + �)

hn+ �

1 + �
� 1

i
janj < 1�

1X
n=2

�(n+ �)

(n� 1)!�(1 + �)
janj;

which holds when the inequality (2.8) is ful�lled. �

Corollary 2.2. For � = 0 Theorem 2.3 coincides with results obtained in [9].
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Theorem 2.4. Let k 2 [0;1) and � � �1. The function f belongs to the class

UK(�; k) if and only if (f �H)(z)=z 6= 0 in U , where

H(z) =
z

(1� z)�+2

h
1� Bz

B � 1

i
(2.9)

with

B = tk �
p
t2 � (tk � 1)2; (t2 � (tk � 1)2 � 0; t � 0):(2.10)

Proof. The condition (1.11) means that the values of D�+1f(z)=D�f(z) (z 2
U) lie in a conic domain 
k. Since @
k = fu + iv : u2 = k2(u � 1)2 + k2v2g the
condition (1.11) may be rewritten as

D�+1f(z)

D�f(z)
6= tk �

p
t2 � (tk � 1)2 = B (z 2 U ; t2 � (tk � 1)2 � 0; t � 0):

(2.11)

Applying the de�nition of D�f(z) and properties of Hadamard product, (2.11) will
hold if (f �H)(z)=z 6= 0, with the function H given by (2.9). �

Theorem 2.5. The coeÆcients hn of the function H given by (2:9) satisfy the

inequality

jhnj � [�+ n+ k(n� 1)]
�(n+ �)

(n� 1)!�(2 + �)
(n = 2; 3; : : : ):(2.12)

Proof. From the power series of the function H we have

hn =
�(n+ �)

(n� 1)!�(2 + �)

�
�+

B � n

B � 1

�
;

and therefore

jhnj2 =
h �(n+ �)

(n� 1)!�(2 + �)

i2h
(� + 1)2 � 2k(1 + �)(n� 1)

t
+

(n� 1)(2�+ n+ 1)

t2

i

=:
h �(n+ �)

(n� 1)!�(2 + �)

i2
v(t):

The function v(t) is decreasing in the interval [1=(k + 1); t0) and increasing in
(t0;1) with t0 = (2�+n+1)=[k(1+�)] with its minimum at t0. The limit of v(t) as
t tends to in�nity is equal to (1+�)2, and v(1=(k+1)) = [�+n+k(n�1)]2 � (1+�)2.
Thus the maximal value of v(t) is attained at the point 1=(k+1), so the coeÆcients
of H must satisfy the inequality (2.12). �

Corollary 2.3. The function g(z) = z + Czn 2 UK(�; k) if and only if

jCj � (n� 1)!�(�+ 2)

[�+ n+ k(n� 1)]�(�+ n)
:(2.13)

Proof. First we prove the suÆcient condition. Since���(g �H)(z)

z

��� = j1 + hnCz
n�1j � 1� jhnCzj � 1� jzj > 0 (z 2 U);
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then g 2 UK(�; k). Assume next, for neccessity, that g 2 UK(�; k), and

h(z) =

1X
n=1

[�+ n+ k(n� 1)]�(�+ n)

(n� 1)!�(�+ 2)
zn:

Then

(g � h)(z)
z

= 1 + C
[�+ n+ k(n� 1)]�(�+ n)

(n� 1)!�(�+ 2)
zn�1:

Thus, for jCj > [� + n+ k(n� 1)]�(�+ n)]=[(n� 1)!�(�+ 2)] there exists a point
� 2 U such that (g � h)(�)=� = 0, so that the inequality (2.13) must hold. �

3. Properties of the class UR(�; k)
Assume, like in Section 2 that � � �1. First observe that the class UR(�; k)

is closely related to the class k-ST by the relation

f 2 UR(�; k) () D�f(z) 2 k-ST :(3.1)

Applying relation (3.1) numerous properties of the class UR(�; k) may be trans-
formed from the class k-ST .

By the equivalence pk(z) = z(D�fk(z))
0=D�fk(z) between classes P(pk) and

UR(�; k), and in view of (1.10), (1.12) we have for fk(z) = z +A2z
2 +A3z

3 + � � �
and pk(z) = 1 + P1z + P2z

2 + � � � , the following equality

�(m+ �)

(m� 2)!
Am =

m�1X
p=1

�(p+ �)

(p� 1)!
ApPm�p; A1 = 1:(3.2)

In particular

A2 =
P1

1 + �
; A3 =

P2 + P 2
1

(1 + �)(2 + �)
; A4 =

�(1 + �)

�(4 + �)

h
2P3 + 3P1P2 + P 3

1

i
;(3.3)

with coeÆcient P1; P2; P3; : : : given in a complete form in [8].

Theorem 3.1. Let k 2 [0;1), and f of the form (1:1) belongs to the class

UR(�; k). Then

ja2j � A2; ja3j � A3; for k 2 [0;1); and ja4j � A4; when k 2 [0; 1]:(3.4)

Proof. Proof follows immediately from the relation (3.1) and the results ob-
tained in the paper [9]. �

Theorem 3.2. Let 0 � k <1, and let f of the form (1:1) belongs to the class

UR(�; k). Then

janj � (P1)n�1�(1 + �)

�(n+ �)
; n = 2; 3; : : : :(3.5)

Proof. Applying the relation (3.1) and the estimates of coeÆcients in the
class k-ST we obtain the desired result. �
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Theorem 3.3. If for the function f of the form (1:1) the inequality

1X
n=2

�(n+ �)

(n� 1)!�(1 + �)
[n(k + 1)� k]janj < 1(3.6)

holds true for some k 2 [0;1) then f 2 UR(�; k).

Proof. Reasoning along the same line as in proof of Theorem 2.3 we have the
condition (3.6). �

Theorem 3.4. Let k 2 [0;1) and � � �1. The function f belongs to the class

UR(�; k) if and only if (f �G)(z)=z 6= 0 in U , where

G(z) =
z

(1� z)�+2

h
1� (B + �)z

B � 1

i
(3.7)

with B de�ned in (2:10).

Proof. Bearing in mind the relation (3.1) and the duality results in the class
k-ST (cf. [9]) we get the thesis. �

Theorem 3.5. The coeÆcients gn of the function G given by (3:7) satisfy the

inequality

jgnj � [n(k + 1)� k]
�(�+ n)

(n� 1)!�(�+ 1)
:(3.8)

Proof. Using the power series of the function G we get

gn =
�(�+ n)

(n� 1)!�(�+ 1)

B � n

B � 1
:

The expression [�(� + n)]=[(n � 1)!�(� + 1)] does not depend on B = B(t), so
gn attains its maximum at maximum of the factor [B � n]=[B � 1], namely at
t0 = 1=(k + 1). The maximum is equal to n(k + 1) � k (cf. [9]). Hence we obtain
the desired result. �

Corollary 3.1. The function g(z) = z + Czn 2 UR(�; k) if and only if

jCj � (n� 1)!�(�+ 1)

[n(k + 1)� k]�(�+ n)
:(3.9)

Proof. The result follows from Theorem 3.5 and the reasoning similar to that
in Section 2. �
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