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ABSTRACT. We investigate so-called BLAS problem for entire function-
s whose logarithm of maximum moduli is regularly varying in the sense
of Karamata or de Haan . We also give an interesting application on
Hadamard-type convolutions with regularly varying sequences of arbitrary
index.

Introduction

For a given entire function f(z) := Y ;o arz" we define, as usual, its par-
tial sums Sy, (2) := Y, <, axz® and maximum moduli M (r) := max|f(2)||:j= =
|f(re°)| = |f(z0)|. The order p of f(z) is p := limsup,_, . loglog My (r)/logr.

In [5], we gave a notion of best A-approximating (BLAS) partial sums for
functions analytic on the unit disc. This can be easily reformulated for entire
functions (analytic on the whole complex plane) as:

If there is an integer-valued function n := n(r,A\) = oo (r — o0) such that

Sn(r,A)(ZU) _ { O(l)v 0<A< 1;
flzo) — L1l4o0(1), A>1;

we call S,z (20) the best A-approximating partial sum (BLAS).

In this way, we are going to find the “shortest” partial sum which is well
approximating f(z) at the point(s) of maximal growth, for r sufficiently large.

Note that analogous to (I) is the relation between moduli of BLAS and M (r).

An important role in measuring the growth of entire functions of order p > 0
have the class R, consisting of regularly varying functions in the sense of Karamata;
ie., g(z) € R, can be represented in the form g(z) = 2?l(z), > 0, p € R, where
p is the index of regular variation and I(z) € Ry is a slowly varying function i.e.,
positive, measurable and satisfying l(tz)/l(z) ~ 1, Vt > 0 (z — 00).

(r — o0) (I)
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An immediate consequence which we are going to use in the sequel is
g(z) € R, <= g(tx)/g(x) ~t*, Vt>0. (z — o) (0.1)

For further information on regular variation we recomend [1] and [4]. In order
to study entire functions of order zero we shall consider a subclass of Ry i.e. de
Haan’s class II;,

h(tz) — h(x)
I(z)

where I(z) € Ry is called the auxiliary function and we can take h(z) = I(x) +
[ 1(t)/tdt [1, pp. 160-165].

We are going to apply our BLAS results to entire functions with non-negative
coefficients i.e., to determine the asymptotic behavior of Hadamard-type convo-
lutions Ty (r) := Y n%l,a,r™, where (I,,) are slowly varying sequences; therefore
improving our results from [6].

hiz) € Il; < ~logt, Vt>0; (z— o0) (0.2)

Results
Let f(z), Ms(r), n(r,A), p, zo be defined as above. Then we have the following
THEOREM 1. IflogMy(r) € R,, p > 0, and

n(r,A) ~ Aplog My (r). (r = o0) (1)
Then
Snra) (20) { er(r, ), 0<A<I1;
(z0) L l4e(N, A>1,
with
1 —(Alog A— o .
lei(r, \)| < me(r) (MogAt1toD) 19 (- o0).

Proof. An implementation of Cauchy’s Integral formula gives

L. Fw) (20/w)" Tt o — { —Sn(20), 20 ¢ ?nt C,
21 Jo w— zp f(z0) = Sn(20), 20 € intC.
Let the contour C be a circle w = rA/?¢ei?. Since

20| {>|w|, 0< A<,
Zo| =T
0 <|w|, A>1,

from (2) we get

1 2w f(T‘Al/peid)) A*n/Pein(ﬁbO*(f)) d _%, 0< A< 1,
T2 Jy  flreio) Nreito—d0) —1°° ) {_ Salal )
zg) ? :
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Taking into account that |f(z)| = M/(r), a simple estimation of I gives

<+ /Qﬁ JON e e
~ 21 Jo | f(20)] |\L/peil¢—do) — 1]

ie.,
My (rAl/7) e 218> (4)
My(r) Ve —1]

Since, for sufficiently large r (cf. (0.1)),

1] <

log My (rA/?)

log M R
og f('f') € 14 = IOg Mf (T')

= A1+ o(1),
putting in (4), n = n(r,A) = Aplog M (r)(1 + o(1)), we finally obtain

|7 < exp(—log My¢(r)(AlogA = A +1+0(1))) (r—00) ()

_
e 1
For A > 0, A # 1, A = AlogA — XA + 1 is strictly positive, hence the assertion of
Theorem 1 follows.

In the case of entire functions of order zero, we shall treat the subclass whose
logarithm of the maximum modulus belongs to de Haan’s class II; with unbounded
auxilary function [ € Ry.

Taking in (2) the contour C : |w| = Ar; A > 0, A # 1, the estimation (4) can
be rewritten as

log My (Ar) —log My (r)
(l(r) 0 nlog )\) (6)
Putting there n = n(r,\) = M(r)(1 + o(1)) (r = o0) and taking into account the
definition (0.2), (6) yields

1
< ——
| |_|>\_1|GXP

1l < ﬁ exp(—1(r) (A — Dlog A + o(1)))  (r — oo).

Since A — (A — 1) log A is strictly positive for A > 0, A # 1, we obtain
THEOREM 2. If log My (r) € II; with auxilary function Ry 3 l(r) — oo (r —
00), and n(r,\) ~ A(r) (r — oc), then
Sn(r) (20) B { w1 (r, ), 0<Akl1
f(z0) 14+ pa(r,N), A>1

with
e—l(r)((A—l)log A+o(1))’ i = 1’2; (T‘ - OO)

il <
il < BT

It is easy now to derive, from the Theorems above, various estimation formulae
for the moduli of BLAS. We need the following in the sequel:
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PRroPOSITION 1. Under the conditions of the Theorem 1, for any o > 1, p >0
and nq(r,0) ~ eoplog My(r) (r — o),

> ansh| < OMy(r) e,

n>ni(r,o)

Proof. Applying Theorem 1 with A > 1, we get

Y anzg = f(20) = Snirr)(20) = —f(20)ea(r, N),

n>n(r,\)
i.e., since |f(z0)| = Mys(r),

1 — o
| Y ans| = My)lea (V] < g My ()Xo D),

n>n(r,\)

Putting there A = eo, n(r,\) = ni(r,o) we obtain the proof with C' = C(p,0) =
1/(ec)'/P=1.

Now, we give some applications of our BLAS results. For a given entire function
f(r) := >, a,r™ with non-negative coefficients, there is a classical problem of es-
timating asymptotic behavior of Hadamard-type convolutions T¢(r) := >, cpanr™
(r — o00).

In the well-known book [3, pp. 20,197,198) this is solved in the case

en =0 a€R; logf(r)~ar’, a,p>0 (r— o0).

In [6] we obtain a result for regularly varying c,, := n%l,, @ € R, ¢p := 1 and
log f(r) € SR,, p > 0.
Here [,, are slowly varying sequences [2], for example:

logn

log® 2n, log’(log3n), exp ( ), exp(log®2n); a,beR; 0<c< 1,

loglog 3n

and SR, C R, is the class of smoothly varying functions [1, pp. 44-47].
Using Theorem 1 and Lemmas 1 and 2 below, we are going to prove the next:

THEOREM 3. Let an entire function f(r) := ) an,r"™, an > 0, of order p > 0,
satisfy log f(r) € R,. Then

chan ~ p* Cllog f(r ]f() (T‘—)OO),

for any regularly varying sequence (cy,) of arbitrary index a € R.

For the proof we need two lemmas.
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LEMMA 1. Define

where n(r) increases to infinity with r, and an operator T' acting on S:

TS\ 1) := Z cpapr™, n €N,
n<An(r)

where (¢, )nen is a regularly varying sequence of index « € R.

If there exist g,g1,92 : RT — R*; by : (0,1) = R*; by : (1,00) = RT, and

logn(r) _

lim . i=1,2
r—00 gi(r)
such that
S(A,r) { O(e=tr(Mar(n)y, O<A<l,
? — Ae R+, N ’
g(r) A4 O(e M=) x> 1, (r — o0)
then vt
n(r)]/» < <1,
TS\ r) _ { o(Cin(r)) s o0)
g(r) () (A +0(1), A>1;

In this form Lemma 1 is proved in [7] as the Theorem A.
LEMMA 2. For any regularly varying sequence (c,,) of index a € R,
Claa] ~ CAfel] ~ A%Ca] (@ = 00).

This is a well-known fact [1, pp. 49-53].
Now, we are able to prove cited Theorem 3.
First of all, note that the condition a,, > 0 implies that on the circle |z| = r we

have
=] ane| < S anlel" = 3 aur” = 1),

Hence, M;(r) = f(r), zo = r and, comparing the assertions from Theorem 1 and
Lemma 1, we see that the conditions of Lemma 1 are satisfied with

g(r) := f(r); n(r) := plog f(r); g1(r) = ga2(r) :=1log f(r); A:=1.

Write, in terms of Theorem 1,

Ty(r) == chanr” = Z Cnlpr™ + Z Cnapr™ = S1 + Ss.
n

n<n(r,2e2r) n>n(r,2e2°)
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Applying Lemma 1 with A := 2e2” > 1 and Lemma 2, we obtain

Si ~ Clplog f(r)]f(r) ~ pac[logf(r)]f(r)) a€R (T - OO) (31)

For estimating S, note that (0.1) implies 27 log f(r) ~ log f(2r), (r — o),

i.e., using Proposition 1 with n(r,2e2”) = ny(2r,2), we get
Sy < sup(27"ey) Z an,(2r)" = 0(1) Z an(2r)"
" n>n(r,2e2°) n>n1(2r,2)
— 0(1)67(26 log 2+0(1)) log f(2r) — O(C[log f(r)]f(r)) (T’ — OO)

This, along with (3.1) yields the proof of Theorem 3.

In the same manner, using Theorem 2 and Lemmas 1 and 2 we can prove

THEOREM 4. Under the conditions of Theorem 2, for a given entire function
f of order zero,

f0) =S awr", a,>0, neN,

we have
Tf (T‘) = chanr” ~ cu(r)]f(r) (7‘ — OO),

for any regularly varying sequence (cy,) of arbitrary index.
Finally, we shall give two examples. To illustrate the results from Theorems 1
and 3, we shall consider the Mittag-Leffler function E(z),

oo n

z
E(z) = _ .
(2) Z I'(1+ns) >0
n=0
Then, for z = re®,
o0 rn
zo=r, Mg(r)= Es(r) Z T +ns)’ 5 >0,

and (cf. [1, p. 329]),
Ey(r) ~ (1s)e"""s log Ey(r) ~r'/* (r = o0).
Hence E;(z) is an entire function of order 1/s and Theorem 1 gives:
PROPOSITION 2. For the Mittag-Leffler function E(z),
n(r,A) ~ (Ns)r'/s, s>0, (r— o)
and n
r
Sy () = Y T +ns) o(Es(r)) for 0 <A<
n<n(r,\)
Sney (1) ~ Es(r)  for  A>1 (r — o00).

Similarly, applying Theorem 3 and the properties of Es(r) mentioned above,
we obtain
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PROPOSITION 3. For any slowly varying sequence ({,) and arbitrary a € R,

— - nty n a+l,a/s 1/s 1/s
TE(r)._;F(l+ns)r (1/s)Frro/se(rt/*) exp(r/®)  (r — o0).

For the next example we take the function Q(z) of zero order,

n

Q(z) := H(1+ ):1+nz:1(q—l)(qQ—l)---(q"—l)’ qg> 1

n=1

(Euler, cf. [8, p. 32])
For z = re*®, we have

oo

=1 Mo(r)=Q(r) = [[(1+r/d").

n=1
That log Q(r) belongs to de Haan’s class II; follows from Hardy’s result (cf. [9,
p. 171]),

logQ(r) =

Therefore, for ¢t > 0,

1 2
2Tog q(logr—ﬁlogq) +0(1) (r— o0).

logt
log Q(tr) — log Q(r) ~ % logr,

ie.,
log Q(tr) —log Q(r)
logr/logq
According to (0.2), log Q(r) € II; and we can take for the auxiliary function

I(r) = %7 € Ry.

—logt, Vt>0 (r— o0)

Applying Theorem 2 we obtain
PROPOSITION 4. For the function Q(r) defined above,

A
n(r, >‘) ~ (@ N) IOgT’ (7" - 00)7

and
n

.
Su(r y: =1+ = o(Q(r for 0 <A< 1;
G MZM TES s e oy )

Snray ~ Q(r) for A>1 (r — 00).
Theorem 4 also gives

ProPOSITION 5. For any slowly varying sequence (), n € N and arbitrary
real « we have (when r — 00).

n*l 1
=14 . "~ ———log™r £(logr) Q(r
Zq—lq—l)---(q"—l) log™q (logr) Q(r)
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