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BEST �-APPROXIMATION FOR

ENTIRE FUNCTIONS OF FINITE ORDER
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Abstract. We investigate so-called BLAS problem for entire function-
s whose logarithm of maximum moduli is regularly varying in the sense
of Karamata or de Haan . We also give an interesting application on
Hadamard-type convolutions with regularly varying sequences of arbitrary
index.

Introduction

For a given entire function f(z) :=
P1

k=0 akz
k we de�ne, as usual, its par-

tial sums Sn(z) :=
P

k�n akz
k and maximum moduli Mf (r) := max jf(z)jjzj=r =

jf(rei�0)j = jf(z0)j. The order � of f(z) is � := lim supr!1 log logMf (r)= log r.
In [5], we gave a notion of best �-approximating (BLAS) partial sums for

functions analytic on the unit disc. This can be easily reformulated for entire
functions (analytic on the whole complex plane) as:

If there is an integer-valued function n := n(r; �)!1 (r !1) such that

Sn(r;�)(z0)

f(z0)
=

�
o(1); 0 < � < 1;

1 + o(1); � > 1;
(r !1) (I)

we call Sn(r;�)(z0) the best �-approximating partial sum (BLAS).
In this way, we are going to �nd the \shortest" partial sum which is well

approximating f(z) at the point(s) of maximal growth, for r suÆciently large.
Note that analogous to (I) is the relation between moduli of BLAS and Mf (r).
An important role in measuring the growth of entire functions of order � > 0

have the class R� consisting of regularly varying functions in the sense of Karamata;
i.e., g(x) 2 R� can be represented in the form g(x) = x�l(x), x > 0, � 2 R, where
� is the index of regular variation and l(x) 2 R0 is a slowly varying function i.e.,
positive, measurable and satisfying l(tx)=l(x) � 1, 8t > 0 (x!1).
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An immediate consequence which we are going to use in the sequel is

g(x) 2 R� () g(tx)=g(x) � t�; 8t > 0: (x!1) (0:1)

For further information on regular variation we recomend [1] and [4]. In order
to study entire functions of order zero we shall consider a subclass of R0 i.e. de
Haan's class �l,

h(x) 2 �l ()
h(tx)� h(x)

l(x)
� log t; 8t > 0; (x!1) (0:2)

where l(x) 2 R0 is called the auxiliary function and we can take h(x) = l(x) +R x
1 l(t)=tdt [1, pp. 160{165].

We are going to apply our BLAS results to entire functions with non-negative
coeÆcients i.e., to determine the asymptotic behavior of Hadamard-type convo-
lutions Tf (r) :=

P
n�lnanr

n, where (ln) are slowly varying sequences; therefore
improving our results from [6].

Results

Let f(z), Mf (r), n(r; �), �, z0 be de�ned as above. Then we have the following

Theorem 1. If logMf (r) 2 R�, � > 0, and

n(r; �) � �� logMf (r): (r !1) (1)

Then
Sn(r;�)(z0)

(z0)
=

�
�1(r; �); 0 < � < 1;

1 + �2(r; �); � > 1;

with

j�i(r; �)j �
1

j�1=� � 1j
Mf (r)

�(� log ���+1+o(1)); i = 1; 2 (r !1):

Proof. An implementation of Cauchy's Integral formula gives

1

2�i

Z
C

f(w)
(z0=w)

n+1

w � z0
dw =

�
�Sn(z0); z0 =2 intC;

f(z0)� Sn(z0); z0 2 intC:
(2)

Let the contour C be a circle w = r�1=�ei�. Since

jz0j = r

�
> jwj; 0 < � < 1;

< jwj; � > 1;

from (2) we get

I :=
1

2�

Z 2�

0

f(r�1=�ei�)

f(rei�0)

��n=�ein(�0��)

�1=�ei(���0) � 1
d� =

(
�Sn(z0)

f(z0)
; 0 < � < 1;

1� Sn(z0)
f(z0)

; � > 1:
(3)
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Taking into account that jf(z0)j = Mf (r), a simple estimation of I gives

jI j �
1

2�

Z 2�

0

jf(r�1=�ei�)j

jf(z0)j

e�
n
� log �

j�1=�ei(���0) � 1j
d�

i.e.,

jI j �
Mf (r�

1=�)

Mf (r)

e�
n
� log �

j�1=� � 1j
(4)

Since, for suÆciently large r (cf. (0.1)),

logMf (r) 2 R� )
logMf (r�

1=�)

logMf (r)
= �(1 + o(1));

putting in (4); n = n(r; �) = �� logMf (r)(1 + o(1)), we �nally obtain

jI j �
1

j�1=� � 1j
exp(� logMf (r)(� log �� �+ 1 + o(1))) (r !1) (5)

For � > 0, � 6= 1, � 7! � log� � � + 1 is strictly positive, hence the assertion of
Theorem 1 follows.

In the case of entire functions of order zero, we shall treat the subclass whose
logarithm of the maximum modulus belongs to de Haan's class �l with unbounded
auxilary function l 2 R0.

Taking in (2) the contour C : jwj = �r; � > 0, � 6= 1, the estimation (4) can
be rewritten as

jI j �
1

j�� 1j
exp

�
l(r)

logMf (�r) � logMf (r)

l(r)
� n log�

�
(6)

Putting there n = n(r; �) = �l(r)(1 + o(1)) (r ! 1) and taking into account the
de�nition (0.2), (6) yields

jI j �
1

j�� 1j
exp

�
�l(r)((� � 1) log�+ o(1))

�
(r !1):

Since � 7! (�� 1) log� is strictly positive for � > 0, � 6= 1, we obtain

Theorem 2. If logMf (r) 2 �l with auxilary function R0 3 l(r) ! 1 (r !
1), and n(r; �) � �l(r) (r !1), then

Sn(r;�)(z0)

f(z0)
=

�
�1(r; �); 0 < � < 1

1 + �2(r; �); � > 1

with

j�ij �
1

j�� 1j
e�l(r)((��1) log �+o(1)); i = 1; 2; (r !1):

It is easy now to derive, from the Theorems above, various estimation formulae
for the moduli of BLAS. We need the following in the sequel:
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Proposition 1. Under the conditions of the Theorem 1, for any � > 1, � > 0
and n1(r; �) � e�� logMf (r) (r !1),

��� X
n>n1(r;�)

anz
n
0

��� < CMf (r)
�e� log �+o(1):

Proof. Applying Theorem 1 with � > 1, we get

X
n>n(r;�)

anz
n
0 = f(z0)� Sn(r;�)(z0) = �f(z0)�2(r; �);

i.e., since jf(z0)j = Mf (r),

��� X
n>n(r;�)

anz
n
0

��� = Mf (r)j�2(r; �)j �
1

�1=� � 1
Mf (r)

�(log ��1)+o(1):

Putting there � = e�, n(r; �) = n1(r; �) we obtain the proof with C = C(�; �) =
1=(e�)1=��1.

Now, we give some applications of our BLAS results. For a given entire function
f(r) :=

P
n anr

n with non-negative coeÆcients, there is a classical problem of es-
timating asymptotic behavior of Hadamard-type convolutions Tf (r) :=

P
n cnanr

n

(r !1).
In the well-known book [3, pp. 20, 197, 198) this is solved in the case

cn := n�; � 2 R; log f(r) � ar�; a; � > 0 (r !1):

In [6] we obtain a result for regularly varying cn := n�ln, � 2 R, c0 := 1 and
log f(r) 2 SR�, � > 0:

Here ln are slowly varying sequences [2], for example:

loga 2n; logb(log 3n); exp
� logn

log log 3n

�
; exp(logc 2n); a; b 2 R; 0 < c < 1;

and SR� � R� is the class of smoothly varying functions [1, pp. 44{47].
Using Theorem 1 and Lemmas 1 and 2 below, we are going to prove the next:

Theorem 3. Let an entire function f(r) :=
P

n anr
n, an � 0, of order � > 0,

satisfy log f(r) 2 R�. Then

Tf (r) :=
X
n

cnanr
n � �� c[log f(r)] f(r) (r !1);

for any regularly varying sequence (cn) of arbitrary index � 2 R.

For the proof we need two lemmas.
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Lemma 1. De�ne

S(�; r) :=
X

n��n(r)

anr
n; an � 0; n 2 N;

where n(r) increases to in�nity with r, and an operator T acting on S:

TS(�; r) :=
X

n��n(r)

cnanr
n; n 2 N;

where (cn)n2N is a regularly varying sequence of index � 2 R.

If there exist g; g1; g2 : R
+ ! R+; b1 : (0; 1)! R+; b2 : (1;1)! R+, and

lim
r!1

logn(r)

gi(r)
= 0; i = 1; 2;

such that

S(�; r)

g(r)
=

�
O(e�b1(�)g1(r)); 0 < � < 1;

A+O(e�b2(�)g2(r)); � > 1;
A 2 R+; (r !1);

then
TS(�; r)

g(r)
=

�
o(c[n(r)]); 0 < � < 1;

c[n(r)](A+ o(1)); � > 1;
(r !1):

In this form Lemma 1 is proved in [7] as the Theorem A.

Lemma 2. For any regularly varying sequence (cn) of index � 2 R,

c[�x] � c[�[x]] � ��c[x] (x!1):

This is a well-known fact [1, pp. 49{53].
Now, we are able to prove cited Theorem 3.
First of all, note that the condition an � 0 implies that on the circle jzj = r we

have

jf(z)j =
���X

n

anz
n
��� �X

n

anjzj
n =

X
n

anr
n = f(r):

Hence, Mf (r) = f(r), z0 = r and, comparing the assertions from Theorem 1 and
Lemma 1, we see that the conditions of Lemma 1 are satis�ed with

g(r) := f(r); n(r) := � log f(r); g1(r) = g2(r) := log f(r); A := 1:

Write, in terms of Theorem 1,

Tf (r) :=
X
n

cnanr
n =

X
n�n(r;2e2�)

cnanr
n +

X
n>n(r;2e2�)

cnanr
n = S1 + S2:
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Applying Lemma 1 with � := 2e2� > 1 and Lemma 2, we obtain

S1 � c[� log f(r)]f(r) � ��c[log f(r)]f(r); � 2 R (r !1): (3:1)

For estimating S2, note that (0:1) implies 2� log f(r) � log f(2r), (r ! 1),
i.e., using Proposition 1 with n(r; 2e2�) = n1(2r; 2), we get

S2 � sup
n
(2�ncn)

X
n>n(r;2e2�)

an(2r)
n = O(1)

X
n>n1(2r;2)

an(2r)
n

= O(1)e�(2e log 2+o(1)) log f(2r) = o(c[log f(r)]f(r)) (r !1):

This, along with (3.1) yields the proof of Theorem 3.

In the same manner, using Theorem 2 and Lemmas 1 and 2 we can prove

Theorem 4. Under the conditions of Theorem 2, for a given entire function
f of order zero,

f(r) :=
X
n

anr
n; an � 0; n 2 N;

we have
Tf (r) :=

X
n

cnanr
n � c[l(r)]f(r) (r !1);

for any regularly varying sequence (cn) of arbitrary index.

Finally, we shall give two examples. To illustrate the results from Theorems 1
and 3, we shall consider the Mittag-Le�er function Es(z),

Es(z) :=

1X
n=0

zn

�(1 + ns)
; s > 0:

Then, for z = rei�,

z0 = r; ME(r) = Es(r) =

1X
n=0

rn

�(1 + ns)
; s > 0;

and (cf. [1, p. 329]),

Es(r) � (1=s)er
1=s

; logEs(r) � r1=s (r !1):

Hence Es(z) is an entire function of order 1=s and Theorem 1 gives:

Proposition 2. For the Mittag-Le�er function Es(z),

n(r; �) � (�=s)r1=s; s > 0; (r !1)

and

Sn(r;�)(r) :=
X

n�n(r;�)

rn

�(1 + ns)
= o(Es(r)) for 0 < � < 1;

Sn(r;�)(r) � Es(r) for � > 1 (r !1):

Similarly, applying Theorem 3 and the properties of Es(r) mentioned above,
we obtain



BEST �-APPROXIMATION FOR ENTIRE FUNCTIONS OF FINITE ORDER 89

Proposition 3. For any slowly varying sequence (`n) and arbitrary � 2 R,

TE(r) :=
1X
n=1

n�`n
�(1 + ns)

rn � (1=s)�+1r�=s`(r1=s) exp(r1=s) (r !1):

For the next example we take the function Q(z) of zero order,

Q(z) :=

1Y
n=1

�
1 +

z

qn

�
= 1 +

1X
n=1

zn

(q � 1)(q2 � 1) � � � (qn � 1)
; q > 1:

(Euler, cf. [8, p. 32])
For z = rei�, we have

z0 = r; MQ(r) = Q(r) =

1Y
n=1

(1 + r=qn):

That logQ(r) belongs to de Haan's class �l follows from Hardy's result (cf. [9,
p. 171]),

logQ(r) =
1

2 log q

�
log r �

1

2
log q

�2
+O(1) (r !1):

Therefore, for t > 0,

logQ(tr)� logQ(r) �
log t

log q
log r;

i.e.,
logQ(tr) � logQ(r)

log r= log q
! log t; 8t > 0 (r !1)

According to (0.2), logQ(r) 2 �l and we can take for the auxiliary function

l(r) = log r
log q 2 R0.

Applying Theorem 2 we obtain

Proposition 4. For the function Q(r) de�ned above,

n(r; �) �� (
�

log q
�) log r (r !1);

and

Sn(r;�)(r) := 1 +
X

n�n(r;�)

rn

(q � 1)(q2 � 1) � � � (qn � 1)
= o(Q(r)) for 0 < � < 1;

Sn(r;�) � Q(r) for � > 1 (r !1):

Theorem 4 also gives

Proposition 5. For any slowly varying sequence (`n), n 2 N and arbitrary
real � we have (when r !1).

TQ(r) := 1 +

1X
n=1

n�`n
(q � 1)(q2 � 1) � � � (qn � 1)

rn �
1

log� q
log� r `(log r) Q(r)
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